Clinic Rev Allerg Immunol (2017) 52:373-388
DOI 10.1007/s12016-016-8577-0

@ CrossMark

Vitamin D Deficiency and Rheumatoid Arthritis

Larissa Lumi Watanabe Ishikawa' - Priscila Maria Colavite' -

Thais Fernanda de Campos Fraga-Silva' - Luiza Ayumi Nishiyama Mimura' -
Thais Graziela Donega F ranca' - Sofia Fernanda Gongalves Zorzella-Pezavento ' -
Fernanda Chiuso-Minicucci' + Larissa Doddi Marcolino? - Marcimara Penitenti” -

Maura Rosane Valerio Ikoma? - Alexandrina Sartori’

Published online: 2 August 2016
© Springer Science+Business Media New York 2016

Abstract Vitamin D (VitD) is a hormone primarily synthe-
sized in human skin under the stimulation of ultraviolet radi-
ation. Beyond its endocrine role in bone metabolism, VitD is
endowed with remarkable immunomodulatory properties.
The effects of VitD on the immune system include the en-
hancement of microbicidal ability of monocytes/
macrophages and the down-modulation of inflammatory
cytokines produced by T lymphocytes. VitD deficiency is in-
volved in many health problems, including immune-mediated
diseases such as autoimmune disorders. Rheumatoid arthritis
(RA) is a chronic inflammatory systemic autoimmune disease
that compromises the joints, causing cartilage destruction and
bone erosion. RA treatment usually consists of combined
therapies that generally suppress the entire immune response
leading to increased susceptibility to infections. This review
describes the main effects of VitD on innate and adaptive
immune system and also VitD status in inflammatory rheu-
matic diseases such as RA. Despite some controversies, the
majority of reports reinforce the idea that lower VitD levels
correlate with more severe clinical manifestations in RA and

Electronic supplementary material The online version of this article
(doi:10.1007/s12016-016-8577-0) contains supplementary material,
which is available to authorized users.

Dl Larissa Lumi Watanabe Ishikawa
larissalumi @gmail.com

Department of Microbiology and Immunology, Institute of
Biosciences of Botucatu, Sao Paulo State University (UNESP),
Botucatu, Sdo Paulo, Brazil

Department of Pathology, Botucatu Medical School, Botucatu, Sao
Paulo, Brazil

Flow Cytometry Laboratory, Amaral Carvalho Foundation, Jau, Sao
Paulo, Brazil

other rtheumatic diseases. Therefore, supplementation with
VitD to achieve normal serum levels is worthwhile as an
aforethought. Original data concerning the potential applica-
bility of 1,25-dihydroxyvitamin D5 (VitD3), the active form of
vitamin D, as a tolerogenic adjuvant are also included. In this
sense, the effect of VitD3 associated with proteoglycan (PG),
which is a specific cartilage antigen, was tested in the course
of experimental arthritis. This association significantly
lowered clinical scores and local histopathological alterations.
Even though local analysis of T cell subsets and cytokine
production did not reveal any difference between the experi-
mental groups, VitD3+PG association significantly reduced
cytokine production by spleen cells. These results suggest that
VitD3 played a role as a tolerogenic adjuvant by down-
modulating the course of experimental RA. Considering this
tolerogenic effect of VitD3+PG association, further investiga-
tions will reveal its plausible use in human RA.

Keywords Vitamin D - Immunomodulation - Rheumatoid
arthritis - Experimental arthritis - Proteoglycan - Tolerance

Introduction

Vitamin D (VitD) can be found in foods such as mushrooms,
fish, milk, and eggs [1]; however, only around 5 % of total
VitD is provided by food ingestion [2]. The primary source of
VitD is 7-dehydrocholesterol, which is present in large
amounts in human skin. Ultraviolet (UV) B radiation from
sunlight converts cutaneous 7-dehydrocholesterol into pre-
vitamin D3, which turns into cholecalciferol via thermal isom-
erization [3]. To become metabolically active, cholecalciferol
is first converted into 25-dihydroxyvitamin D, (calcidiol) by
the enzyme 25-hydroxylase in the liver [4]. Then, it is
transported to tissues that express the enzyme 1«-
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hydroxylase (CYP27B1) [5], mainly to the kidneys, where a
second hydroxylation occurs and generates the bioactive me-
tabolite 1,25-dihydroxyvitamin D5 (VitD3), also known as
calcitriol [6]. Due to its short half-life, VitD3 may not be
precisely measured in the organism. Thus, serum levels of
the precursor calcidiol are used to determine the overall
VitD status. Although there is no consensus about the serum
VitD levels in healthy and pathological conditions, around 30
to 100 ng/mL is found in healthy individuals while concentra-
tions between 21 and 29 ng/mL characterize a VitD insuffi-
ciency status. Levels below 20 ng/mL indicate a pronounced
VitD deficiency [7, 8].

It is largely known that VitD3 plays a major role in bone
metabolism as a steroid hormone [9]. However, the biological
effects of calcitriol are beyond calcium and phosphorus ho-
meostasis and its effects on both innate and adaptive immunity
have been thoroughly studied. Calcitriol activity is mediated
by the vitamin D receptor (VDR) which is a member of the
nuclear hormone receptor superfamily. The biological effects
of VitD3 can be elicited by both genomic and non-genomic
mechanisms depending on the VDR location. The non-
genomic mechanism is characterized by membrane VDR
binding with direct effect of VitD3 on the cells, including,
for example, the activation of protein kinase C [10].
Nevertheless, most of the immunomodulatory effects of
VitD3 are elicited by the genomic mechanism. In this case,
intracellular VDR heterodimerizes with retinoic X receptor
after binding to VitD3 and then this complex is translocated
to the nucleus to activate or inhibit a variety of genes [11].
VDR is found in many cell types including immune cells such
as monocytes, macrophages, activated T and B lymphocytes,
and dendritic cells (DCs) [12].

A growing body of evidence suggests that VitD deficiency
could be involved in many health problems, including
immune-mediated diseases such as autoimmune pathologies
[13, 14]. This review brings an overview of the immunomod-
ulatory properties of VitD and its status in inflammatory
rheumatic diseases. Some original data suggesting the poten-
tial applicability of VitD as a tolerogenic adjuvant are also
described.

Immunomodulatory Properties of Vitamin D:
an Overview

One of the most well-described effects of VitD3 in the innate
immune system is the enhancement of the host’s antimicrobial
ability. Calcitriol induces the production of cathelicidins and
defensins by monocytes and macrophages and also stimulates
the production of IL-1f3, IL-6, IL-8, and TNF-« during infec-
tions [15, 16]. Despite this stimulatory effect on the innate
immunity, VitD3 generally down-modulates the adaptive im-
mune responses. VitD3 is largely known to suppress T cell
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proliferation and also the production of IL-2 and IFN-y [17,
18]. A preferential inhibition of Thl functions over Th2 cells
by VitD3 was already a long-standing observation [19].
Besides, a shift from Thl to Th2 response was also described
[17]. However, the direct effects of VitD3 on Th2 cells are still
conflicting. Boonstra et al. [20] observed an increased fre-
quency of IL-4, IL-5, and IL-10-producing murine CD4+ T
cells and a decreased frequency of IFN-y-producing cells after
in vitro stimulation with VitD3. On the other hand, Staeva-
Vieira and Freedman [21] demonstrated that both IFN-y and
IL-4 production by murine CD4+ T cells was inhibited after
the in vitro addition of VitD3.

Calcitriol also acts upon Th17 cells, which constitute an
important T cell subpopulation involved in the pathogenesis
of many inflammatory conditions, including autoimmune dis-
eases [22]. The in vitro addition of VitD3 in human CD4* T
cells cultures was able to inhibit the differentiation of Th17
cells and IL-17 production, even in Thl7-polarizing condi-
tions [23]. In experimental autoimmune uveitis, VitD3 sup-
pressed autoimmune response through inhibition of Th17 ac-
tivation, differentiation, and cytokine production [24].
Moreover, in experimental autoimmune encephalomyelitis
(EAE), VitD3 inhibited Th17 cell differentiation and migra-
tion to the central nervous system (CNS) [25].

In vitro studies with human and murine cells indicate
that DCs are highly modulated by VitD3. This hormone
promotes alterations in DC phenotype and function by
inhibiting their differentiation and maturation [26].
Human DCs differentiated in the presence of VitD3 pre-
sented reduced expression of maturation markers such as
CDla, MHCII, CD40, CD80, and CD86 [9]. It has been
suggested that the decreased expression of these co-
stimulatory molecules characterizes an immature or
semi-mature state of DCs that determines a tolerogenic
phenotype [27]. Besides, tolerogenic DCs induce the de-
velopment of regulatory T cells (Tregs) which suppress
inflammatory responses and are generally characterized
by the expression of CD4 and CD25 molecules in their
surface, the expression of intracellular Foxp3, and the
production of anti-inflammatory cytokines such as IL-10
and TGF-3 [28]. Pena et al. [29] demonstrated that the
co-culture of DCs pre-treated with VitD3 and
CD4*CD25" T cells led to the induction of CD4 Foxp3™*
Tregs. The main immunomodulatory properties of VitD3
are summarized in Fig. 1.

The beneficial role of VitD3 in autoimmune diseases
has been supported by both experimental and clinical da-
ta. For example, treatment of adult NOD mice with
calcitriol analog inhibited the production of IL-12 and
IFN-y and prevented the infiltration of Thl cells into
the pancreas, blocking insulitis progression [30]. Serum
levels of VitD3 are positively correlated with the frequen-
cy and function of Tregs in patients with multiple
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Fig. 1 An overview of the main
immunomodulatory effects of
active vitamin D
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sclerosis [31]. In EAE, Spach et al. [32] demonstrated that
the immunomodulatory effect of calcitriol was dependent
upon a signaling pathway involving IL-10.

Vitamin D Status in Inflammatory Rheumatic
Disorders

VitD status in health and disease is influenced by many factors
such as geography and seasonal factors, age, body mass index,
ethnicity, and drug interactions. Considering that sunlight
exposure is essential for the maintenance of adequate VitD
levels, latitude and seasonality are prominent variables [33].
A higher incidence of inflammatory autoimmune diseases,
including rheumatoid arthritis (RA), for example, is observed
in patients living in high latitudes where lower VitD levels are
also detected [34]. These lower levels are also observed in
other rheumatic diseases such as osteoarthritis, ankylosing
spondylitis, undifferentiated connective tissue disease
(UCTD), and psoriatic arthritis [35-38]. In UCTD, serum
VitD levels were even more strikingly reduced during the
winter than in the summer, showing that VitD status in this
disease is also associated with seasonal factors. Regarding
other inflammatory rheumatic diseases such as, for example,
Behcet’s disease and systemic sclerosis (SSc), a poor VitD
status is usually associated with an increased disease risk
and is also inversely correlated with disease activity [33, 39,
40]. Moreover, cutaneous fibrosis, which is an important SSc
manifestation, was also negatively correlated with VitD con-
centration [41]. Despite this strong association between VitD
status and disease activity, the role of hypovitaminosis D on
the pathogenesis of SSc remains inconclusive [42].

Systemic lupus erythematosus (SLE) is one of the most
challenging rheumatic disorders that is possibly influenced
by VitD. Despite some contradictory findings, several studies
have reported significantly lower serum VitD levels in SLE
patients [43-45]. Recent data indicated that these lower levels
were also associated with an increased risk for moderate to
severe SLE manifestations in patients [46]. The association of
VitD status with SLE activity, serological markers and disease
risk related to VDR genes polymorphisms was recently
reviewed by Watad et al. [47]. Regarding this, clinical trials
evidenced the correlation between lower VitD levels and
higher SLE activity [48, 49]. Additionally, a large prospective
study including SLE patients supplemented with VitD sug-
gested that proteinuria was also associated with VitD status
[50]. The correlation between SLE risk/susceptibility and
VDR polymorphisms is still controversial. However, Mao
and Huang [51] performed a meta-analysis study and conclud-
ed that Bsml B allele, for example, may be associated with
increased SLE susceptibility. Despite the relevance of VitD
status in SLE, the management of VitD levels by sunlight
exposure in SLE patients is not recommended because UV
radiation contributes to disease pathogenesis. It has been sug-
gested that, in genetically susceptible patients, UV radiation
causes a dysregulation in the mechanism of apoptosis leading
to the release of nuclear self-antigens [52]. Considering this, to
avoid flares and cutaneous manifestation of the disease, SLE
patients must protect themselves from the sunlight, which
contributes to the lower serum VitD levels in these patients.
Besides, Tabasi et al. [53] demonstrated that VitD is able to
regulate cell cycle, apoptosis, and also the expression of
apoptotic molecules in peripheral blood mononuclear cell cul-
tures from SLE patients. In this sense, it is plausible to
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prescribe VitD supplementation in these patients even though
there is no consensus concerning the amount that should be
indicated. The current knowledge on VitD3 status and the
putative beneficial role of VitD supplementation in autoim-
mune diseases, including SLE and other rheumatic disorders
such as RA, was recently reviewed by Rosen et al. [54].

RA is the most common arthropathy affecting around 1 %
of the world population, with higher prevalence in women
[55]. Tt is a disabling disease characterized by a chronic
synovial inflammation that leads to joint destruction and con-
sequent mobility impairment in more severe cases. Generally,
like in all other autoimmune disorders, the etiology of RA
involves a complex interplay between genetic and environ-
mental factors [56]. VitD is considered one of the most rele-
vant environmental factors affecting RA development. In this
context, the association between serum VitD levels and the
quality of life, physical performance, and disease activity in
RA patients has been extensively evaluated. Raczkiewicz
et al. [57] observed a mild to severe VitD deficiency in all
RA patients that was inversely correlated with disease activity.
Moreover, VitD status was positively correlated with the qual-
ity of life. A very recent meta-analysis study carefully
reviewed the relevance of serum VitD levels in RA patients
and concluded that low serum VitD levels are, indeed, inverse-
ly correlated with disease activity mainly in low-latitude and
developing countries [58]. Likewise in the above-mentioned
rheumatic disorders, VitD3 supplementation for RA patients
is still being debated. Clinical data revealed some inconsis-
tencies in the findings concerning VitD supplementation,
mainly related to the concomitant conventional treatment.
For example, VitD supplementation significantly reduced the
pain in RA patients under treatment with combined disease-
modifying anti-rheumatic drugs (DMARDs) [59]. On the oth-
er hand, although there was no adverse effect, a high dose of
VitD did not improve the clinical features in RA patients al-
ready receiving stable doses of methotrexate [60].
Additionally, in rheumatic diseases, especially in RA, the di-
rect effect of VitD in bone metabolism must be considered.
VitD3 supplementation is already indicated to prevent bone
loss in some musculoskeletal diseases [61]. Rossini et al. [62]
found a correlation between bone erosion and high levels of
parathyroid hormone (PTH) in RA patients. These authors
also suggested that VitD3 supplementation may be beneficial
in RA by regulating PTH levels.

Immunopathogenesis of RA and Its Control
by Vitamin D

The mechanisms underlying the immunopathogenesis of RA
are not fully elucidated; however, it is known that components
from both innate and adaptive immunity are involved [63].
The formation of pannus, which is a typical inflammatory
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tissue in RA, leads to synovial inflammation and consequently
to the clinical manifestations of the disease. Together, pannus
and synovitis comprise the main pathological features in RA
[63]. Although mast cells, neutrophils, and natural killer cells
may also have a role in RA synovitis, monocytes/
macrophages are the major effector cells of the innate immune
system present in the synovial fluid and tissue. Once activated
by cytokines, bacterial components, and/or hormones, macro-
phages produce inflammatory cytokines such as TNF-¢, IL-
13, and IL-6 which leads to synovitis [64]. Among other
effects of TNF-ax in RA, the induction of metalloproteinase
(MMP) production and the inhibition of Treg differentiation in
the joint are the most relevant [65]. IL-13 mediates articular
damage and also induces the production of IL-6 which is
another important inflammatory cytokine in RA [66].
During the acute disease phase, IL-6 is present in elevated
concentrations in the synovial fluid, which correlates with
joint damage, especially concerning bone metabolism [67].
The relevance of TNF-o and IL-6 in the pathogenesis of RA
is evidenced by the currently available biological DMARD
treatments that target these cytokines to ameliorate the disease
symptoms [68]. Macrophages also interact with other infiltrat-
ing cell types such as fibroblasts and T and B cells, contribut-
ing to RA severity and chronicity [64].

Along with macrophages, DCs are in the interface between
innate and adaptive immunity. Thus, these cells also play sev-
eral roles in the pathogenesis of RA, including disease initia-
tion and perpetuation. Regarding RA initiation, DCs are im-
plicated in lymphocyte priming for self-antigens that occurs in
autoimmune diseases [69]. Various self-antigens such as im-
munoglobulin G, collagen, fibrin, and fibrinogen and some
post-translational modifications as citrullination are possibly
involved in the immunopathogenesis of RA [70]. The self-
antigen presentation by DCs induces the development of
self-reactive T and B cells with consequent autoantibody pro-
duction and cytokine release in joint and vascular tissues [71].
Inflammatory cytokines such as TNF-«, IL-6, and IL-12 acti-
vate DCs via the NF-kB transcription factor pathway. Once
activated, DCs are able to migrate to inflamed joints and in-
filtrate the synovial fluid and tissues through the expression of
specific chemokine receptors. The continuous locally self-
reactive events elicited by DCs in the synovium determine
AR perpetuation [71].

Besides acting as antigen-presenting cells, B lymphocytes
play a key role in the immunopathogenesis of RA through the
production of autoantibodies and subsequent formation of im-
mune complexes [72]. For many years, rtheumatoid factor
(RF), which binds to the Fc portion of IgG, was considered
the most important autoantibody in RA. Serum RF levels are
still used for RA diagnosis; however, its correlation with ar-
thritis severity is no longer a consensus [73]. Currently, the
detection of anti-cyclic citrullinated peptides (anti-CCP) anti-
bodies has been used as a complementary diagnostic criterion
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for AR [73]. Serum anti-CCP levels have been correlated with
the expression of HLA-DR1 alleles which are involved in RA
genetic risk. Thus, these antibodies could be detected even
before disease onset [74].

The essential role of T cells in the immunopathogenesis of
RA has been widely explored, and the involvement of Thl
cells mainly in the acute phase of the disease has been also
reported [75, 76]. The contribution of these cells to synovial
inflammation and pannus formation is primarily mediated by
the production of IFN-y [66]. Conversely, Th2 cells have a
regulatory role in RA mediated by IL-4, inhibiting the produc-
tion of TNF-¢, IL-6, and IFN-y and modulating osteoclasto-
genesis [66]. However, IL-4 synovial levels are low or even
absent in RA patients, suggesting that the anti-inflammatory
effects of this cytokine are impaired. A polymorphism in the
IL-4 receptor that is observed in RA patients could explain the
reduced responsiveness to IL-4 in these patients [77].

Thl17 cells play a crucial role in the immunopathogenesis
of RA. Tt is largely known that these cells present a functional
plasticity regulated by the inflammatory cytokine milieu that
determines their pathogenicity in autoimmune diseases in-
cluding RA [78]. Th17 cells are characterized by the produc-
tion of IL-17, a highly inflammatory cytokine that is also
found in the synovium of RA patients [79]. The possible
mechanisms by which IL-17 mediates synovial inflammation
include the induction of pro-inflammatory cytokines,
chemokines, and MMP production by macrophages, synovial
fibroblasts, and chondrocytes. Additionally, IL-17 has a di-
rect effect on cartilage degradation and bone erosion by
reducing the synthesis of collagen and proteoglycan by
chondrocytes and increasing the expression of the
receptor activator of the NF-kB ligand which mediates
osteoclast differentiation [66, 76].

Tregs are considered the main regulators of the immune
response by suppressing the activity of Thl, Th2, and Th17
cells. Even though several studies have demonstrated that
Tregs are present in RA patients, it has been described that
the number and function of these cells are impaired in RA. For
example, Ehrestein et al. [80] observed a compromised func-
tion of Tregs in RA patients that was restored by anti-TNF-«
treatment. Besides, effector T cells from peripheral blood of
RA patients can be also resistant to the suppressive effects of
Tregs [81]. In this context, the defective function of Tregs in
RA largely contributes to disease immunopathogenesis elicit-
ed by the exacerbated inflammatory immune response.

Synovial fibroblasts, chondrocytes, and osteoclasts com-
prise another important group of cells involved in RA
immunopathogenesis. Their relevance relies on their role in
inflammatory processes that culminate in a more severe dis-
ease manifestation including cartilage and bone destruction.
Interestingly, synovial fibroblasts are also implicated in RA
onset, even though its role in disease triggering is not fully
elucidated. It has been suggested that, once activated by the

innate immune system, these fibroblasts produce effector mol-
ecules such as proteinases that contribute to matrix degrada-
tion and also facilitate cartilage and bone destruction [82].

The inflammatory process in RA synovium culminates in
joint destruction through cartilage degradation and bone re-
sorption. In this context, chondrocytes and osteoclasts have a
key role in the joint structural damage. Chondrocytes respond
to the inflammatory microenvironment leading to cartilage
remodeling in AR. Once activated, these cells contribute to
the degradation of cartilage collagens and proteoglycans
through the release of pro-inflammatory cytokines such as
IL-1 and TNF-« that stimulate the production of MMPs by
macrophage- and fibroblast-like cells present in the pannus
[83]. Osteoclast differentiation is also observed in this RA
typical inflammatory tissue in response to the pro-
inflammatory cytokine milieu. These cells are responsible
for the bone resorption and consequent structural damage in
RA patients [84].

A great deal of data suggests that VitD can interfere in this
complex sequence of events that leads, ultimately, to joint
destruction. Jeffery et al. [85] recently reviewed the effects
of VitD in this disease, stressing the cellular targets of this
vitamin in RA and also shedding light on the biochemical
pathways that may lead to a consensus regarding the efficacy
of VitD supplementation in RA patients. Table 1 summarizes
the current knowledge of the possible actions of VitD on RA.

Tolerogenic Effect of Vitamin D in Experimental
Arthritis

Background

RA treatment usually consists of combined therapies that
suppress the entire immune response, leading to increased
susceptibility to a plethora of infections. In this sense, many
efforts are made to develop more specific immunomodulatory
strategies as, for example, the induction of antigen-specific
tolerance [86—88]. Self-tolerance can be induced by different
procedures such as self-antigen administration via tolerogenic
routes (oral mucosa, for example), concomitant blocking of
co-stimulatory molecules, or self-antigen targeting to resting
antigen-presenting cells, such as DCs [89]. Although tradi-
tionally characterized as strong immune response inducers,
including during self-reactivity in autoimmune diseases,
recent findings implicate DCs in the triggering and mainte-
nance of self-tolerance [90]. Besides VitD3, many other phar-
macological agents, including corticosteroids, cyclosporine A,
rapamycin, mycophenolate mofetil, and prostaglandin E2,
confer tolerogenic properties to DCs with the ensuing
induction of Tregs [91, 92].

Based on the immunomodulatory effects of VitD3, mainly
on DCs, our research group has been studying the possible
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Table 1  VitD effects and their relevance in RA
VitD target  VitD effects Possible VitD References
action in RA
DCs Impairment of Reduction of T cell [26, 121]
differentiation, activation;
maturation and induction of Tregs
activation
B cells Suppression of Decrease in [122,123]
plasma cells; autoantibody
induction of production and
Bregs immune complex
formation
Th17 cells Inhibition of IL- Impairment of bone ~ [23, 124]
17A production; erosion; reduction
impairment of of synovial
differentiation inflammation
Tregs Increased IL-10 Tregs expansion and ~ [102, 125]
production and enhancement of
CTLA-4 expres- suppressive effects;
sion inflammation
control
Synovial Inhibition of TNF- Reduction of synovial [126, 127]
fibroblasts «, IL-6, and inflammation;
MMP, inhibition of bone
osteoclastogene- erosion
sis
Chondrocytes Regulation of Reduction of cartilage [128]
MMP degradation
production
Osteoclasts  Inhibition of Inhibition of bone [129]
osteoclastogene- resorption

S1S

VitD vitamin D, DCs dendritic cells, Bregs regulatory B cells, Tregs
regulatory T cells, MMP metalloproteinase

role of VitD3 as a tolerogenic adjuvant when associated with a
specific antigen. Conceptually, tolerogenic adjuvants
combined with specific antigens would down-modulate the
specific immune response instead of reinforcing the immune
response as conventional adjuvants. We recently demonstrat-
ed that the association of VitD3 with a specific antigen from
the CNS successfully impaired the development of experi-
mental autoimmune encephalomyelitis. This therapeutic ef-
fect was associated with less CNS inflammation and lower
production of IL-6 and IL-17 by spleen and CNS cells [93].
In this scenario, the potential tolerogenic effect of VitD3 as-
sociated with proteoglycan (PG), which is a specific cartilage
antigen, was also evaluated in experimental arthritis.

Experimental Design

For experimental arthritis induction, female retired-breeder
BALB/c mice were injected with bovine PG emulsified in
dimethyl dioctadecyl ammonium bromide (DDA) adjuvant.
Starting 1 day after disease induction, mice received intraper-
itoneal VitD3 doses every other day for 15 days. PG was co-
administered on the 3rd and on the 11th day of VitD3
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treatment. Twenty-one days after arthritis induction, disease
score was evaluated daily until euthanasia. Arthritis severity
was assessed as previously described [94], considering a stan-
dard visual scoring system based on the degree of edema and
erythema ranging from 0 to 4 for each paw. Histopathological
analysis, quantification of T cell subsets, and cytokine levels
in mice paws were evaluated at the day of euthanasia, i.e.,
70 days after arthritis induction. At the same time, DC and
Treg frequencies and cytokine production in the spleen were
also determined. This experimental design is summarized in
Fig. 2 and a detailed methodology is available in Online
Resource 1. Animal manipulation was approved by the local
ethics committee for animal experimentation (Comissdo de
Etica na Experimentagdo Animal—CEEA), protocol number
257-CEEA

Results

As expected, animals from the control (—) group did not de-
velop arthritis, whereas the ones from the control (+) group
developed very typical arthritis manifestations. Disease inci-
dence in control (+), PG, VitD3, and VitD3+PG groups was
similar. However, groups that received VitD3 or VitD3+PG
developed a significantly less severe form of arthritis charac-
terized by a lower percentage of animals with a score above 8.
Analysis of the maximum score confirmed a significant reduc-
tion in arthritis severity in VitD3 and VitD3+PG-treated
groups. Disease onset in the four arthritic groups occurred in
the same period, i.e., around day 45. These results are sum-
marized in Table 2 and Fig. 3.

The histopathological analysis that was assessed by
hematoxylin-eosin (HE)-stained paw sections obtained after
euthanasia reinforced the clinical follow-up. As anticipated,
animals from the control (—) group presented no alterations in
joint structures. Figure 4a, b represents a score 0 hind paw of
an animal from this group. In this case, the synovial space is
well defined, with a very thin synovial membrane, and there is
no inflammatory infiltrate. Also, cartilage and bone are clearly
preserved. All animals from the PG, VitD3, and VitD3+PG
groups presented score paws ranging from 0 to 4. However,
the frequency of these scores was distinct in each group.
Animals from control (+) group presented the majority of
compromised paws in score 4. A representative histological
section of a score 4 hind paw from the control (+) group is
shown in Fig. 4c, d. Score 4 paws from control (+) group
presented severe edema throughout the paw, involving all
joints, with consequent movement impairment (not shown).
Inflammation and joint destruction in this histological section
were evident and were characterized by synovial membrane
thickening, pannus formation, cartilage destruction, and bone
erosion (Fig. 4d). Interestingly, an evidently higher frequency
of paws with score 0 in the VitD3+PG group was observed.
Figure 4e, f represents the histological sections of a score 0
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Fig. 2 Schematic representation of the experimental design. Schedule of
arthritis induction and 1,25-dihydroxyvitamin D (VitD3) treatment with
proteoglycan (PG) concomitant administration (a). Mice paws evaluation

hind paw from the VitD3+PG group. The joint is well pre-
served and all structures are very similar to the control (—)
group (Fig. 4f). Considering the four experimental groups,
the comparison of the same clinical score (for example, the
score 4) did not show any histopathological detail that could
differentiate them. The frequency of the different clinical
scores in the four experimental groups with arthritis is repre-
sented in Fig. 4g.

Trying to elucidate the mechanism involved in arthritis
control by VitD3+PG, the relative quantification of T-bet,
GATA-3, ROR-~y, and Foxp3 expression, which have been
canonically related to the subpopulations Thl, Th2, Th17,
and Treg, respectively, was determined in mice paws. As il-
lustrated in Fig. 5a—d, there were no significant differences in
the expression of these transcription factors among the groups.
Considering the different tested cytokines, only TNF-« and
IL-6 levels were detected in mice paws from all experimental
groups; however, no differences were observed among control
(+), VitD3, and VitD3+PG groups (Fig. 5e, ).

To evaluate the systemic immunomodulatory effect of
VitD3, the frequencies of DCs and Tregs were determined in
the spleen at day 70. The frequency of DCs was similar in
control (+), VitD3, and VitD3+PG groups (Fig. 6a). However,

after euthanasia at day 70 (b). Immunological splenic evaluation after
euthanasia at day 70 (c)

a high frequency of Tregs was present in the control (+) but
not in the VitD3 and VitD3+PG groups (Fig. 6b). Moreover,
both pro- and anti-inflammatory cytokines were detected in
spleen cell cultures. As illustrated in Fig. 7a—f, respectively,
spontaneous production of TNF-«, IFN-y, IL-6, IL-5, and IL-
10 was observed in non-stimulated cultures from all arthritic
groups. However, significantly higher levels of these
cytokines were produced after stimulation with the specific
antigen (PG), except for IL-6. Only VitD3+PG association
significantly reduced the production of TNF-«, IFN-y, IL-6,
IL-17, IL-5, and IL-10 (Fig. 7a—f, respectively) in PG-
stimulated cultures compared with the control (+) group.

Discussion

A large body of evidence suggests that VitD3 may be benefi-
cial in autoimmune and allergic pathologies [14, 95]. In this
context, the main objective of this study was to evaluate
whether the association of VitD3 and a specific cartilage anti-
gen has an immunomodulatory effect on experimental arthri-
tis. Our data indicate that this association was clearly effective
as it significantly decreased the severity of disease. The histo-
pathological analysis confirmed the efficacy of this strategy,

Table 2 Effect of VitD3+PG

association on arthritis incidence Arthritis incidence P value  Disease onset (days) ~ Animals with score 8 P value
and severity in BALB/c mice
Control (+) 14/15 (93 %) 0913 45 11/15 (73 %) 0.010°
PG 15/16 (94 %) 45 7/16 (43 %)
VitD3 14/15 (93 %) 46 3/15 (20 %)
VitD3+PG 6/7 (86 %) 44 1/7 (14 %)

Control (+) non-treated arthritic group, PG proteoglycan, VitD3 1,25-dihydroxyvitamin D

* Statistical difference revealed by chi-square analysis. Data from two independent experiments were combined
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Fig. 3 Effect of VitD3+PG a
association on experimental

arthritis development. Kinetics of
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showing that a large percentage of joint paws remained pre-
served, with no structural alterations as inflammation, pannus
and cartilage destruction. Earlier data already demonstrated
that dietary supplementation with VitD3 given to mice with
early symptoms of collagen-induced arthritis prevented pro-
gression to severe disease [96]. Some indirect data from

Fig. 4 Effect of VitD3+PG
association on score frequency
and histopathological analysis of
paws from arthritic mice.
Photomicrographs of HE
histological sections from control
(-) (a, d), control (+) (b, e), and
VitD3+PG (¢, f) groups. Mice
hind paws were collected 70 days
after disease induction. Frequency
of the different scores of all mice
paws per group (g). Control (-):
non-treated healthy group.
Control (+): non-treated arthritic
group. Boxes indicate x10
magnification sections presented
below their respective x4

10x

magnification counterparts.
Arrows indicate the synovial = 901
membrane hypertrophy. SS S g
synovial space; C cartilage; B § 70 |
bone; P pannus; BO bone erosion 2 |
<3
2 50
&
2 40
3
» 30 -
20 -
10
0

Control (-)
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Healthy

Arthritic

Score 0 Score 3
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humans also suggest that this vitamin can be useful in arthritis.
For example, in the study performed by Haga et al. [97],
deficiency of VitD3 was detected in 33.4 % of the RA pa-
tients. Interestingly, these authors also found that a subset of
patients with higher disease activity and requiring treatment
with at least three DMARDs were, coincidentally, the ones

Control (+)

m Score 4
m Score 3
m Score 2
m Score 1

Score 0

Control (+) PG VitD3
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VitD3+PG
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with the most accentuated VitD deficiency. Direct data that
could convincingly establish the therapeutic effect of VitD3
on RA is, however, still missing.

To disclose the mechanism by which the association of
VitD3 and PG was modulating the course of this disease, the
main molecular and cellular targets of VitD3, which are DCs,
Tregs, and cytokine production, were evaluated. As VitD3 is
able to polarize DCs towards an immature/tolerogenic profile
[98], we analyzed the percentage of DCs presenting a more
mature phenotype in the spleen by the end of the experiment
(day 70), when the immunomodulatory effect was still very
clear. However, the expected decrease in the frequency of DC
maturation markers such as MHCII and CD80 was not detect-
ed after VitD3 treatment. A more encompassing analysis of
these cells, including earlier phase assays, will be needed to
understand their possible role in the efficacy of arthritis con-
trol by VitD3+PG. A few publications have indicated, how-
ever, that mature DCs are required for tolerance induction.
According to Albert et al. [99], DC maturation is needed for
tolerization of CD8+ T cells and the critical checkpoint in this
tolerance establishment was the absence of co-stimulatory
molecules. The contribution of mature DCs to protection
against autoimmunity was also clearly demonstrated by
Menges et al. [100]. These authors described that injection
of DCs matured with TNF-« was able to protect mice from

EAE development. Interestingly, these TNF-o matured DCs
expressed high levels of MHCII and co-stimulatory molecules
but released very low concentrations of pro-inflammatory cy-
tokines. In this sense, it would be interesting to evaluate the
relative production of IL-12 and IL-10 by DCs present in
animals that received the VitD3+PG association. Other as-
pects that deserve attention are the time points and the micro-
environment in which DCs were collected. Considering that
VitD3 and PG were both injected inside the peritoneal cavity
and that the peritoneal space drains, in rodents, to the celiac
superior mesenteric and periportal lymph nodes [101], it is
conceivable that VitD3+PG effect would be more accentuated
in these lymphoid organs.

Currently, the most well-known Treg subset is identified as
being CD4*CD25™¢"Foxp3*. As increased VitD availability
is being positively correlated with expansion of these Tregs
[102] and with the reduced severity of autoimmune experi-
mental diseases [103], a higher proportion of these cells was
expected in mice that received VitD3 or VitD3+PG associa-
tion. Distinctively from our expectation, only the control (+)
group presented higher frequency of CD25"Foxp3* Tregs.
Although unexpected, this result is consistent with the finding
that RA patients present increased numbers of circulating
Tregs even though the suppressive function of these cells is
compromised and favors ongoing inflammation [104].
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Fig. 6 Effect of VitD3+PG association on the frequency of splenic
dendritic and regulatory T cells in arthritic mice. Gate strategy for DCs
(a). Representative dot plots for DCs frequency in spleen (b). MHCII+
CDB80+ cell frequency in total CD11+ cells (¢). Gate strategy for Tregs

The immunomodulatory effect of VitD3+PG on pro-
inflammatory cytokine production by spleen cells was
impressive. TNF-«, IL-6, IFN-y, and IL-17 were clearly
down-modulated by this association. The immunomodulatory
effect of VitD3 in allergies, infections, and autoimmune dis-
eases has been demonstrated in both human and experimental
models [103, 105-107]. Specifically in relation to RA, VitD3
has determined a significant protective effect associated with
reduced production of pro-inflammatory cytokines [96, 108].
In this context, the decrease of IL-10 production in response to
the specific stimulus was not expected. However, there are
conflicting data concerning the effect of VitD3 on IL-10 levels
in both experimental models and RA patients. For example,
Bemiss et al. [109] demonstrated that the in vitro addition of
VitD3 significantly decreased IFN-y and IL-10 production by
splenocytes from wild-type C57BL/6 mice stimulated with
ConA. Moreover, Niino et al. [110] showed that VitD3 sup-
presses IL-10 production by human monocyte cultures from

@ Springer

(d). Representative dot plots for Tregs frequency in spleen (e). CD25+
Foxp3+ cell frequency in total CD4+ cells (f). Control (—): non-treated
healthy group. Control (+): non-treated arthritic group. Six to ten animals
per group from one representative experiment of two performed. *P 0.05

patients with multiple sclerosis. IL-10 up- or down-
modulation elicited by VitD3 is attributed not only to the dif-
ferent cells types studied but also to the duration of VitD3
treatment and the evaluation time points [111].

Overall, the analysis of cytokine production showed that
VitD3 by itself was already decreasing the production of all of
the evaluated cytokines. As this experimental group also pre-
sented a significant reduction in arthritis severity, we conclude
that VitD3 plays a relevant role in this immunomodulatory
effect. However, there is also an important contribution of
PG. Even though PG alone did not modify cytokine produc-
tion, animals that received VitD3+PG association produced
significantly lower cytokine levels after specific stimulation.
The therapeutic effect of VitD3 is already well documented in
experimental arthritis [112, 113]; however, our results consti-
tute the first direct in vivo assessment of its tolerogenic poten-
tial. Recently, it was demonstrated that the association of
VitD3 with myelin oligodendrocyte glycoprotein-derived
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Fig. 7 Effect of VitD3+PG
association on cytokine production
by spleen cells from arthritic mice.
TNF- (a), IL-6 (b), IFN-y (c), IL-
17 (d), IL-5 (e), and IL-10 (f) pro-
duction by spleen cells stimulated
in vitro with PG. Cytokine levels
were detected by ELISA. Control
(—): non-treated healthy group. -
Control (+): non-treated arthritic |
group. Six to ten animals per group WO
from one representative experi- o™ o
ment of two performed. *p 0.05
compared to non-stimulated coun- 4000
terpart and **p 0.05 compared to

the control (+) group 3000
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peptide completely abrogated EAE development in C57BL/6
mice [93]. The concept of tolerogenic adjuvants is based on
the ability of certain substances, mainly immunosuppressants
and immunoregulators, to downregulate unwanted immune
responses and induce immune tolerance [114]. In this scenario,
we consider PG, in the presence of VitD3, to be inducing a state
of tolerance towards itself. This tolerizing condition would result
in a decreased production of cytokines detected by an in vitro
recall response. The fact that cytokine production induced by
ConA was similar in all experimental groups (data not shown)
strengthens the interpretation of a specific tolerance induction.
The efficacy of this concept was already described in other au-
toimmune experimental diseases. Kang et al. [115], for example,
demonstrated that immunization of mice with MOG associated
with FK506, which is a widely used immunosupressant, induced
antigen-specific tolerance and prevented the development of
EAE. In another EAE model, it was described that IFN-3 can
also behave as a tolerogenic adjuvant being able to induce
neuroantigen-associated tolerance [116].
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Some aspects of this immunomodulatory effect deserve
to be highlighted considering a possible future translation
of these experimental findings to patients. First of all,
this strategy started at an early phase of the experimen-
tal disease which could correspond to a preclinical
phase in humans. Currently, RA therapy is postponed
until the patient shows clinical symptoms [117].
However, we could envision that future therapies for
this pathology can be initiated during the preclinical
phase because some preclinical markers such as anti-
CCP antibodies are already detected in the serum [118,
119]. It is important to also stress that this therapeutic
effect could be improved by other rounds of VitD3+PG
administration.

Our study indicated that the early administration of VitD3
associated with the specific antigen, PG in this case, controlled
arthritis severity. The results also suggested that VitD3 played
arole as a tolerogenic adjuvant significantly decreasing cyto-
kine production. Further experiments will be necessary to
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evaluate whether Tregs are present, at earlier periods, in the
arthritic lesions.

Concluding Remarks

Despite some controversies, the majority of the reports
reinforce the idea that lower VitD levels correlate with more
severe clinical manifestations in RA patients. Therefore, sup-
plementation with VitD to achieve normal serum levels is
worthwhile as an aforethought. Considering the tolerogenic
effect of VitD3 associated with PG suggested by our study,
further investigations will reveal its plausible use in human
RA. Regarding this, many other self-antigens such as immu-
noglobulin G, collagen, citrulline, calpastatin, calreticulin, fi-
brin, and fibrinogen are possibly involved in this autoimmune
process [120]. In this scenario, it is expected that the combi-
nation of one or more joint specific antigen with VitD3 could
determine a state of tolerance that would protect the joint.
Considering the current RA treatments, which are mainly
based on combined therapies, further studies will also be
necessary to test the effectiveness of VitD with drugs that
are already in use, as, for example, methotrexate.
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