Apocynin reduces blood pressure and restores the proper function of vascular endothelium in SHR

1. Introduction

Reactive oxygen species (ROS) contribute to the pathogenesis of numerous cardiovascular diseases and conditions including hypertension [1]. NAD(P)H oxidase (NOX) is an enzyme complex [2] that has been considered a major ROS source in vascular cells [3]. Moreover, the NOX1, NOX2, and NOX4 subunits are highly expressed in these cells, and their activity increases during hypertension [4–7]. NOX reduces oxygen (O2) by addition of one electron, to generate the superoxide anion (O2−). O2− can interfere with the signal transduction mechanisms of vascular smooth muscle relaxation mediated by nitric oxide (NO) [8]. O2− reacts with NO, to form peroxynitrite (ONOO−) [9,10], a species that participates in endothelial dysfunction [11]. ONOO− also accounts for indirect NO synthase (NOS) coupling, which increases O2− production [12].

Increased NOX activity and O2− production occurs in aorta of spontaneously hypertensive rats (SHR) as compared to aorta of normotensive Wistar-Kyoto rats [6,13]. This could be associated with impaired endothelium-dependent vascular smooth muscle relaxation in SHR [14–16]. NOX activity could contribute to vascular diseases in hypertension, which has prompted investigations into the antihypertensive effects of unspecified NOX inhibitors, like apocynin [17,18].

Myeloperoxidase (MPO), which is present in phagocytic cells, metabolizes apocynin, to produce an active metabolite, diapocynin [19]. Diapocynin may inhibit phosphorylation of the NAD(P)H oxidase complex, and translocation of its cytosolic components (p47phox, p67phox) to the membrane, thereby blocking its activity [19–21]. Because endothelial cells (EC) and vascular smooth muscle cells (VSMC) do not contain MPO, apocynin could act by a MPO-independent pathway like

DOI of original article: http://dx.doi.org/10.1016/j.vph.2016.08.006.

* Corresponding author at: Faculdade de Odontologia de Araçatuba-UNESP/Departamento de Ciências Básicas, Rua: José Bonifácio, 1193 – CEP 16015-050, Araçatuba, São Paulo, Brazil.

E-mail address: crisant@faaunesp.br (C. Antoniali).

1 These authors contributed equally to this study.

Vascular Pharmacology 87 (2016) 38–48

A P I C E I N F O

Article history:
Received 24 February 2016
Received in revised form 6 May 2016
Accepted 18 June 2016
Available online 25 June 2016

Keywords:
Apocynin
SHR
Endothelial dysfunction
eNOS
Reactive oxygen species

A B S T R A C T

This study has evaluated how the vascular endothelium of hypertensive rats chronically treated with apocynin affects acetylcholine (ACh), sodium nitroprusside (SNP), and phenylephrine (PE) action on the nitric oxide (NO) signal transduction pathway in endothelial (EC) and vascular smooth muscle cells. Treatment with apocynin significantly reduced the mean arterial pressure in spontaneously hypertensive rats (SHR). In addition, apocynin improved the impaired ACh hypotensive effect on SHR. Although systemic oxidative stress was high in SHR, SHR treated with apocynin and normotensive rats presented similar systemic oxidative stress levels. Endothelium significantly blunted PE contractions in intact aortas of treated SHR. The ACh effect was impaired in resistance arteries and aortas of SHR, but this same effect was improved in treated SHR. The SNP potency was higher in intact resistance arteries of treated SHR than in intact resistance arteries of untreated SHR. NO and calcium concentrations increased, whereas reactive oxygen species levels decreased in EC of treated SHR. Aortas of untreated and treated SHR did not differ in terms of sGC alpha or beta units expression. Aorta of treated SHR expressed higher eNOS levels as compared to aorta of untreated SHR. The study groups did not differ with respect to NOX1, NOXO1, or NOX4 expression. However, treatment with apocynin normalized overexpression of NOX2 and its subunit p47phox in aortas of SHR. Based on all the results presented in this study, we suggest apocynin increases NO bioavailability by different mechanisms, restoring the proper function of vascular endothelium in SHR.

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.vph.2016.06.005
1537-1891/© 2016 Elsevier Inc. All rights reserved.
2.1 Animals

Male SHR and male normotensive Wistar rats were used in this study. The animals received standard chow and water ad libitum and were kept under controlled temperature (22–24 °C) in a 12-hour light/dark cycle. SBP was verified by tail plethysmography (PowerLab, ADInstruments, Melbourne, Australia) before, during, and after treatment. Untreated SHR with SBP higher than 150 mmHg were used as controls. The animals were treated with apocynin from the fourth to the tenth week of life (30 mg/kg, diluted in drinking water) [28]. Every week, the rats were weighed, and the apocynin dose was adjusted. At the end of the 6th week of treatment, the rats were used in the experiments described below.

2.2 Systemic oxidative stress determination

At the end of the treatment, all the groups of rats were decapitated. Blood was collected from each animal separately in glass tubes containing heparin and centrifuged (Centrifuge 5810R, rotor S-4-104, Eppendorf, Hamburg, Germany) at 4 °C and 1000 rpm for 15 min. Plasma was removed by aspiration, and erythrocytes were washed with sodium chloride solution 0.15 mol/L three times. Hemolyses were prepared (1:10) by addition of magnesium sulfate 4 mmol/L and acetic acid 1 mmol/L mixed with 1 mL of trichloroacetic acid 10%, which caused proteins to precipitate, and centrifuged again (3 min at 1000 rpm). Then, 1 mL of thiobarbituric acid 0.67% was added [29]. Samples were heated in boiling water for 15 min, and the amount of thiobarbituric acid reactive species (TBARS) was determined based on the absorbance at 535 nm, recorded on a spectrophotometer (Hitachi U-1100, Tokyo, Japan) as described previously [30]. Lipid peroxidation levels were identified in erythrocytes through substances that reacted with 2-thiobarbituric acid. By using the molar extinction coefficient of this acid (ε = 1.56 × 10^5 mol/L cm⁻¹), results were expressed in nmol/mg of protein. Proteins were measured by using the method of Lowry et al. [31] with bovine serum albumin as standard.

2.3 In vivo studies

2.3.1. Cannulation

Rats were anesthetized with intraperitoneal ketamine (45 mg/kg) combined with xylazine (5 mg/kg). With the animals under anesthesia, a polyethylene cannula (PE10 connected to PE50 Intramedic Polyethylene Tubing, BD Company, New Jersey, USA) filled with heparinized saline 0.15 mol/L was inserted into the abdominal aorta, through the femoral artery, to record the arterial pressure, and another cannula was inserted into the femoral vein for drug administration. The cannulae were passed under the skin and externalized in the dorsal region of the animal. After surgery, the animals were kept in individual cages; standard chow and water were offered ad libitum.

2.3.2. Mean arterial pressure (MAP) and heart rate (HR) measurement

At the end of the 6th week of treatment, MAP, SBP, diastolic blood pressure (DBP), and HR were continuously recorded in conscious rats by using a pressure transducer and an amplifier (ADInstruments, Melbourne, Australia) attached to the intra-arterial cannula. MAP before and after drug administration was calculated by using the LabChart 7 software (ADInstruments, Melbourne, Australia), in which the BP variation was obtained.

2.3.3. Experimental protocol

After 30 min were allowed for BP stabilization, ACh (2 and 10 µg/kg) or SNP (10 and 35 µg/kg) was intravenously injected in bolus, and drug effects were recorded until the response stabilized. With the aid of the LabChart 7 software, the MAP variation (∆MAP) was calculated based on the difference between MAP values at basal condition and at the maximum hypotensive effect after drug administration. These values were then transformed into percentage (%∆MAP). The results are expressed as mean ± standard error of the mean (SEM) values for MAP and HR.

2.4 In vitro studies

2.4.1. Vascular reactivity on aorta artery (conductance vessels)

After decapitation, the thoracic aorta of each animal was removed, dissected, and sectioned in 4-mm rings. Some rings had their endothelium preserved (E+), whereas others had their endothelium mechanically removed (E−). The rings were kept in two stainless steel stirrups and connected to an isometric force transducer (Letica Scientific Instruments, Barcelona, Spain) in a chamber containing Krebs solution (composition, in mmol/L: NaCl 130.0; KCl 4.7; KH2PO4 1.2; MgSO4 1.2;
2.5.1. Endothelial cells (EC) isolation from rat aorta

2.5. Flow cytometry

2.5.2. Cytosolic calcium ([Ca²⁺]c), nitric oxide ([NO]c), and reactive oxygen species ([ROS]c) concentration

2.6. Western blotting

2.7. Drugs and reagents

2.8. Statistical analysis
3. Results and discussion

3.1. Treatment with apocynin does not change rat weight or naso-anal length

The weight and naso-anal length (Fig. 1A and B) of the animals increased significantly during the six weeks of treatment. The weight and naso-anal length of untreated and treated SHR were lower than the weight and naso-anal length of normotensive Wistar rats, and apocynin did not alter these parameters. In previous works, treatment with apocynin did not modify the body weight in normotensive or hypertensive angiotensin (Ang) II-infused mice [34], or the heart weight or left kidney weight/100 g of body weight in normotensive rats or SHR [27]. Therefore, chronic treatment of normotensive and hypertensive rodents with apocynin does not change body parameters, suggesting that apocynin does not interfere in the development of treated animals.

3.2. Apocynin reduces systemic oxidative stress in SHR

TBARS levels were evaluated in erythrocytes of untreated and treated Wistar rats or SHR (Fig. 2). SHR (86.3 ± 3.5, n = 5) presented increased lipid peroxidation as compared to Wistar rats (68.2 ± 3.5, n = 5), indicating the presence of higher systemic oxidative damage in SHR. Plasma biomarkers of cell damage due to systemic oxidative stress are elevated in patients with hypertension [35].

Chronic treatment with apocynin decreased oxidative damage in both Wistar (56.5 ± 3.3, n = 5) rats and SHR (59.8 ± 2.1, n = 5), without differences between untreated and treated rats. Treatment with apocynin prevented oxidative stress in the kidney of SHR because it reduced p47phox translocation and 8-OHdG immunostaining [27]. Apocynin has been described to inhibit phorbol myristate acetate (PMA)-stimulated O2− production in human leucocytes and hepatic lipid peroxidation induced by intermittent hypoxia in rats [23,36]. Based on these data, treatment with apocynin effectively reduces systemic ROS in SHR.

3.3. Apocynin reduces MAP, HR, SBP, and DBP values in SHR

Several factors can increase BP in SHR, including oxidative stress. Small alterations in BP levels in normotensive rats occur in the first weeks after birth [37]. In SHR, BP increases mainly between the 3rd and 10th week of life, and its level is about 30% higher than the BP level in normotensive rats [38]. According to Dickhout and Lee [39], HR in SHR is already increased in the first weeks of life as compared to normotensive rats. Based on these observations, we initiated treatment of SHR with apocynin in the fourth week (22 days old) and continued it until the tenth week to prevent development of hypertension.

MAP, HR, SBP, and DBP were higher in SHR as compared to normotensive Wistar rats (Fig. 3A, B, C and D, respectively). Moreover, SBP and DBP (Fig. 3C and D) in SHR treated with apocynin (SBP, 148.2 ± 1.0; DBP, 100.1 ± 0.8 mmHg/min; n = 7) were lower than SBP and DBP in untreated SHR (SBP, 180.6 ± 2.4; DBP, 132.9 ± 0.9 mmHg/min; n = 7). At the end of the 6th week of treatment, MAP was significantly reduced in treated SHR (129.5 ± 2.2 mmHg, n = 9) as compared to the untreated group (160.3 ± 2.7 mmHg, n = 9) (Fig. 3A), and HR was lower in treated SHR (318.8 ± 5.8 bpm, n = 9) than in untreated SHR (362.7 ± 8.3 bpm, n = 9) (Fig. 3B). In contrast, treated and untreated Wistar rats did not differ in terms of SBP or DBP (treated rats: SBP, 121.4 ± 1.4; DBP, 87.7 ± 1.0 mmHg/min; n = 7; untreated rats: SBP, 123.7 ± 1.2; DBP, 85.9 ± 1.3 mmHg/min; n = 7). In normotensive Wistar rats, treatment with apocynin did not alter MAP (untreated, 108.3 ± 1.3; treated, 108.0 ± 1.3 mmHg, n = 9, Fig. 3A) or HR (untreated, 312.0 ± 3.4; treated, 314.2 ± 4.3 bpm, n = 9, Fig. 3B).

Other researchers obtained similar results, treatment with apocynin reduced, but did not normalize SBP values in hypertensive Ang II-infused mice, and this treatment did not affect SBP in normotensive mice [34].

Considering that apocynin significantly affects SBP and MAP in SHR, chronic treatment with 30 mg/kg apocynin from the 4th to 10th week of life could prevent the development of higher blood pressure levels in this experimental model of hypertension.

Our data can be compared to previous results showing that treatment with apocynin at the same dose used in our study (30 mg/kg/day orally), started at the sixth week of age, and maintained for six consecutive
weeks reduced SBP in SHR at the end of the treatment, but less effectively [28]. The difference between literature results and our data could be associated with the period of treatment. Here, treatment with apocynin began before BP alteration (at the 4th week), whilst Pechanová et al. [28] initiated treatment after observing that BP increased in SHR (at the 6th week). Hypertension was also prevented with 33 mg/kg apocynin in hypertensive 2 Kidney-1Clip rats [40] and with 1.5 mmol/L apocynin in fructose-induced hypertension [41] and DOCA-salt rats [42]. Apocynin significantly reduced but did not normalize the higher SBP observed in Ang II-infused mice [34].

Taken together, these data suggest that decreased ROS generation induced by treatment with apocynin might have a critical role in the antihypertensive effect of apocynin observed in different experimental models of hypertension including SHR.

3.4. Apocynin increases the ACh hypotensive effect but does not alter the SNP effect in SHR

Initially, we investigated whether treatment with apocynin could alter the in vivo ACh and SNP effects in SHR. Dose-dependent hypertensive responses to ACh in untreated SHR (2 μg/kg: −13.8 ± 1.3; 10 μg/kg: −22.6 ± 1.8; %ΔMAP; n = 7) were lower than the responses obtained in Wistar rats (2 μg/kg: −28.7 ± 1.3; 10 μg/kg: −39.4 ± 2.0; %ΔMAP; n = 7) (Fig. 4A). Apocynin did not alter the ACh hypertensive effect in Wistar rats (2 μg/kg: treated, −29.4 ± 2.3; untreated, −28.7 ± 1.3; 10 μg/kg: treated, −40.1 ± 2.2; untreated, −39.4 ± 2.0; %ΔMAP; n = 7) (Fig. 3A). However, responses to ACh were greater in treated SHR (2 μg/kg: −31.3 ± 2.6; 10 μg/kg, −41.5 ± 1.5; %ΔMAP; n = 7) as compared to untreated SHR (2 μg/kg: −13.8 ± 1.3; 10 μg/kg: −22.6 ± 1.8; %ΔMAP; n = 7) (Fig. 4A). The in vivo ACh effects were similar in treated SHR and Wistar rats (Fig. 4A). Apocynin increased the hypotensive responses to ACh (Fig. 4A) in SHR, as observed in 2K-1C rats treated with apocynin or tempol [40] or in fructose-induced hypertensive rats treated with apocynin [37].

The SNP hypotensive effect was dose-dependent in all the studied groups. SNP responses in untreated Wistar rats (10 μg/kg: −20.2 ± 1.7; 35 μg/kg: −31.1 ± 1.1; %ΔMAP; n = 7) and SHR (10 μg/kg: −19.1 ± 1.1; 35 μg/kg: −30.4 ± 1.4; %ΔMAP; n = 7) did not differ (Fig. 4B). Treatment with apocynin did not alter the hypotensive effects of SNP doses in normotensive Wistar rats (10 μg/kg: −21.0 ± 1.5; 35 μg/kg: −32.5 ± 2.0; %ΔMAP; n = 7) or in SHR (10 μg/kg: −22.5 ± 1.3; 35 μg/kg: −33.6 ± 1.3; %ΔMAP; n = 7) (Fig. 4B). Previous studies demonstrated that in vivo SNP responses were higher in SHR than in Wistar rats, suggesting that NO donors affected hypertensive rats to a larger extent [43–45]. However, these studies did not consider differences in basal MAP between normotensive and hypertensive rats before administration of SNP doses. Expression of these results in %ΔMAP did not reveal increased SNP effects in SHR. In our study, the hypotensive responses to SNP did not change in SHR or in Wistar rats treated with apocynin (Fig. 4B), confirming previous results [41,46].

3.5. Apocynin restores the ACh vasodilator effect on mesenteric resistance arteries and aorta in SHR

ACh induced concentration-dependent relaxation in mesenteric resistance arteries (2nd and 3rd branches) of untreated Wistar rats (Emax: 91.5 ± 1.3%, n = 5; pD2: 7.8 ± 0.04, n = 5, Fig. 5A). In the case of mesenteric arteries of Wistar rats, treatment with apocynin did
not alter Emax or pD2 values (treated, Emax: 96.0 ± 1.8%, n = 5; pD2: 7.4 ± 0.1, n = 5).

Compared to Wistar rats, ACh vasodilator effects were impaired in mesenteric resistance arteries of untreated SHR (Emax: 72.1 ± 2.9%, n = 5; pD2: 7.5 ± 0.2, n = 5), which suggested endothelial dysfunction. Endothelial dysfunction has been associated with hypertension[11] and is characterized by an imbalance in NO synthesis and/or degradation[47]. Considering the results described above, we hypothesized that treatment with apocynin restores endothelial function in SHR. Treatment with apocynin increased Emax and pD2 of the relaxation curves obtained for ACh (untreated, Emax: 72.1 ± 2.9%, n = 5; pD2: 7.5 ± 0.2, n = 5; treated, Emax: 97.7 ± 0.8%, n = 5; pD2: 8.3 ± 0.08, n = 5) in mesenteric resistance arteries of SHR (Fig. 5A). The ACh Emax and pD2 values obtained in mesenteric rings of treated SHR and untreated Wistar rats were similar (Fig. 5A). Apocynin also restored ACh effects in mesenteric resistance arteries of Ang II-infused mouse[34].

Treatment with apocynin led to similar results for SHR aorta (Fig. 5B). The ACh concentration-effect curves shifted to the right in untreated SHR aorta (pD2: −7.15 ± 0.10; Emax: 109.40 ± 3.88%) as compared to untreated Wistar rat aorta (pD2: −8.51 ± 0.10; Emax: 102.50 ± 2.60%) (Fig. 5B). Apocynin-treated SHR aortas had increased sensitivity to ACh (pD2: −8.22 ± 0.16; Emax: 106.1 ± 4.45%), as observed in Fig. 5B. These results agree with the results demonstrated by Wind et al.[6] in aged SHR aortas. We can suggest that apocynin improves the endothelial function of resistance and conductance arteries in SHR.

3.6. SNP-induced relaxation increases in resistance artery rings containing endothelium of SHR treated with apocynin

In mesenteric resistance artery rings of Wistar rats treated with apocynin or not, the presence of endothelium (untreated, pD2: 7.3 ± 0.2, n = 6; treated, pD2: 7.2 ± 0.2, n = 5) increased SNP potency as compared to rings with no endothelium (untreated, pD2: 6.4 ± 0.1, n = 5; treated, pD2: 6.1 ± 0.1, n = 4). SNP induces NO production by NOS activation in EC of normotensive rat aorta[48]. Bonaventura et al. [48] demonstrated that SNP activates voltage-dependent calcium channels in EC, consequently activating constitutive NOS and increasing NO production, which contributes to relaxation induced by SNP.

The SNP Emax and pD2 values were similar in intact rings of treated and untreated Wistar rats. Rings without endothelium also presented similar pD2 and Emax values (Fig. 5A). Based on these results, apocynin does not alter the SNP effect in mesenteric resistance arteries of Wistar rats.
For untreated resistance vessels in SHR, the presence of endothelium (7.4 ± 0.1, n = 5) increased SNP potency in resistance artery rings as compared to rings without endothelium (6.2 ± 0.2, n = 5). Treated vessels in SHR led to the same results (E+: 8.1 ± 0.1, n = 5; E−: 6.7 ± 0.1, n = 5). Moreover, SNP potency increased significantly in resistance vessels with endothelium in SHR treated with apocynin as compared to the other groups (Fig. 6B). In SHR, treatment with apocynin increased eNOS expression in EC (as demonstrated in Fig. 9), so SNP potency was greater in intact resistance vessels from treated SHR as compared to intact resistance vessels from untreated SHR.

3.7. Apocynin increases endothelial modulation during contractile response induced by PE in aorta of SHR

PE induced contraction in aortic rings of Wistar rats and SHR in a concentration dependent-way (Fig. 7A and B). In aorta of Wistar rats, Emax of contractile response induced by PE was higher in denuded aorta (3.59 ± 0.2 g, n = 5) than in aorta with endothelium (2.75 ± 0.1 g, n = 5). Treatment with apocynin did not change Emax values in denuded (2.77 ± 0.2 g, n = 6) or intact aortas (2.83 ± 0.1 g, n = 6) (Fig. 7A).

Aortic rings without endothelium of untreated (Emax: 4.38 ± 0.1 g, n = 4) or treated SHR (Emax: 3.25 ± 0.4 g, n = 5) showed increased PE Emax values as compared to aortic rings with endothelium of untreated (Emax: 3.38 ± 0.2 g, n = 5) or treated (Emax: 1.93 ± 0.3 g, n = 5) SHR (Fig. 7B). Interestingly, endothelium blunted the PE concentration-response curves in aortic rings of SHR treated with apocynin. This effect did not occur in intact aorta of untreated SHR.

Until now, results from in vivo and in vitro experiments have shown that treatment with apocynin can reverse impaired NO bioavailability in SHR. Based on these results, we tried to understand the mechanisms involved in the effects of apocynin on SHR.

3.8. Apocynin increases [Ca2+]c and [NO]c and decreases reactive oxygen species [ROS]c in aortic endothelial cells (AEC) of SHR

In this study, the most interesting results concern the effect of apocynin on Ca2+, NO, and ROS levels in SHR AEC.
SHR AEC had reduced baseline [Ca$^{2+}$]c (Fig. 8A, 1,743 ± 31.0 U, n = 5) as compared with Wistar rat AEC (3148 ± 287.5 U, n = 5). AEC of treated SHR had higher baseline [Ca$^{2+}$]c (2916 ± 69.0 U, n = 5). ACh stimulation increased [Ca$^{2+}$]c in all groups, but this effect was more pronounced in AEC of treated SHR (6005 ± 189.2 U, n = 5) as compared to AEC of untreated SHR (2259 ± 108.0 U, n = 5). However, ACh increased [Ca$^{2+}$]c in AEC of treated SHR (6320 ± 345.0 U, n = 5) twice as much as compared to [Ca$^{2+}$]c in AEC of untreated SHR.

Baseline [NO]c (Fig. 8B) in AEC of untreated SHR (2057 ± 81.0 U, n = 5) was lower than baseline [NO]c in AEC of Wistar rats (3180 ± 220.0 U, n = 5) or treated SHR (3368 ± 276.0 U, n = 5). AEC of Wistar rats and treated SHR did not differ in terms of [NO]c. ACh (1 μmol/L) increased [NO]c in AEC of Wistar rats (4526 ± 263.0 U, n = 5) but not in AEC of untreated SHR (2259 ± 108.0 U, n = 5). However, ACh increased [NO]c in AEC of treated SHR (6320 ± 345.0 U, n = 5) twice as much as compared to [NO]c in AEC of untreated SHR.

![Fig. 8. Fluorescence intensity, in arbitrary units, of (A) FLUO 3-AM, (B) 4,5-diaminofluorescein diacetate (DAF-2 DA), and (C) dihydroethidium (DHE) in aortic endothelial cells of untreated Wistar rats (white bars), untreated SHR (gray bars), and treated SHR (black bars) in basal conditions and stimulated with acetylcholine (ACh, 1 μmol/L). Values represent the mean ± SEM of the results, n = 5. *p < 0.05 untreated SHR versus other groups; #p < 0.05 ACh stimulation versus basal in untreated Wistar rats; †p < 0.05 ACh stimulation versus basal in untreated SHR; ‡p < 0.05 ACh stimulation versus basal in treated SHR (ANOVA).](image)

SHR AEC had reduced baseline [Ca$^{2+}$]c (Fig. 8A, 1,743 ± 31.0 U, n = 5) as compared with Wistar rat AEC (3148 ± 287.5 U, n = 5). AEC of treated SHR had higher baseline [Ca$^{2+}$]c (2916 ± 69.0 U, n = 5). ACh stimulation increased [Ca$^{2+}$]c in all groups, but this effect was more pronounced in AEC of treated SHR (6005 ± 189.2 U, n = 5) as compared to AEC of Wistar rats (4918 ± 284.2 U, n = 5) or untreated SHR (3787 ± 280.1 U, n = 5) (Fig. 8A).

Baseline [NO]c (Fig. 8B) in AEC of untreated SHR (2057 ± 81.0 U, n = 5) was lower than baseline [NO]c in AEC of Wistar rats (3180 ± 220.0 U, n = 5) or treated SHR (3368 ± 276.0 U, n = 5). AEC of Wistar rats and treated SHR did not differ in terms of [NO]c. ACh (1 μmol/L) increased [NO]c in AEC of Wistar rats (4526 ± 263.0 U, n = 5) but not in AEC of untreated SHR (2259 ± 108.0 U, n = 5). However, ACh increased [NO]c in AEC of treated SHR (6320 ± 345.0 U, n = 5) twice as much as compared to [NO]c in AEC of untreated SHR.

![Fig. 8. Fluorescence intensity, in arbitrary units, of (A) FLUO 3-AM, (B) 4,5-diaminofluorescein diacetate (DAF-2 DA), and (C) dihydroethidium (DHE) in aortic endothelial cells of untreated Wistar rats (white bars), untreated SHR (gray bars), and treated SHR (black bars) in basal conditions and stimulated with acetylcholine (ACh, 1 μmol/L). Values represent the mean ± SEM of the results, n = 5. *p < 0.05 untreated SHR versus other groups; #p < 0.05 ACh stimulation versus basal in untreated Wistar rats; †p < 0.05 ACh stimulation versus basal in untreated SHR; ‡p < 0.05 ACh stimulation versus basal in treated SHR (ANOVA).](image)

Baseline [NO]c (Fig. 8B) in AEC of untreated SHR (2057 ± 81.0 U, n = 5) was lower than baseline [NO]c in AEC of Wistar rats (3180 ± 220.0 U, n = 5) or treated SHR (3368 ± 276.0 U, n = 5). AEC of Wistar rats and treated SHR did not differ in terms of [NO]c. ACh (1 μmol/L) increased [NO]c in AEC of Wistar rats (4526 ± 263.0 U, n = 5) but not in AEC of untreated SHR (2259 ± 108.0 U, n = 5). However, ACh increased [NO]c in AEC of treated SHR (6320 ± 345.0 U, n = 5) twice as much as compared to [NO]c in AEC of untreated SHR.

Fig. 9. Typical blots and protein expression, in arbitrary units, of (A) soluble guanylate cyclase alfa subunit (sGC-α), (B) soluble guanylate cyclase beta subunit (sGC-β), and (C) endothelial nitric oxide synthase (eNOS) in aortic homogenates of untreated (white bars) and treated (black bars) Wistar rats and SHR. Values represent the mean ± SEM of the results, n = 5. *p < 0.05 untreated SHR versus other groups; #p < 0.05 ACh stimulation versus basal in untreated Wistar rats; &p < 0.05 ACh stimulation versus basal in untreated SHR; %p < 0.05 ACh stimulation versus basal in treated SHR (ANOVA).
AEC of untreated SHR (2880 ± 155.0 U, n = 5) had higher baseline [ROS] than AEC of Wistar rats (1902 ± 127.0 U, n = 5). Interestingly, AEC of treated SHR presented lower [ROS] than AEC of untreated SHR and similar [ROS] to Wistar rats (2090 ± 174.0 U, n = 5). ACh did not alter [ROS] in AEC of treated SHR (1896 ± 77.0 U, n = 5), untreated SHR (2858.0 ± 256.0 U, n = 5), and Wistar rats (1822 ± 95.0 U, n = 5).

Fig. 10. Typical blots and protein expression, in arbitrary units, of (A) NAD(P)H oxidase isoform 1 (NOX1), (B) NOX organizer 1 (NOXO-1), (C) NAD(P)H oxidase isoform 2 (NOX2), (D) NOX organizer 2 (p47phox), and (E) NAD(P)H oxidase isoform 4 (NOX4) in aortic homogenates of Wistar rats (white bars), untreated SHR (gray bars), and treated SHR (black bars). Values represent the mean ± SEM of the results. *p < 0.05 untreated SHR versus other groups (ANOVA).
pared to aorta of untreated SHR (Fig. 10D; 0.98 ± 0.11, n = 5). Aortas of treated with apocynin had reduced NOX2 expression (0.16 ± 0.04, 0.07, n = 5) and treated (1.20 ± 0.07, n = 5, Fig. 10E) SHR did not change as compared to aorta of Wistar rats (untreated Wistar: 0.12 ± 0.03, n = 5). Hence, NOX4 may be not be involved in hypertension or in any apocynin effect.

4. Conclusions

This study has demonstrated that apocynin can reduce blood pressure and prevent development of endothelial dysfunction in SHR. According to our results, treatment with apocynin effectively normalizes high systemic and cellular ROS in SHR, reaching the physiological levels observed in Wistar rats. Apocynin increases Ca2+ and NO the concentration in aortic endothelial cells and eNOS expression in aorta of SHR, suggesting increased eNOS activity. Moreover, apocynin returns expression of NOX2 and its subunit p47phox to normal levels in aorta of SHR.

Conflict of interest

The authors declare that there are no conflicts of interest.

Funding

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process numbers 2011/04619-0, 2011/19859-6, 2012/01733-9, and 2011/20998-0.

Acknowledgments

The authors thank Prof. Dr. João Carlos Callera for allowing the use of the equipment for direct recording of blood pressure (in vivo experiments) and Prof. Dr. Tereza Cristina Cardoso Silva for allowing the use of the equipment for direct recording of blood pressure (in vivo experiments). The authors declare that there are no conflicts of interest.

References

