Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

Environmental Engineering Department, Federal University of Parana, Curitiba, PR, Brazil
Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
LAVIE - Institute of Chemistry, São Paulo State University - UNESP, Araraquara, Brazil
Chemical Engineering Department, Federal University of Parana, Curitiba, PR, Brazil
Vehicle Emissions Laboratory, Institute of Technology for Development (IACTEC), Curitiba, PR, Brazil
Analytical Chemistry Laboratory, Institute of Chemistry, São Paulo State University - UNESP, Araraquara, Brazil
Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
Department of Natural and Earth Sciences, Federal University of São Paulo, Diadema, Brazil

HIGHLIGHTS
• PM emission from biodiesel burning may be more harmful to human health than diesel.
• Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer
• Electron Spin Resonance (ESR) to access the oxidative potential of PM emission
• Add biodiesel in the fuel blend increases OP while SCR system reduces it.
• Free radicals generation due biodiesel can cause deleterious effects in health.

GRAPHICAL ABSTRACT

ABSTRACT
Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OPESR) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OPESR results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm$^{-1}$ and 1600 cm$^{-1}$ indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical
Particulate matter (PM) from anthropogenic sources is of particular concern to human health and has been associated with adverse health effects [Wijst et al., 1997; Kim et al., 2004; Gauderman et al., 2005; Tonne et al., 2007; Ryan et al., 2007]. Such effects are linked to particles size, composition, concentration and sources (Davidson et al., 2005; Smekens et al., 2005; Viana et al., 2008; Lee and Hieu, 2011). One particularly notable source of harmful particulate emissions is diesel engines. The PM output from these engines has been linked to cardiopulmonary mortality and morbidity including cancer (Tarkkainen et al., 2003; Nemmar et al., 2007; Peretz et al., 2008; Rivero et al., 2005; Benbrahim-Tallaa et al., 2012). Despite the increase in the health risk being relatively small, the incidence of exposure is high, thus demonstrating its significant importance as the population is exposed (Lim et al., 2012).

Technologies to reduce emissions associated with diesel vehicles have been implemented (Gill et al., 2012; Borillo et al., 2012). Accordingly, technologies to reduce emissions associated with diesel vehicles have been implemented (Gill et al., 2012; Borillo et al., 2015). Examples include diesel particulate filters (DPFs), aftertreatment exhaust emission systems (e.g. selective catalytic reduction - SCR). In addition, in light of renewal energy sources, biodiesel is promoted as a sustainable source (Cheng et al., 2008; Hu et al., 2009; Chin et al., 2012).

In short, biodiesel is an ester-based fuel obtained from different vegetable oils, and in some countries, has become accepted as a partial or total substitute for fossil fuels. Introduction of Diesel engines operating with biodiesel is widespread in Brazil, where the majority of this study is based. It is imperative that biofuel emissions are of a higher quality than those of traditional diesel engines for biodiesel to be a suitable alternative. Literature indicates the reduction of PM mass concentration due to use of biodiesel compared to fossil diesel (Lapuerta et al., 2008; Bünger et al., 2012; Guo et al., 2014). Similarly, SCR aftertreatment engines have been shown to reduce the quantity of PM produced and gases (Tadano et al., 2014). However, it has been suggested that despite the reduced mass concentrations of PM, cytotoxicity and pro-inflammatory marker increase with use of biodiesel relative to fossil diesel release (Kooter et al., 2011; Swanson et al., 2011; Gerlofs-Nijland et al., 2013). The effect of engine exhaust particles on oxidative potential is of particular interest for this study because of its well documented association with acute and chronic health effects (HALLIWELL and GUTTERIDGE, 1999; Valko et al., 2007; Patel et al., 2011). The specific cause of excess free radical production is yet to be proved conclusively (Betha et al., 2012). One possible explanation is the increased quantity of organic matter output from biodiesel fuelled engines, oxidizing once access is gained to the body (YANAMALA et al., 2013). The contribution of organic content is again estimated by JUNG et al. (2006) who report increased hydroxyl radical (OH*) production as a result of flame soot, compared to carbon black. However these concepts differ from the conventional explanation the influence of metal species. The Fenton reaction describes the production of OH* by the reduction of hydrogen peroxide and simultaneous oxidation of transition metal ions (SHI et al., 2003). Although the example equation features oxidation of iron, this process is observed for other metals such as copper (KADISKA and Mason, 2002), tin (LILLEY et al., 2013), chromium (LOU et al., 2013), even aluminium, despite the fact it only exists in one oxidation state (Kumar and Gill, 2014).

$$\text{Fe}^{2+} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + \text{H}_2\text{O} + \text{OH}^*$$

The primary objective of this study is to assess the probable oxidative stress caused by exposure to PM of diesel and biodiesel fuelled engines using SCR aftertreatment. This was achieved by using the electron spin resonance analysis in order to measure the free radicals generation due to PM emitted by different aftertreatment/fuel settings. Raman spectroscopy and Energy Dispersive X-ray fluorescence spectroscopy (EDXRF) experimentation were carried out to provide a more in-depth understanding of the free radical chemical nature in biodiesel and diesel.

2. Experimental section

2.1. PM collection

Collection of total PM took place at Institute of Technology for Development, Lactec, Curitiba, Brazil. The engine emissions testing facilities used an engine dynamometer and an engine equipped with a urea SCR aftertreatment system, in accordance with the Euro V standard. Table 1 shows the characteristics of the tested engine. The tested engine has an individual four-valve cylinder head, cross-flow arrangement; common rail injection system with 1800 bars and engine brake “power brake.” It is used in trucks, minibuses and buses. The engine has a power output of 187 HP (2200 rpm), a peak torque of 720 Nm and follows the European Union regulation no. 715/2007 requirements Euro V with urea-SCR system. The European Union (EU) adopted Euro V engine since 2009 and the Euro VI engine in 2013. In Brazil, due to technological delays, especially according to high sulfur concentration in diesel fuel, the Euro V engine was established in 1 January 2012, through the PROCONVE seventh campaign. Nowadays, around 140,000 trucks and 30,000 buses equipped with SCR systems are being used in Brazil (Anfavea, 2013).

This engine works in conjunction with an AVL SESAM i60 6T dynamometer, 440 kW power output at 6,000 rpm and 2,334 Nm of torque. This setup uses the European Steady Cycle (ESC) test set up in accordance with the European emission regulations directive 1999/96/EC. The ESC uses different engine and dynamometer settings, designed to simulate a variety of different speeds and load weights, to allow collection of PM. The fuels used in this study were a blend of ultra-low sulfur diesel (ULSD) (10 ppm sulfur content) and soybean biodiesel in the following proportions: 5% (B5) and 20% biodiesel (B20). The same biodiesel were used to produce the B5 and B20 blends. The rationale behind this choice is two pronged: Firstly, to show the effect of 5% versus 20% biodiesel additions on emission profiles and secondly, both are representative of current usage all over the world. Total PM for each of these fuels was collected both with and without the SCR treatment, thus a total of four different conditions were analyzed in this study.

Table 1

Characteristics of tested engine.

<table>
<thead>
<tr>
<th>Specifiations</th>
<th>Euro V ‘Heavy Duty’/proconve P7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>4</td>
</tr>
<tr>
<td>Valves/cylinder</td>
<td>4.8 L</td>
</tr>
<tr>
<td>Displacement</td>
<td>105 × 137 mm</td>
</tr>
<tr>
<td>Bore × stroke</td>
<td>Direct injection</td>
</tr>
<tr>
<td>Combustion system</td>
<td>Common rail electronic</td>
</tr>
<tr>
<td>Injection system</td>
<td>TGV intercooler</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Power output</td>
</tr>
<tr>
<td>Power output</td>
<td>187 CV (139.7 kW) 2200 rpm</td>
</tr>
<tr>
<td>Peak torque</td>
<td>720 Nm (73 kgf m⁻¹) 1200–1600 rpm</td>
</tr>
<tr>
<td>Aftertreatment</td>
<td>SCR</td>
</tr>
</tbody>
</table>
The B5 and B20 fuels were previously characterized according to methods and essays described on American (ASTM) and Brazilian (NBR) standardization, results are presented on the Table 2. Total PM was collected on Teflon coated glass fiber filters (T60A20, Pallflex®), with a constant volume sampler (smart sampler, AVL, Graz, Austria) to simulate PM dilution with air. The air dilution must be set such as the exhaust diluted gas temperature measured immediately before the first filter does not exceed 325 K (52 °C). The dilution ratio must not be less than four. The motor data acquisition system was an Engine Computer Aided Test (E-Cat) from Sp Tronic (Guarulhos, Brazil) that can store data of temperature, pressure, rotation, torque and power simultaneously during tests execution. In order to evaluate just the effects of B5 and B20 biodiesel blends and aftertreatment system on oxidative potential, all engine tests were validated to achieve the lower variations on the other experimental parameters, according to directive 1999/96/EC of European Union. Therefore the tests with higher variations were not considered for the present study.

2.2. Oxidative potential

Oxidative potential (OP), as predictor for oxidative stress, was measured by Electron Spin Resonance (OPESR) with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) in presence of hydrogen peroxide (H$_2$O$_2$). The analyses were performed in a Miniscope MS 400 (MT MagnetTech Gmbh, Berlin, Germany).

The methodology was based on the one demonstrated by Shi et al. (2003) with adaptations regarding the exclusion of the resuspension and filtering steps, as recommended by Hellack et al. (2014). One filter per each condition (n = 1) and two blank filters were cut in the middle and one half inserted in a vial and 0.5 mL of deionized water, 1 mL of 0.05 M DMPO (≥98% ELSD, Enzo Life Science, Farmingdale, NY, U.S.A.) and 0.5 mL of 0.5 M H$_2$O$_2$ (p.a., Sigma-Aldrich, St. Louis, MO, U.S.A.), both prepared in a Dulbecco’s chloride and calcium free phosphate Buffer (PBS) (premium, Sigma-Aldrich, St. Louis, MO, U.S.A.), were added. Vials content were mixed by vortexing (Vortex Genie-2, Scientiﬁc Equipment) and a reference material from NIST (2783 air particulate on coated glass fi ber) was added to the instrument, in which the analysis was performed. 10 μM copper sulfate (CuSO$_4$) (p.a., Sigma-Aldrich also, St. Louis, MO, U.S.A.) in PBS was used as the positive control because of its known ability in inducing Fenton type reactions (Hellack et al., 2014). Deionized water was used as the negative control. The controls were mixed with DMPO and H$_2$O$_2$ in the same ratio as for the samples and handled as described above.

The OPESR settings for all measurements were the following: 3390 G magnetic field, 100 G sweep width, 3 scans of 30 s, 2000 mG modulation amplitude and 5E1 gain. The resulting OPESR spectrum consists of four different peaks and the higher its amplitudes are, the higher is the PM elicted OH generation. Results are achieved by calculating the average of its total amplitudes and are expressed as arbitrary units (AU) (Hellack et al., 2014). Those were reported as emission factors in terms of the engine energy output (AU kWh$^{-1}$) in order to show the potential risk of implementing each fuel and exhaust technology.

2.3. Bulk elemental profile

Information concerning the bulk elemental concentration is provided by energy-dispersive X-ray fluorescence (EDXRF). The measurements of total PM were performed on a Minipal-4 (PANalytical, Almelo, The Netherlands) equipped with a Silicon Drift Detector (SDD) which is cooled thermo-electrically. For the analysis, a tube voltage of 30 kV, a current of 0.3 mA and an acquisition time of 600 s were selected, in a He-atmosphere, without any further step of sample preparation. The equipment was set to detect a comprehensive list of bulk elements: Si, S, K, Fe, Cu, Ga, Mg, Ca, Ti, Cr, Mn, Co, Ni, Zn, Br, Sr, Ag, Sn, Ba, Pb and Se. The system calibration of the applied EDXRF method was based on thin film reference standards (Micromatter, Seattle, WA, USA) and validated by the measurement of various thin layer standards for each element and a reference material from NIST (2783 air particulate on filter media).

Metals such as Fe, Cr, Co, Mn, Cu and Zn were selected for analysis because of their ability to produce reactive oxygen species (ROS) as part of the Fenton chemistry (Rico et al., 2009; Verma et al., 2010). It was preferred to assess a broad range of elements due to the complex mechanisms that may trigger oxidative stress and the initial stage of OPESR analysis of engine PM emissions (Shi et al., 2003; Pan et al., 2004).

![Fig. 1. PM OPESR per kWh and standard deviation for each operational setting of the engine.](Image)
2.4. Raman spectroscopy

The sampling of individual particles for analysis by Raman Spectroscopy was conducted using a May Impactor connected to the diluter, allowing control of the time and rate of air sampling. The May Impactor consists of seven sampling stages that segregate the particles by aerodynamic diameter (May, 1945). For the analysis, particles with diameter <0.25 μm were sampled, which were impacted on surface-enhanced Raman spectroscopy substrates made of a thin gold film. The SERS substrates used to collect the soot were 2D photonic crystals (PC) measuring 1 × 1 cm × 90 nm in thickness. PC was prepared using a holographic setup following the methodology developed by Menezes et al. (2006). A LabRAM Jobin-Yvon-HORIBA micro-Raman, equipped with a 632.8 nm He-Ne laser and 50× white light objective, was used for obtaining the Raman spectra (Soewono and Rogak, 2011). Several spots were analyzed to ensure representative results and minimize variance.

The amorphous carbon character of the soot collected can be described by their respective Raman spectra. Literature proposes 2 models to fit the rather broad Raman features, two-band and five-band model. The two-band model does not take into account the various D bands describing the sp²/sp³ character and therefore we opted for the five-band fitting proposed by Sadezky et al. (2005) (G, D1, D2, D3, and D4 at about 1580, 1350, 1500, 1620, and 1200 cm⁻¹). The G band is designated to the E²g symmetry stretching mode of the sp² graphitic lattice. The D1 band according to the classic approach is assigned to the breathing mode of sp² atoms and is called the defect band (Ferrari, 2007). The D3 band has been assigned to defects outside the plane of aromatic layers like tetrahedral carbons, while the D4 bond is assigned to sp² or sp²-sp³ bonded atoms and is normally only present in disordered amorphous C. The D2 band’s assignment is still debatable and is only present if there is disorder.

3. Results and discussion

3.1. Oxidative potential

The resulting signals were well ranged between the negative and positive controls and were normalized to give units of AU kWh⁻¹. The results are presented in Fig. 1. AU is used for Arbitrary Units. The standard deviation of positive control analyzed in five consecutive days prior and after the experiment analyses was calculated in order to check the equipment stability, resulting in a value of 6.9%.

The results achieved for this study show that use of B20 increases the OPESR of PM per kWh compared to B5 fuel. For each fuel, we can observe that the use of SCR reduces OPESR, a 30.6% and 13.5% decrease was observed for B20 and B5 respectively.

As outlined in the introduction, one of the primary motivations for this study is to assess the potential harm when using biodiesel blends and aftertreatment of the exhaust. In this study, the major impacts in PM emission factor variations is the use of biodiesel blend, due to its known property of reducing PM mass emission (USEPA, 2002; Xue et al., 2011; Gerlofs-Nijland et al., 2013). In order to assess the impact on human health due to different engine settings, it is relevant to evaluate the results in terms of engine operational metrics (Gerlofs-Nijland et al., 2013). This was achieved by representing the results in terms of the recommended unit in the European emission regulations directive.
1999/96/EC (kWh), showing that the implementation of soy biodiesel can actually enhance the OPESR risk.

The toxicity impact of biodiesel blending and aftertreatment technologies is contrary to studies previously conducted. Kooter et al. (2011) used the dithiohreitol (DTT) catalytic reduction of oxygen to measure the OP of diesel and pure plant oil biodiesel blends PM emissions in terms of kWh. The results showed that B0 and B20 had more or less the same OP. Gerlofs-Nijland et al. (2013) assessed the OP of diesel and rape-seed methyl-ester biodiesel blend by means of DTT and ascorbic acid consumption rate per distance driven and found that the use of B50 reduced or maintained the OP. However, when OP was analyzed in mass unit basis, some studies revealed that biodiesel can lead to PM with higher OP (Cheung et al., 2009; Gerlofs-Nijland et al., 2013). Moreover, in the majority of these studies, there was no coherence among results of different analyses of toxicity assessment (e.g.: cytotoxicity, cytokines release, oxidative stress and mutagenicity). As mentioned, the health risks are eventually determined by the amount inhaled, and OP per kWh is therefore a more useful metric to assess the health impacts.

In relation to the SCR technology, the results showed that its use reduces the OPESR of emitted particles per kWh. Biswas et al. (2009) found a significant reduction in the OP of exhaust particles per distance driven from a heavy-duty engine when equipped with SCR technology. The authors suggest that the OP of particles is affected by catalytic surfaces and the semi volatile organics absorbed on the surface of soot particles. Moreover, among oxidant catalyzers, filter catalyzers or SCR all seems to have variables degrees of influence in changing the composition and reactivity of PM.

At the present moment, there is no single method to assess the overall OP activity of PM. Various assays to measure OP are sensitive to different groups of compounds. The DTT consumption rate is based on the ability of active reductants compound associated with PM to transfer electrons from DTT to oxygen, and are known to be sensitive to organic compounds, especially quinones emitted from diesel exhaust (Ayres et al., 2008). Ascorbic acid depletion analysis and ESR, on the other hand, are particularly sensitive to the presence of transition metals (Ayres et al., 2008; Yang et al., 2014). Furthermore, different results among several studies may be a consequence of different study configurations (Gerlofs-Nijland et al., 2013). Different factors such as engine technology, fuel type and the use of catalyzers and filters may affect the composition and thus, the toxicity of the engine exhaust mixture, which complicates the comparison among experiments. An example would be the increased, equal or decreased toxicity potential reported from biodiesel emission studies (Bünger et al., 2000; Cheung et al., 2009; Jalava et al., 2010; Kooter et al., 2011; Swanston et al., 2011; Gerlofs-Nijland et al., 2013).

OPESR has been suggested to be a feasible analysis for continued PM monitoring, due to its correlation with health effects, simplicity and versatility to be used with standard monitoring filters (Hellack et al., 2014). The present study showed variations among the different engine settings (SCR aftertreatment and biodiesel blend) in terms of the OPESR with the spin trap DMPG in the presence of H2O2. Therefore, there is a need of further investigations of the potential health effects of emissions of soy biodiesel usage. Besides this technique may be revealed as a tool for assessing PM properties beyond mass in engine testing and monitoring.

3.2. Bulk elemental concentrations

Among the analyzed elements only Cr, Cu, Sn, Si, S, Mg, Ca, Ti, Br and Pb presented detectable mass. Fig. 2 presents the bulk elemental concentrations as determined by EDXRF. It can be observed that there are only two samples that indicated detectable presence of lead, these low lead concentrations were expected as use of lead in fuels has been outlawed. As these values appear insignificant, the lead data will not be considered further in this discussion. Liati et al. (2013) indicate that Cr, Cu, Sn and Ti are common in diesel output, originating from various components of the engine, while Ca, Mg and S emission are commonly related to lubricating oil additives. This appears to be consistent with the Cr and Ti data obtained from this study. EDXRF analysis indicates fairly consistent concentrations of Cr and Ti independent of fuel type or use of SCR, thus implying that the source is the engine components rather than the fuel. This is perhaps not the case with the Cu, as a large variation in concentration can be observed between B5 and B20. The Sn, Si, Ca and Mg data appears to show no pattern and is therefore very difficult to discern the potential sources. It can be observed that there is no relationship between the concentration of these metals and the use of SCR. This is illustrated in Fig. 2. Interestingly, sources for metals in biodiesel can include leaching from storage containers. Yaakob et al. (2014) indicate that copper is particularly susceptible to this. The Cu results presented could indicate evidence of this.

As indicated in the previous section, OPESR assumed the order: B20 without SCR > B20 with SCR ≈ B5 without SCR > B5 with SCR. This same pattern also existed for the concentration of copper and sulfur in each sample. Fig. 3 plots OPESR against concentration of these elements to show correlation between its concentrations and OP. The spearman correlation between oxidative potential and bulk elemental concentrations of all detected elements is presented in Table 3. It can be observed that there is a strong correlation (R = 0.99) between concentration of copper and OPESR, the ability of copper to oxidize and produce radicals is documented in literature, the results in this study could be indicative of the role of copper on OPESR. Furthermore, there is evidence in literature, which suggests a link between copper and OPESR (Shi et al., 2003; Hellack et al., 2014; Janssen et al., 2014). Another good correlation (R = 0.88) was obtained for sulfur. Shi et al. (2003) suggest that other inorganic components than metals, such as sulfate may affect the oxidant activity of PM. Cheng et al. (2008) found higher levels of sulfate in a biodiesel car emission than a petrol/diesel one, despite the zero sulfur level in the biodiesel fuel, what was suggested to be due to lube oil sulfur. What is also interesting is the strong negative correlation present between chromium and OPESR. The pattern observed here with chromium is contrary to that observed in literature where chromium in both the common +3 and +6 oxidation states are observed to increase OP (Khan et al., 2012; Lou et al., 2013). Results for other elements, such as Si, Mg, Ca, Ti and Br also indicated negative correlation with OPESR. However, it is important to note that a low or negative correlation with OPESR does not eliminate its potential toxicity of these elements as there are many other potential pathways of PM toxicity (Biswas et al., 2009).

Table 3

| Pearson correlation between concentration of metals and OPESR. |
|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Si | S | Cu | Mg | Ca | Ti | Cr | Br | Sn | Pb |
| | | | | | | | | | |
| −0.29 | 0.89 | 0.99 | −0.22 | −0.57 | −0.34 | −0.81 | −0.62 | −0.11 | 0.26 |

Table 4

| Average band positions, FWHM, and Intensity ratios of some of the Raman bands identified for the different fuels with and without SCR. |
|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| D1 | WD1 | D2 + G | W G + D2 | D3 | WD3 | ID3/G + D2 | ID1/G + D2 |
| B20 with SCR | 1328 ± 1 | 192 ± 8 | 1600 ± 3 | 68 ± 2 | 1532 ± 7 | 157 ± 10 | 1.93 ± 0.42 | 4.83 ± 0.77 |
| B20 without SCR| 1327 ± 0.1 | 170 ± 3 | 1599 ± 1 | 70 ± 3 | 1524 ± 5 | 163 ± 12 | 1.72 ± 0.20 | 3.72 ± 0.50 |
| B5 with SCR | 1326 ± 4 | 172 ± 14 | 1599 ± 3 | 68 ± 13 | 1523 ± 3 | 174 ± 10 | 1.86 ± 0.33 | 4.20 ± 0.58 |
| B5 without SCR| 1327 ± 1 | 152 ± 12 | 1602 ± 1 | 67 ± 12 | 1531 ± 93 | 139 ± 21 | 1.80 ± 0.8 | 3.83 ± 0.49 |
3.3. Raman spectroscopy

The deconvolution was performed by using WIRE® software. The best fit was obtained by Lorentzian-Gaussian-shaped bands for all identified bands. The D2 band could not be deconvoluted from the G band and the combined G + D2 band is observed and fitted around 1600 cm\(^{-1}\). To avoid confusion this band will be refer to as the G + D2 band, to indicate that we are not referring to the graphitic band on its own. In this study the band positions were assigned as follows: G + D2 between 1597 and 1604 cm\(^{-1}\), D1 between 1326 and 1333 cm\(^{-1}\), D2 between 1520 and 1539 cm\(^{-1}\), and D4 between 1167 and 1196 cm\(^{-1}\). These values are in fair agreement with those published by Soewono and Rogak (2011). Table 4 provides some more data on the deconvoluted spectra.

Discrimination of amorphous character of the particles can be discerned from the FWHM of the D1 band. It is observed that in general the B20 had more amorphous character due to a wider D1 band, in accordance with Soewono and Rogak (2011), in contrast to Song et al. (2006) and Lapuerta et al. (2008). It is also observed that an increase in biodiesel content suggests in increase in disorder. This has also been observed by Xu et al. (2013) and explained as the production of heavier polycyclic hydrocarbons during the pyrolysis process, which could coalesce to form amorphous structures. Furthermore, the use of the SCR seems to increase the amorphous nature of the soot as illustrated in Fig. 4. This is also in agreement with the D3/G + D2 intensity ratios, indicating the presence of tetrahedral carbons. This contradicts the findings of Soewono and Rogak (2011), reporting ID/G ratios of similar proportions than those reflected in Table 4 for B20 and B5 (3.2–5.2), where aftertreatment had the opposite effect.

There is an apparent inverse correlation between the Op\(^{\text{ESR}}\) and disorder. It seems as the Op\(^{\text{ESR}}\) increases for B20 so does the disorder decrease, which is also the case for the B5 although to a much lesser extent, as illustrated in Fig. 5.

However, overall the highest graphic structure (B20 without SCR) showed the highest Op\(^{\text{ESR}}\), which agrees with the study of Jung et al. (2006), outlining a ten-fold increase in OH\(^+\) production for more graphitic structures (USEPA, 2002).

4. Conclusions

The primary objective of this study is to assess the probable oxidative stress caused by exposure to PM of diesel and biodiesel fuelled engines using SCR aftertreatment system. This study assessed a substantial increase (~4.5 times) in Op\(^{\text{ESR}}\) when proportional of biodiesel is rise from 5% to 20%. The use of an SCR aftertreatment system suppressed the Op\(^{\text{ESR}}\) in all fuel evaluated.

The Raman results suggest that an increase in biodiesel content will lead to an increase in disorder of the amorphous carbons emitted when the engine is run with SCR, while the opposite is true when it is run without SCR. The highest graphic content showed the highest Op\(^{\text{ESR}}\), which was displayed by B20 without SCR. EDXRF data shows that concentrations of copper under each fuel condition were strongly correlated with Op. The highest Op\(^{\text{ESR}}\) reported to the highest Cu concentration, which was again displayed by the B20 blend run without SCR.

These results, therefore, suggest that 20% biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. However, these results will have to be supplemented by additional studies including 100% of Biodiesel and pure fossil diesel to make conclusive statements in this regard.

The current results have paramount importance to inform the potential impact of Biodiesel blends on emission profiles and related health risks. This information may be of interest to the policy makers mainly for countries that already set the use of Biodiesel as USA and E.U. and for countries that have not yet adopted the use of Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it.

Acknowledgement

The authors would like to thank Dr. Cassee from Center for Environmental Health Research, National Institute for Public Health and the Environment (RIVM) by the support with Op\(^{\text{ESR}}\) analysis. This work was supported financially by the National Council for Scientific and Technological Development (CNPq), Process Number 402391/2009-8.

References

