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Abstract There is a very effective cross-talk between signals
triggered by reactive oxygen species and hormonal responses
in plants, activating proteins/enzymes likely to be involved in
stress tolerance. Abscisic acid (ABA) is known as a stress
hormone that takes part in the integration of signals. This work
aimed to characterize the biochemical response and ultrastruc-
tural changes induced by cadmium (Cd) in the Micro-Tom
(MT) sitiens ABA-deficient mutant (sif) and its wild-type
(MT) counterpart. MT and sit plants were grown over a 96-h
period in the presence of Cd (0, 10, and 100 uM CdCl,). The
overall results indicated increases in lipid peroxidation, hydro-
gen peroxide content and in the activities of the key antioxi-
dant enzymes such as catalase, glutathione reductase, and
ascorbate peroxidase in both genotypes. On the other hand,
no alteration was observed in chlorophyll content, while the
activity of another antioxidant enzyme, superoxide dismutase,
remained constant or even decreased in the presence of Cd.
Roots and shoots of the sit mutant and MT were analyzed by
light and transmission electron microscopy in order to charac-
terize the structural changes caused by the exposure to this
metal. Cd caused a decrease in intercellular spaces in shoots
and a decrease in cell size in roots of both genotypes. In
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leaves, Cd affected organelle shape and internal organization
of the thylakoid membranes, whereas noticeable increase in
the number of mitochondria and vacuoles in MT and sit roots
were observed. These results add new information that should
help unravel the relative importance of ABA in regulating the
cell responses to stressful conditions induced by Cd apart from
providing the first characterization of this mutant to oxidative
stress.

Keywords Oxidative stress - Phytohormones - Reactive
oxygen species - Root and leaf anatomy - Solanum
lycopersicum - Ultrastructure

Introduction

Cadmium (Cd) is a non-essential element, being considered
the most toxic among the heavy metals, negatively affecting
plant metabolism mainly by inducing an oxidative stress con-
dition (Cuypers et al. 2010; Dourado et al. 2013, 2015; Gratdo
etal. 2015). Cd is naturally present in the environment in trace
concentrations, or can be introduced through anthropogenic
activities, such as the use of fertilizers, pesticides, and indus-
trial and domestic effluents, being absorbed by plants from
contaminated soil or water (Al-Khateeb and Al-Qwasemeh
2014; Su et al. 2014). Recently, the use of nanoparticles con-
taining heavy metal elements in commercial products and in-
dustrial applications has significantly increased and raised
concerns on their adverse effects on human and environmental
health (Arruda et al. 2015). Moreover, Cd has high mobility in
the soil-plant system affecting biochemical mechanisms by
reducing the redox balance control, causing plasma membrane
rupture, which culminates in loss of'its function (Gallego et al.
2012; Iannone et al. 2015). This metal can also induce serious
disturbances in physiological processes such as
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photosynthesis, respiration, plant-water relations, mineral up-
take, among others (Lopez-Chuken and Young 2010; Gill
etal. 2012), leading to reduced plant growth or even cell death
(Shekhawat et al. 2010; Hu et al. 2013; Moradi and
Ehsanzadeh 2015).

Structural changes have also been associated with Cd accu-
mulation in plant tissues (Vitdria et al. 2003, 2006; Maksimovié¢
et al. 2007; Gratdo et al. 2009; Lux et al. 2011; Mondal et al.
2013). Structural disorganization in leaves, reduced intercellu-
lar spaces, altered thylakoid structure, wilted epidermis, thinner
cell walls, cytoplasm condensation due to increase in matrix
density, mitochondrial cristae reduction, high level of chromatin
condensation, nuclear envelope disruption, mitotic index de-
crease, and chromosomal aberrations have been observed for
a wide range of plant species (Djebali et al. 2005; Vitoria et al.
2006; Gratdo et al. 2009; Ali et al. 2013a, b).

The molecular oxygen (O,) naturally present in cells pro-
motes the production of reactive oxygen species (ROS) such
as superoxide radical (O, ), singlet oxygen (‘0,), hydrogen
peroxide (H,0O5,), and hydroxyl radicals (OHe), which are con-
tinuously produced by cells in plants and other organisms
under normal or stressful conditions (Peters et al. 2014).
Metals can enhance ROS production, which react with several
cellular compounds, leading to damage to the cell system and
even cell death (Gratdo et al. 2015).

The cell redox balance may be maintained through the
action of antioxidant mechanisms, which are capable, depend-
ing on the level of the stress, of preventing uncontrolled oxi-
dation through the removal of ROS (Azevedo et al.
2011; Hippler et al. 2015). These mechanisms may involve
enzymatic and/or nonenzymatic systems. The enzymatic
mechanisms of ROS scavenging include the action of a num-
ber of enzymes, such as superoxide dismutase (SOD), which
catalyzes O, into H,O, (Gratdo et al. 2008a). Subsequently,
H,0, may be detoxified into H,O by ascorbate peroxidase
(APX) and catalase (CAT), among other peroxidases (Wu
et al. 2015). The nonenzymatic antioxidants include ascorbic
acid and glutathione, as well as vitamins, flavonoids, alka-
loids, and carotenoids (Gratdo et al. 2005; Alcantara et al.
2015). Reduced glutathione (GSH) is oxidized to gluta-
thione (GSSG), whereas ascorbate is oxidized into
monodehydroascorbate (MDHA) and dehydroascorbate
(DHA). Through the ascorbate—glutathione cycle, GSSG,
MDHA, and DHA may be reduced and form GSH and ascor-
bate again (Nogueirol et al. 2015).

It is also known that oxidative stress is highly controlled by
plant hormones and there are many studies showing the inter-
action between ROS and/or antioxidants and plant hormones
(Gratdo et al. 2012; Monteiro et al. 2011, 2012; Carvalho et al.
2013; Cai et al. 2015; Schellingen et al. 2015; Soares et al.
2016). Although these multiple stress responses are essential
for plant survival under heavy metal-stress conditions, the
exact role of phytohormones in these responses is still not
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clear, especially the cross-talk among ROS, phytohormones
and antioxidant systems (Asgher et al. 2015).

MT plants feature genetic variations and natural hormonal
mutations, such as the deficiency in functional enzyme activ-
ity at the final step in abscisic acid (ABA) biosynthesis ob-
served in the hormonal mutant sit (Taylor et al. 1988; Mékela
et al. 2003; Harrison et al. 2011). ABA is often referred as a
stress hormone due to its main involvement in biotic stress
responses (Harrison et al. 2011). Therefore, plants can con-
stantly adjust ABA levels in response to physiological and
environmental changes, especially from root signaling
(Cutler et al. 2010). ABA can also be accumulated in roots
when subjected to external stresses such as drought, salinity,
and nutrient deficiency (or excess), serving as a long distance
signal to regulate many adaptive responses in plants, such as
compatible solutes accumulation, root modification, stomatal
closure, and induction of the antioxidative stress system
(Hartung et al. 2005). Therefore, it is not surprising that
ABA is also involved in the stress response to heavy metals
contamination. For example, Shi et al. (2015) has recently
shown that ABA was able to alleviate zinc toxicity in poplar
(Populus x canescens; syn. Populus tremula % P. alba). ABA-
signaling genes, such as PYLs, were generally sensitive during
copper stress in cucumber (Cucumis sativus) (Wang et al.
2014). ABA has also been shown as a component of stress
response induced by Cd. In fact, ABA induced tolerance in
wheat (Triticum aestivum) seedlings subjected to Cd stress
(Han et al. 2012), while potato (Solanum tuberosum) exposed
to Cd exhibited increased ABA content (Stroinski et al. 2013).

In this study, we tried to further explore the interaction
between ABA and Cd in tomato plants, which is the most
important vegetable crop species in the world. The Micro
Tom sitiens ABA-deficient mutant (sit) and its wild-type
(MT) counterpart were used to characterize the biochemical
and ultrastructural changes induced by Cd toxicity. As far as
we know, the response of this mutant to heavy metals-induced
stress has never been reported.

Materials and methods

Seeds of tomato (Solanum lycopersicum L.) cv Micro-Tom
(MT) and MT sitiens ABA-deficient mutant (sif) were sown
in trays containing vermiculite supplemented with Hoagland
and Arnon (1950) nutrient solution at 20 % ionic strength.
After 30 days the tomato plants were transferred to 12-L trays
containing Hoagland’s nutrient solution at 10 %. This system
is similar to a greenhouse hydroponic system used by tomato
producers and was previously reported by Piotto et al. (2014)
in a system for the isolation of Cd-resistant mutants. The nu-
trient concentrations were increased daily for 3 days to allow
plant adaptation. On the fourth day, before Cd addition, the
nutrient solution was changed to 50 % ionic strength.
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Chlorophyll measurements were carried out in MT and sit
mutant leaves. Roots and shoots were then collected, rinsed
in distilled water and stored at —80 °C for further biochemical
analysis (T0). Subsequently, the solution was supplemented
with 0, 10, and 100 uM CdCl,. These concentrations were
chosen based on previous results with MT from our research
group (Gratdo et al. 2009, 2012; Monteiro et al. 2011). Ninety-
six hours after Cd addition, leaves were used for chlorophyll
measurements and then, roots and shoots were collected,
rinsed in distilled water and stored at —80 °C for further bio-
chemical analysis.

Dry weight and Cd concentration determination

Ninety-six hours after Cd addition to the nutrient solution,
plants were collected, separated into shoots and roots, and
dried in a forced-air oven at 65 °C for 72 h, when the dry
weight was recorded. Cd concentration in roots and shoots
was determined by digestion with a mixture of nitric and
perchloric acids as described by Malavolta et al. (1997),
followed by a quantitative analysis using a flame atomic ab-
sorption spectroscopy with a Perkin Elmer spectrometer, mod-
el 310. Cd concentrations were expressed in milligram of Cd
per gram dry weight.

Chlorophyll content determination

A Minolta SPAD-502 meter, which measures leaf transmit-
tance at two wavelengths, red (660 nm, approximately) and
near infrared (940 nm, approximately), was used to determine
the leaf chlorophyll content. SPAD readings were taken week-
ly on the terminal leaflet of the fourth leaf from the base of the
shoot. The SPAD sensor was randomly placed on the leaf
mesophyll tissue, avoiding the veins (Monteiro et al. 2011).

Lipid peroxidation

Lipid peroxidation was determined by estimating the content
of thiobarbituric acid reactive substance (TBARS). This meth-
od was modified as follows: 200 mg of roots and shoots were
grounded in a mortar under liquid nitrogen and homogenized
in a solution containing 0.1 % (v/v) trichloroacetic acid (TCA)
and 20 % (w/v) insoluble polyvinylpolypyrrolidone (PVPP).
The homogenate was centrifuged at 10,000xg for 10 min, and
then 250 puL of the supernatant were added to a solution com-
posed of 1 mL of 0.5 % (v/v) 2-thiobarbituric acid (TBA) plus
20 % (v/v) TCA. The mixture was incubated in a dry bath at
95 °C for 30 min. The homogenate was placed in an ice bath,
maintained for 10 min, and centrifuged at 10,000xg for
10 min to separate the residues formed during the heating

process. Malondialdehyde (MDA) was monitored by mea-
surements at 535 and 600 nm and the concentration calculated
using an extinction coefficient of 1.55x 107> mol™' ecm ™.
MDA content was expressed in nmol g ' fresh weight
(Arruda et al. 2013).

Hydrogen peroxide content determination

Samples of roots and shoots from each treatment were mac-
erated in liquid nitrogen and homogenized in 0.1 % (w/v)
TCA. The homogenate was centrifuged at 10,000xg for
20 min at 4 °C, and then 200 uL of 100 mM potassium phos-
phate buffer (pH 7.0) and 800 puL of 1 M potassium iodide
(KI) were added. The reaction medium was maintained in the
dark in an ice bath for 1 h. The absorbance was then read at
390 nm. The hydrogen peroxide (H,O,) content was deter-
mined using H,O, as a standard (Rendén et al. 2013).

Antioxidant enzymes activities determination

For enzyme extraction and protein determination, roots and
shoots samples were homogenized in buffer volume/fresh
weight (2:1) in a mortar with a pestle in 100 mM potassium
phosphate buffer (pH 7.5) containing 1 mM ethylenediamine-
tetraacetic acid (EDTA), 3 mM DTT, and 4 % (w/v) insoluble
PVPP. The homogenate was centrifuged at 10,000xg for
30 min, and the supernatant was stored in separate aliquots
at —80 °C. All steps were carried out at 4 °C unless stated
otherwise (Gratao et al. 2012). Protein concentration for all
samples was determined by the method of Bradford (1976),
using bovine serum albumin as a standard.

Catalase (CAT, EC 1.11.1.6)

CAT activity determination (mol min' mg ™' protein) was
assayed at 25 °C in a reaction mixture containing 1 mL
100 mM potassium phosphate buffer (pH 7.5) and 25 puL
H,0, (30 % solution). The reaction was initiated by the addi-
tion of 25 pL of protein extract, and the activity determined by
following the decomposition of H,O, as changes in absor-
bance at 240 nm, over 1 min (Monteiro et al. 2011).

Glutathione reductase (GR, EC 1.6.4.2)

GR activity determination (umol min~' mg™" protein) was
carried out spectrophotometrically at 30 °C in a mixture
consisting of 1 mL 100 mM potassium phosphate buffer
(pH 7.5), 0.5 mL 5,5'-dithiobis (2-nitrobenzoic acid)
(DTNB) 3 mM, 0.1 mL NADPH 2 mM, 0.1 mL GSSG
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20 mM, and 50 pL of protein extract. The reduction rate of
oxidized glutathione was followed by monitoring the change
in absorbance at 412 nm over 1 min (Carvalho et al. 2013).

Ascorbate peroxidase (APX, EC 1.11.1.11)

APX activity (umol min~' mg ' protein) was determined by
the addition of 40 pL protein extract to 1 mL of a solution
containing 50 mM ascorbate, 0.1 mM EDTA, and 0.1 mM
H,0,. The oxidation rate was monitored at 290 nm, at
30 °C, over a period of 1 min (Dourado et al. 2015).

Superoxide dismutase (SOD, EC 1.15.1.1)
non-denaturing PAGE assay activity

Polyacrylamide gel electrophoresis (PAGE) analysis was
carried out under non-denaturing conditions in 12 %
polyacrylamide gels, followed by SOD activity staining
as described by Vitoria et al. (2001), with equal amounts
of protein (40 pg) being loaded onto each gel lane.
Electrophoresis buffers and gels were prepared as de-
scribed by Vitéria et al. (2001), except that SDS was
excluded. To perform SOD activity staining, after non-
denaturing-PAGE separation, the gel was rinsed in
distilled water and incubated in the dark in 50 mM po-
tassium phosphate buffer (pH 7.8) containing 0.05 mM
riboflavin, 1 mM EDTA, 0.1 mM nitrobluetetrazolium,
and 0.3 % N,N,N’,N'-tetramethylethylenediamine. After
30 min, the gels were rinsed with distilled water and
then illuminated in water until the achromatic bands of
SOD activity were visible on a purple-stained gel. The
SOD isoenzymes were distinguished by their sensitivity
to inhibition by 2 mM potassium cyanide and 5 mM
hydrogen peroxide. One unit of bovine liver SOD
(Sigma, St. Louis, MO, USA) was used as a positive
control of activity (Barbosa et al. 2012).

Light and transmission electron microscopy

For histological characterization samples were processed for
light (LM) and transmission electron microscopy (TEM).
Root tips and leaf blade were collected after 20 days of sup-
plementation with 0, 10, and 100 uM CdCl,. Samples were
immediately fixed in a modified Karnovsky solution
(Karnovsky 1965) (2 % glutaraldehyde, 2 % paraformalde-
hyde, and 5 mM CaCl, in 0.05 M sodium cacodylate buffer,
pH 7.2) for 48 h. The samples were then rinsed in cacodylate
buffer (0.1 M) and post fixed in 1 % osmium tetroxide in
0.1 M sodium cacodylate buffer, pH 7.2, at room temperature,
for 1 h. The samples were dehydrated in a graded acetone
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series and embedded in Spurr epoxy resin (EMS, Electron
Microscopy Sciences, Hatfield, PA, USA), for 48 h. Semi-
thin sections (120-200 nm) were collected in glass slides,
stained with toluidine blue (2 % in water) for 5 min, rinsed
in distilled water, and air-dried. The sections were permanent-
ly mounted in Entellan®, observed and documented using an
upright light microscope (LMD 7000, Leica, Germany).
Ultra-thin sections (60—90 nm) of leaves and roots were col-
lected on copper grids (300 mesh), and stained with uranyl
acetate (2.5 %), followed by lead citrate (0.1 %) (Reynolds
1963). Sections were observed at 80 kV under a transmission
electron microscope (JEM 1400 JEOL, Tokyo, Japan), and the
images digitalized.

Statistical analysis

The experimental design was completely randomized and the
results expressed as the mean and standard error (+SE) of
three independent replicates of each extract for plant growth,
Cd accumulation, dry weight, lipid peroxidation, H,O, con-
tent, chlorophyll content, CAT, GR and APX activities. The
statistical analysis was performed using the SASM-Agri soft-
ware version 8.2. Tukey test was used for multiple means
comparison, followed by individual ANOVA for each charac-
ter, at a 0.05 level of significance.

Results

After 96-h of exposure to Cd, MT plants cultivated in 10 and
100 uM CdCl, exhibited differences in plant growth in com-
parison to the control (0 uM CdCl,) and plants collected be-
fore Cd addition (T0). Root biomass was slightly increased in
MT at 100 uM CdCl,, when compared to the other treatments
and controls (Fig. 1a). Shoot biomass, in both treatments (10
and 100 uM CdCl,), were significantly increased when com-
pared to the control and TO (Fig. 1b). Mutant (sif) plants cul-
tivated in solution with CdCl, did not exhibit differences in
root and shoot growth in comparison to the control without
CdCl, and TO.

Cd accumulation in the plants was proportional to the metal
concentration added to the nutrient solution (Fig. 1). At the
concentration of 100 uM CdCl,, sit roots absorbed higher
amounts of Cd when compared to MT roots (Fig. lc).
Similar amounts of Cd were transported to shoots of geno-
types grown in both metal concentrations (Fig. 1d). The chlo-
rophyll content in shoots of MT and sif grown in the presence
or absence of Cd did not differ (Fig. 2).

MDA concentration varied when plants were exposed to
Cd, both in shoots and roots of MT and siz (Fig. 3). Mutant
(sif) roots exhibited higher levels of lipid peroxidation when
compared to MT roots (Fig. 3a). MDA levels were higher at the
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concentration of 100 uM CdCl,. Shoots of MT and sit exhibited
similar values of lipid peroxidation (Fig. 3b). Differences in
H,0, content were observed in roots and shoots of MT and
sit plants exposed to Cd (Fig. 3). The concentration of
100 uM CdCl, induced an increase in H,O, production, mainly
in the roots, in both genotypes (Fig. 3¢). An increase in H,O,
content in shoots of MT and sit plants exposed to Cd was also
observed (Fig. 3d).

SOD activity in roots and shoots of MT and sit plants was
determined based on the isoenzymes separation by non-
denaturing PAGE (Fig. 4). SOD isoenzymes were detected
and characterized as Mn/SOD (SOD I and II) and Fe/SOD
(SOD III) (data not shown). Roots and shoots of MT and sit
exhibited decrease in SOD I activity (Fig. 4a, b). In shoots of
MT, SOD II and III activities decreased in the presence of Cd
(Fig. 4a, lanes 1, 2, and 3), but in the shoots of the sit mutant
SOD 1I and III exhibited similar levels of activity (Fig. 4a,
lanes 4, 5, and 6). No alterations were observed in SOD ac-
tivity in roots of both genotypes grown in nutrient solution
with both Cd concentrations (Fig. 4b).

CAT activity in roots and shoots of MT and sif was deter-
mined spectrophotometrically (Fig. 5). At TO, roots of sit and
shoots of MT exhibited high activity of this enzyme (Fig. 5a,
b). Roots of MT and sit exhibited small differences in CAT
activity when exposed to 0 and 10 uM CdCl,, however, the
highest CAT activity encountered was observed in roots at the
highest metal concentration for both genotypes (Fig. 5a).
Shoots of MT and sit exhibited high CAT activity increase
when exposed to 10 and 100 uM CdCl, (Fig. 5b).

Cd concentration

Cd induced increase in GR activity in roots of MT and sit
(Fig. 5). The highest activity was observed in MT roots ex-
posed to 10 uM CdCl, (Fig. 5¢). The shoot of sit exhibited
increased GR activity when exposed to the concentration of
100 uM CdCl, (Fig. 5d). The highest APX activities (Fig. 5)
were observed in roots and shoot of both, MT and sit plants, in
the presence of Cd. Roots exhibited increased APX activity at
100 and 10 uM CdCl,, for MT and sit, respectively (Fig. 5e).
The enzyme activity in shoot increased with Cd, irrespective
of the genotypes analyzed (Fig. 5f).

Anatomical and ultrastructural analyses of roots and leaves
of MT and sit exposed to 0, 10, and 100 uM CdCl, were

80 r
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M sit leaf
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Fig. 2 Chlorophyll content measured (SPAD units) in leaves of Micro
Tom (MT) and sitiens (sif) in plants grown over a 96-h period in the
presence of 10 and 100 uM CdCl, or not treated (0 pM). TO represents
plants collected before addition of CdCL,. Values are the means of three
replicates = SE. Different letters indicate significant difference at p <0.05
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performed in plants grown in nutrient solution, and exposed to
Cd over a period of 20-days. Histological sections observed
under light microscopy (LM) revealed anatomical differences
between MT and sit exposed to 10 and 100 uM CdCl, (Figs. 6
and 7). A decrease in intercellular spaces and leaf area in the
leaves in the presence of Cd for both genotypes, and an in-
crease in cell size, especially in the palisade parenchyma, were
observed when compared to the control (Fig. 6b, ¢, ¢, f). In the
roots, MT and sit exhibited cell size reduction in the presence
of the metal in both concentrations tested (Fig. 7b, c, e, f).

P 1 2 3 P 4

Fig. 4 Superoxide dismutase (SOD) activity staining following non-
denaturing polyacrylamide gel electrophoresis of shoots (a) and roots
(b) extracts isolated from Micro-Tom (MT) and sitiens (sif) plants grown
over a 96-h period in the presence of 10 and 100 uM CdCl, or not treated
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Cd concentration

Ultrastructural analysis of root samples of plants grown in
10 and 100 uM CdCl, revealed an increased number of mito-
chondria (Fig. 8, white arrows). Ultrastructural changes in
mitochondria shape (Fig. 8b, c, e, f, k, 1) and increase in vac-
uole number (more in roots of MT than in sit roots) (Fig. 8e, f)
were also detected. No alterations were observed in the nucle-
ar membrane and cell wall (Fig. 8b, ¢, k, 1). In leaves of MT
and sit plants exposed to 10 and 100 uM CdCl,, disorganiza-
tion in the internal structures of chloroplasts was observed
(Fig. 9b, c, e, f). Thylakoid membrane and grana were

SOD I - Mn/SOD

SOD II - Mn/SOD
SOD III - Fe/SOD

SOD I - Mn/SOD

SOD II - Mn/SOD
SOD III - Fe/SOD

5 6

(0 uM). The lanes listed are: (P) bovine SOD standard, (/) MT 0 uM
CdCly, (2) MT 10 uM CdCl,, (3) MT 100 uM CdCl,, (4) sit 0 uM CdCl,,
(5) sit 10 uM CdCl,, (6) sit 100 uM CdCl,
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disorganized, and the chloroplasts were malformed, whereas
in the control leaves the chloroplasts had a normal shape and

Fig. 6 Leaf cross-sections of
Micro-Tom (MT) and sit mutant
grown in nutrient solution with 10
and 100 uM CdCl,, or not treated
(0 uM), observed by light
microscopy. a—¢ Leaves of MT:
0 uM CdCl, (a), 10 uM CdClL,
(b), 100 uM CdCl, (c). d—f
Leaves of sit: 0 uM CdCl, (d),
10 pM CdCl, (e), 100 uM CdCl,
(). e, epidermis; p, palisade
parenchyma; s: spongy
parenchyma; asterisks indicate
intercellular space. Scale
bar=100 um

Cd concentration

contained well-compartmentalized grana and organized thyla-
koids (Fig. 9a, d).
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Fig. 7 Micro-Tom (MT) and sit
mutant roots of plants grown in
nutrient solution with 0, 10, or
100 uM CdCl,, observed in
cross-sections by light
microscopy. a—¢ MT: 0 pM
CdCl, (a); 10 uM CdCl, (b);
100 uM CdCl, (¢); d—f sit: 0 UM
CdCl, (d); 10 uM CdCl, (e);
100 uM CdCl, (f). e, epidermis;
¢, cortex; v, vascular cylinder.
Scale bar=100 um

Discussion

Although research carried out in recent years has shown that
all hormonal classes have important roles in abiotic stress
response, ABA is a fundamental molecule that strongly regu-
lates the outcome of the interaction between plants and a
harmful environment. It has been shown that the mechanisms
by which ABA regulates stress responses involve many mo-
lecular, biochemical and morpho-anatomical changes (Hong
et al. 2013; Kim 2014). In other words, ABA is part of the
stress response, which involves multiple and complex events,
especially when different abiotic stresses are considered.
Thus, in order to further elucidate the roles of ABA during
Cd stress response in tomato, the ABA-deficient sit mutant
was used and exposed to concentrations of 0, 10, and
100 uM CdCl, over a 96-h period in a hydroponic system
and biochemical, physiological and anatomical responses
were analyzed. Moreover, the sit mutant has not yet been fully
characterized and has the potential to help unraveling the roles
of ABA on abiotic stresses.

In tomato, ABA plays a multifaceted role when water, sa-
linity, nutrient, and temperature stresses occur, including ad-
justment mechanisms of stress tolerance (Hermans et al. 2010;
An et al. 2014; Osakabe et al. 2014). Under Cd stress, the
ABA-deficient sit mutant exhibited multiple stress responses,
which appears to be dependent upon the plant tissue or Cd
concentration. Indeed, while the wild-type (MT) counterpart
exhibited enhanced root dry weight at 100 pM CdCl,, and
shoot dry weight when grown in both Cd concentrations cho-
sen for the experiments, the dry weight in roots and shoots of
the sit mutant did not differ from the control and was consid-
erably lower than in MT (Fig. 1a, b). These results may be, at
least in part, explained by the natural reduced growth shown
by sit due to its ABA deficiency (Carvalho et al. 2011).
However, it is interesting to note that sif accumulated higher
Cd amounts in the root when compared to MT (Fig. lc¢),
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whereas in the shoot there was no difference between MT
and the mutant (Fig. 1d), indicating different rates of Cd trans-
location among plant organs between the two genotypes.
Thus, Cd accumulation in sif may not explain the reduced
growth of roots, but it seems that there is a signaling between
root and shoot, which is dependent upon ABA since a pro-
gressive increase in dry weight was not observed in sit. In fact,
this may be reinforced by the similar Cd accumulation in MT
and sit shoots.

Considering the increase in dry weight observed in MT
from 0 to 100 pM CdCl,, it is not surprising that small con-
centrations of toxic elements appear to stimulate growth. In
fact, the growth stimulus in the presence of Cd has previously
been observed in in vitro cell culture of sugarcane (Fornazier
et al. 2002), mycelium of Aspergillus nidulans (Guelfi et al.
2003), coffee suspension cells (Gomes-Junior et al. 2006),
tobacco BY-2 cells (Gratdo et al. 2008a), and also in tomato
plants (Gratao et al. 2008b; Zhu et al. 2011). This hormetic
mechanism by which Cd induces growth is still poorly under-
stood, but the absence of dry weight increase observed in the
sit mutant, which is ABA deficient, allows us to suggest that
this mechanism also appears to be dependent on ABA.

Leaf chlorophyll breakdown is an important catabolic pro-
cess, which commonly occurs in plants grown under stress, and
thus can be used as an important stress indicator (Monteiro et al.
2011). However, we observed that the chlorophyll content was
not altered in MT and sif in the presence of Cd (Fig. 2).
Accordingly, the presence of Cd also did not negatively impact
the growth of MT and sit plants (Fig. 1a, b). This could have
occurred by an insufficient period of exposure to the metal,
although two concentrations of Cd were used, which were high
enough to accumulate Cd in the roots and shoots, at least at
100 uM CdCl,, and to induce oxidative stress changes. As a
matter of fact, an induction of lipid peroxidation, measured by
changes in MDA levels, can be observed in roots (Fig. 3a) and
shoots (Fig. 3b) from 10 to 100 uM CdCl, in both MT and sit,
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Fig. 8 Ultrastructure effect of
cadmium on root tip cells of
Micro-Tom (MT) and sif mutant
plants grown in nutrient solution
with and without CdCl,. a—f
plants of MT; g-1 plants of siz. a,
d, g, j=0 uM CdCly; b, e, h,
k=10 uM CdCl, and ¢, f, i,
1=100 uM CdCl,. Note the
increase in number of
mitochondria (b, ¢, e, f, i, 1) and
increase of vacuoles (e, ). Arrows
indicate mitochondria, n, nucleus;
¢, cell wall; m, mitochondria; v,
vacuole. Scale bars: a, ¢, g,
i=500 um; b, h=1000 um; d, e,
j, k=5 pm; f, k=2.5 ym

being more pronounced in the roots of the mutant. These results
indicate that although Cd treatments did not alter growth
(Fig. 1a, b) or chlorophyll content (Fig. 2) in these genotypes,
the accumulation of Cd in the roots, and in a lesser extent in
shoots, induced lipid peroxidation in these organs. Moreover,
an enhanced MDA accumulation in the roots of sif treated with
CdCl, was clearly observed, suggesting that ABA deficiency
amplifies the stress response to Cd. In other words, the en-
hanced MDA in sif could be attributed to a negative effect of
ABA on lipid peroxidation, which seems to be true only for
metal stress response, because the natural ABA deficiency in

the mutant did not alter MDA under control conditions (without
Cd) (Fig. 3), as previously reported in tomato (Monteiro et al.
2012).

In the presence of Cd an increase in H,O, accumulation in
roots of MT and sit (Fig. 3¢, d) was observed, whereas the
increase in shoots seems to be associated to time since the
increase in H,O, occurred between treatments without Cd
(0 uM CdCl,), when compared to TO. The enhanced MDA
content may be in part due to the accumulation of H,O,, but
that is not dependent on ABA since the H,O, content in the
mutant did not differ from MT.
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Fig. 9 Effect of cadmium on
chloroplast ultrastructure of
Micro-Tom (MT) and sif mutant
plants grown in nutrient solution
with 0, 10 and 100 uM CdCl,.
a—c plants of MT: 0 uM CdCl,
(a), 10 uM CdCl, (b), 100 uM
CdCl, (¢); d—f plants of siz: 0 uM
CdCl, (d), 10 uM CdCl, (e),

100 uM CdCl, (f). ¢, chloroplast;
g, grana; s, starch grain; m,
mitochondria, ¢, thylakoids. Scale
bars:a,b,e=2 um;c,d,f=5 pum

Regarding enzyme peroxidase activity, which can reduce
H,0,, the data showing that a higher activity of CAT and
APX, and reduction of H,O, and MDA in roots of MT and
sit grown from TO to 10 pM CdCl,, are taken together. When
comparing time and CdCl, concentration, the enhanced CAT
activity in roots (Fig. 5a) can be associated to reduced MDA
and H,0, (Fig. 3a). However, at 100 uM CdCl,, this was not
the case, most likely because a burst of oxidative stress was
triggered in the roots, inducing strong lipid peroxidation and
antioxidant enzyme activities such as for GR (Fig. 5¢) and
APX (Fig. 5e). Moreover, compared to MT, the exposure to
Cd did not alter SOD total activity in roots (Fig. 4a, b), indi-
cating that the alteration in H,O, does not appear to be asso-
ciated with the level of this enzyme by catalyzing the
dismutation of superoxide into H,O,.

Although sit naturally did not exhibit changes in lipid per-
oxidation when compared to MT (Fig.3a, b), this mutant re-
vealed a multifaceted antioxidant enzyme activity pattern,
which was depended upon organ, enzyme, time, and metal
concentration (Fig. 5). When compared to MT, sit exhibited
enhanced CAT activity with and without Cd (Fig. 5a), whereas
GR (Fig. 5d) and APX (Fig. Se) activities of shoots and roots,
respectively, were enhanced in the Cd treatments. On the other
hand, sit exhibited reduced CAT activity in TO and 100 uM
CdCl, in shoots, and GR activity in 10 and 100 uM CdCl,
(Fig. 5¢). In general, the high antioxidant activity in sit could
be associated to a constitutive ABA deficiency, which results
in a phenotypically wilt plant, stunted and epinastic (Tal
1966). Thus, under stressful conditions sif plants exhibit more
sensitivity, such as previously shown to salinity (Mékela et al.
2003) and water deficit (Thompson et al. 2004), and in this
work the mutant was shown to alter the antioxidant response
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also to the metal treatment. Therefore, it seems clear that a
complex biochemical network involves ABA-signaling in
metal stress.

In addition, leaves and roots anatomical and ultrastructural
changes induced by Cd were also observed. The most evident
response was the reduction in sit and MT of leaf intercellular
space, cell area and size (Fig. 6b, c, ¢, f), as well as structural
abnormalities in vacuoles (Fig. 8e, f) and mitochondria
(Fig. 8b, ¢, ¢, f, k, 1) in roots, and in chloroplasts (Fig. 9b, ¢,
e), an expected outcome also previously reported in response
to Cd stress (Daud et al. 2009; Gratdo et al. 2009). On the
other hand, root cell size was reduced in both MT and sit
(Fig. 7b, c, e, ). Hence, even showing a strong accumulation
of Cd in 100 uM CdCl, (Fig. 1c) and increasing lipid perox-
idation (Fig. 3a), sit does not show a reduction in root cell size
(Fig. 7). Yet, these results do not confer more Cd tolerance to
sit because M T and the mutant did not present reduced growth
from 0 to 100 uM CdCl,.

In this work, we initially hypothesized that ABA is part of
the Cd stress signaling in tomato, and to test that we submitted
the ABA-deficient mutant siz to 0, 10, and 100 uM CdCl,. The
results suggest a confirmation of our hypothesis, with a clear
important role of ABA on Cd stress signaling in tomato. In
fact, the mutant accumulated more Cd in the roots when com-
pared to its wild-type counterpart MT. In other words, ABA
production seems to be related to a decrease in Cd accumula-
tion in this plant species. Wang et al. (2016) using two
Solanum photeinocarpum ecotypes (mining and farmland)
applied exogenous ABA, which resulted in increased Cd con-
tent in both ecotypes. Although the interaction between ABA
and Cd seems dependent on the plant species, exogenous
ABA application can act differently from ABA production
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under Cd treatment. This observation is also supported by
previous reports in which ABA content rapidly increased in
the leaves and roots in the rice Cd-tolerant cultivar (cv.
Tainung 67, TNG67), but not in the Cd-sensitive cultivar
(cv. Taichung Native 1, TN1) (Hsu and Kao 2003).
Additionally, a molecular mechanism of interaction between
Cd and ABA has been clarified in Arabidopsis, with a de-
crease in Cd accumulation in the presence of exo-
genous ABA, by inhibiting the JRON-REGULATED
TRANSPORTER 1 (IRTI) (Fan et al. 2014), a broad-
spectrum transporter in roots, which is involved in the absorp-
tion of several other divalent cations, including Cd (Vert et al.
2002). Additionally, we have been able to show that the mech-
anisms by which ABA interacts with Cd is followed by evi-
dent histological and biochemical alterations. Although we
found some evidence that Cd stress response is mediated by
ABA in tomato, the use of an ABA-deficient mutant to study
the role of this hormone in plants grown under stress can be
complex because of their natural adverse water relations and
altered growth (Thompson et al. 2004). Ongoing research is
being carried out, in which sit and other hormonal mutants
such as Never ripe and diageotropica have been subjected to
combined stresses such as water deficit and metal to further
elucidate the role of ABA signaling, and the involvement of
other hormones in response to stress.
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