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The aim of this study was to estimate genetic parameters for scrotal circumference at 365
(SC365) and 450 (SC450) days of age, age at first calving (AFC), ribeye area (REA), backfat
(BF) thickness, and rump fat (RF) thickness, in order to provide information on potential
traits for Nelore cattle breeding program. Genetic parameters were estimated using the
Average Information Restricted Maximum Likelihood method in single- and multitrait
analyses. Four different animal models were tested for SC365, SC450, REA, BF, and RF in

g?s' V:;Jf; indicus single-trait analyses. For SC365 and SC450, the maternal genetic effect was statistically
Heritability significant (P < 0.01) and was included for multitrait analyses. The direct heritability

estimates for SC365, SC450, AFC, REA, BF, and RF were equal to 0.31, 0.38, 0.24, 0.32, 0.16,
and 0.19, respectively. Maternal heritability for SC365 and SC450 was equal to 0.06 and
0.08, respectively. The highest genetic correlations were found among the scrotal cir-
cumferences. Testing for the inclusion of maternal effects in genetic parameters estimation
for scrotal circumference should be evaluated in the Nelore breeding program, mostly for
correctly ranking the animal’'s estimated breeding values. Similar heritability estimates
were observed for scrotal circumference, as well as favorable genetic correlations of this
trait with AFC and carcass traits. Thus, scrotal circumference measured at 365 days of age
could be a target trait for consideration in the Nelore selection index in order to improve
most of the traits herein analyzed.
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1. Introduction genetic variability, which results in a slow response to
selection [2-4]. Thus, breeding programs have been
considering reproductive measures taken in males (i.e.,

scrotal circumference) in the selection criteria due to

In beef cattle, the reproductive performance of the
cows, which is represented by the number of calves born

annually, is one of the main economic factors affecting
the production system [1]. The genetic improvement of
reproductive traits in females is generally challenging due
to difficulties in measuring the traits as well as to the low
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moderate to high heritability estimates and ease of
measurement [5].

Scrotal circumference is indicative of fertility and
development in beef cattle, due to favorable genetic cor-
relations with reproductive traits (semen volume, age at
puberty in males and related females, and heifer preg-
nancy) [6-8] and production traits (body weight and
longissimus muscle area) [5,9,10].
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The carcass traits, such as ribeye area (REA) and fat
thickness, are directly related to the quality of meat
products, which may influence in the financial revenue
received by the producers [11]. Animals with early fat
deposition could be in the final stages of development,
showing evidence of reproductive maturity. As observed
by Foster and Nagatani [12], fat deposition could be
assigned to the production of hormones, which triggers
the folliculogenesis process. Thus, the aim of our study
was to estimate genetic parameters for male and female
reproductive traits and carcass traits in order to provide
information on potential traits for Nelore cattle breeding
program.

2. Material and methods
2.1. Animals and data set

The data used in this study were provided by the Nelore
Genetic Improvement Program (Nelore Brazil), coordinated
by the National Association of Breeders and Researchers.
Animals were raised in an extensive production system and
kept on pastures with mineral supplementation. Weaning
occurred at around 6 to 8 months of age. The reproductive
management consisted of a breeding season lasting from
90 to 120 days, using artificial insemination or controlled
natural breeding.

The traits analyzed were scrotal circumference at 365
(SC365) and 450 (SC450) days of age, age at first calving
(AFC), REA, subcutaneous backfat (BF) thickness measured
between the 12th and 13th ribs, and rump fat (RF). The raw
data consist of 23,129 (SC365), 25,431 (SC450), 17,586
(AFC), and 11,578 (REA, BF, and RF) animals with pheno-
typic information. To measure the REA, BF, and RF, ultra-
sound images were obtained using the ALOKA 500 V
device, with a 3.5 MHz linear probe measuring 17.2 cm and
an acoustic coupler, in conjunction with an image capture
system (Blackbox, Biotronics Inc., Ames, IA, USA). These
images were subsequently interpreted by the laboratory
responsible for data quality (Aval Servigos Tecnolégicos S/
S). These measurements were carried out at the average age
of 546 days.

2.2. Fixed effects

The general linear model procedure of the Statistical
Analysis System Software (SAS 9.1 SAS Institute, Cary, NC,
USA) was used to define the fixed effects. The significant
effects (P < 0.05) were used in the genetic parameters
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analyses. Sires with less than three offspring and manage-
ment groups with less than five animals were excluded
from the data set.

For SC365 and SC450, the significant effects (P < 0.05)
considered were farm (20 levels), birth year (from 1998 to
2008), birth season (two levels), management group at
365 days of age (for SC365), and management group at
450 days of age (for SC450). For AFC, the significant effects
(P < 0.05) considered were animals born in the same year
(from 1998 to 2006) and season and at the same farm (21
levels). For the carcass traits (REA, BF, and RF), the effects of
sex, birth year (from 2000 to 2008), birth season, and
management group at 450 days were statistically signifi-
cant (P < 0.05). The age of the animal at ultrasound mea-
surement was statistically significant (P < 0.05) and was
considered as a linear and quadratic covariate for REA, BF,
and RFE.

The birth season was defined as rainy season (animals
born between October and March) and dry season (animals
born between April and September). The number of man-
agement groups at 365 and 450 days of age were 187 and
194, respectively. The observations with standardized re-
siduals above 3.5 or below —3.5 were excluded. The final
number of records is described in Table 1.

2.3. Genetic parameters

Genetic parameters and standard errors were estimated
using the Average Information Restricted Maximum
Likelihood method under an animal model (single-trait and
multitrait analyses). The total number of animals in the
relationship matrix was 81,579. Analyses were conducted
using the software WOMBAT [13] considering the conver-
gence criterion of 10~°. The general statistical model was:

y = XB+Za+ Mm + Wpe +e

in which y is the vector of observations for each trait; § is
the vector of all fixed effects and covariate; a is the vector of
random additive genetic direct effect; m is the vector of
random maternal genetic effect; pe is the vector of random
maternal permanent environment effects; e is the vector of
random residual effects; X, Z, M, and W are the incidence
matrixes related to 8, a, m, and pe, respectively.

Four different models were evaluated for SC365, SC450,
REA, BF, and RF in single-trait analyses. The genetic
covariance between the direct and maternal effects and the
residual covariances between traits measured on opposite
sex were not estimated [ 14].

Number of animals, means and standard deviations, minimum and maximum values, and coefficient of variation (CV) for scrotal circumference at 365
(SC365) and 450 (SC450) days of age, age at first calving (AFC), ribeye area (REA), subcutaneous backfat thickness (BF), and rump fat (RF) in Nelore cattle.

Trait Animals Sires Dams Mean + standard deviation Minimum Maximum cv

SC365 (mm) 17,542 704 12,338 204 + 22 127 294 10.89
SC450 (mm) 17,542 704 12,338 236 + 30 136 354 12.70
AFC (mo) 14,069 858 10,931 35.19 + 5.03 21.00 49.00 14.29
REA (cm?) 9776 405 7256 52.47 + 10.02 22.37 103.55 19.10
BF (mm) 9776 405 7256 242 +0.82 0.40 6.60 33.88
RF (mm) 9776 405 7256 3.01 +1.21 0.40 10.80 40.20
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The models are defined as follows:

e Model 1 (M1): additive genetic direct and residual
effects;

e Model 2 (M2): additive genetic direct, maternal per-
manent environment, and residual effects;

e Model 3 (M3): additive genetic direct, maternal genetic
and residual effects; and

e Model 4 (M4): additive genetic direct, maternal genetic,
maternal permanent environment and residual effects.

For AFC, only the M1 model was performed. The likeli-
hood ratio test (LRT) was used to evaluate the significance
of the random effects included in the model and to define
an adequate model for multitrait analyses. The LRT is based
on a mixed chi-squared (x?) distribution of k—1 and k de-
grees of freedom under the null hypothesis of no difference
between the models, with k being the difference between
the parameters in the models [15]. The level of significance
of 1% was considered in this study.

3. Results

The descriptive statistics for SC365, SC450, AFC, REA, BF,
and RF are presented in Table 1. The genetic parameters
obtained in single-trait analyses and the LRT tests are
presented in Table 2. For SC365 and SC450, a reduction in
—2 Log likelihood was observed when the maternal genetic
and permanent environment effects were included in the
model. Results indicated that the most appropriate model
for SC365 and SC450 genetic evaluation was M3. For scrotal
circumference, the comparison between the M3 and M4

Table 2

models had no significant difference (P > 0.01). The most
fitting model for REA, BF, and RF was M1, which considers
the additive direct genetic and residual effects.

Additional analyses were carried out considering the
Spearman correlation for the estimated breeding values
(EBVs) obtained from models M1 and M3 for SC365 and
SC450, respectively. For SC365, the Spearman correlation
between the EBVs presented perfect ranking correlation
(estimate equal to one), whereas SC450 presented corre-
lation equal to 0.96. For the top 1% animals (439 animals),
the correlation for SC450 was equal to 0.77.

The estimates of genetic parameters obtained in the
multitrait analysis are presented in Table 3. The direct and
maternal heritability estimates obtained in single-trait
analyses were similar to the multitrait analyses. High
direct heritability estimate was observed for SC450,
followed by REA and SC365. Standard errors varied from
0.01 to 0.03 for direct and maternal heritability estimates.
Genetic correlations ranged from 0.01 to 0.94 in the mul-
titrait analysis. The highest genetic correlations were
observed between SC365 and SC450 (0.94 + 0.01) and
between RF and BF (0.59 + 0.07). Negative genetic corre-
lations between AFC and the other traits were observed.
Genetic correlations with low confidence were observed
between RF with SC365, SC450, and AFC and between AFC
with REA.

4. Discussion

The overall means for SC365, SC450, and AFC found by
Grossi et al. [2], Yokoo et al. [9], and Barrozo et al. [16] in
Nelore cattle, respectively, were in agreement with our

Genetic parameters obtained by means of single-trait analysis for scrotal circumference at 365 (SC365) and 450 (SC450) days of age, age at first calving (AFC),
ribeye area (REA), subcutaneous backfat thickness (BF), and rump fat (RF) in Nelore cattle.

Traits Model h? + SE h2, £+ SE c? +SE —2LogL LRT
M2-M1 M3-M1 M4-M2 M4-M3
SC365 M1 0.45 + 0.02 — — 116,085.29 11.68% 99.79° 88.11° 0.00(")
M2 0.40 + 0.02 — 0.04 + 0.01 116,073.61 — — — —
M3 0.36 + 0.03 0.07 + 0.01 — 115,985.50 — — — —
M4 0.36 -+ 0.03 0.07 + 0.01 0.00 + 0.01 115,985.50 — — — —
SC450 M1 0.49 + 0.02 — — 125,091.55 11.20° 107.69° 96.49° 0.00()
M2 0.44 + 0.03 — 0.04 + 0.01 125,080.34 — — — —
M3 0.38 £ 0.02 0.08 + 0.01 — 124,983.85 — — — —
M4 0.38 + 0.01 0.08 + 0.01 0.01 + 0.01 124,983.85 — — — —
AFC M1 0.25 + 0.02 — — — — — — —
REA M1 0.31 & 0.03 — — 43,858.52 0.00() 3.82(n9) 3.82(n) 0.00()
M2 0.31 + 0.03 — 0.00 -+ 0.00 43,858.52 — — — —
M3 0.29 + 0.03 0.02 + 0.01 — 43,854.70 — — — —
M4 0.29 + 0.03 0.02 + 0.01 0.00 =+ 0.00 43,854.70 — — — —
BF M1 0.18 + 0.03 - - —4069.75 0.00) 0.08) 0.08() 0.00(")
M2 0.18 + 0.03 — 0.01 + 0.01 —4069.75 — — — —
M3 0.18 + 0.03 0.003 + 0.01 — —4069.83 — — — —
M4 0.17 + 0.02 0.003 + 0.01 0.00 -+ 0.00 —4069.83 — — — —
RF M1 0.19 + 0.03 — — 3233.87 0.00") 0.02") 0.02() 0.00(")
M2 0.19 + 0.02 — 0.00 =+ 0.00 3233.87 — — — —
M3 0.19 + 0.02 0.001 + 0.01 — 3233.85 — — — —
M4 0.19 + 0.03 0.001 + 0.01 0.00 -+ 0.00 3233.85 — — — —

2 Significantly different from zero (LRT SX(Z]%) ); ™)Not significantly different from zero (LRT >X(21%)): Ml=y =XB+Za+e;M2=y = XB +Za+ Wpe +¢e;
M3=y = XB+Za+Mm+e;M4d=y = XB+Za+ Mm + Wpe + e; h? = direct heritability estimate; h2, = maternal heritability estimate; c> = proportion of
maternal permanent environmental variance to total variance; —2LogL = two times the logarithm of the likelihood; LRT = likelihood ratio test;

SE = standard error; X3y = 6.63.
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Table 3

Direct and maternal heritability estimates (diagonal) for scrotal circumference at 365 (SC365) and 450 (SC450) days of age, age at first calving (AFC), ribeye
area (REA), subcutaneous backfat thickness (BF), and rump fat (RF), and their respective standard errors (+) obtained in multitrait analysis.

Trait SC365 SC450 AFC REA BF RF
SC365 0.31 + 0.02° 0.94 + 0.01 —0.50 + 0.06 0.33 + 0.07 0.31 + 0.09 0.05 + 0.09
0.06 + 0.01°
SC450 0.78 + 0.01 0.38 + 0.03° —0.46 + 0.06 0.31 + 0.07 0.25 + 0.09 0.01 + 0.09
0.08 + 0.01°
AFC — — 0.24 + 0.02° —0.12 + 0.08 —0.29 + 0.10 —0.08 + 0.09
REA 0.14 + 0.04 0.23 + 0.04 —0.04 + 0.05 0.32 + 0.03% 0.36 + 0.08 0.23 + 0.08
BF —0.01 +0.03 0.01 &+ 0.03 —0.16 & 0.04 0.18 & 0.02 0.16 & 0.02° 0.59 + 0.07
RF 0.02 + 0.03 0.02 + 0.04 —0.20 + 0.04 0.19 + 0.02 0.48 + 0.01 0.19 + 0.02°

Above and below the diagonals are presented the genetic and environmental correlations, respectively, in Nelore cattle.

2 Direct heritability estimates.

b Maternal heritability estimates; — = residual covariances between traits measured on opposite sex were not estimated.

results (204 mm, 236 mm, and 35 months, respectively).
The overall means for the REA, BF, and RF found in this
study (Table 1) were similar to the results obtained by
Yokoo et al. [9] and Gordo et al. [17].

The maternal genetic effect was tested for scrotal cir-
cumferences and carcass traits (Table 2). Despite of the low
maternal heritability estimates obtained in single-trait and
multitrait analyses for SC365 (0.07 4 0.01 and 0.06 + 0.01)
and SC450 (0.08 + 0.01 and 0.08 + 0.01), these effects were
statistically significant (P < 0.01). According to Crews ]Jr.
and Enns [18], maternal effects could be relatively negli-
gible due to low estimates and the M1 would be the most
practicable and run-time efficient model for analysis of
SC365. The Spearman correlation between the EBVs for
SC450 indicates that the ranking of the animals could be
altered according to the model used for genetic parameters
estimation. Perfect correlation between M1 and M3 was
observed for SC365, indicating that the EBVs may not be
altered in ranking but it could be overestimated if M1 was
chosen for the genetic evaluation.

Regarding the maternal permanent environmental
effect, the presence of cows with a low number of calves in
genetic evaluations may result in confounded effects be-
tween maternal genetic and maternal permanent envi-
ronmental random effects [19]. Thus, the significance
observed between M1 and M2 and between M1 and M3, for
SC365 and SC450, could reflect the maternal structure of
the analyzed data (Table 2). The maternal genetic effect was
confirmed when the significant difference (P < 0.01) was
observed between M2 and M4, for SC365 and SC450.

The direct heritability estimates for SC365, SC450, and
REA were considered moderate (Table 3). Thus, these traits
provided evidence that a substantial proportion of the
variation in these traits is determined by genes of additive
action and could respond to selection. Similar results were
observed by Frizzas et al. [5] for scrotal circumference
measured at 12 and 18 months of age in Nelore cattle.
Terakado et al. [20] obtained direct heritability estimates
for SC365 and SC450 equal to 0.35 and 0.40, respectively.
For REA, Yokoo et al. [9] and Zuin et al. [21] found similar
direct heritability estimates to our results in the Nelore
breed.

Direct and maternal heritability estimates for scrotal
circumference at weaning obtained by Pires et al. [22] were
equal to 0.32 + 0.06 and 0.06 + 0.02, respectively, in Can-
chim beef cattle. For scrotal circumference at yearling age,

these authors found direct heritability estimate of
0.49 + 0.08. For the Angus breed, Morris et al. [23] and
Garmyn et al. [24] estimated direct heritabilities for scrotal
circumference at weaning and yearling age equal to
0.37 4+ 0.06 and 0.46 + 0.08, respectively. For REA, Crews Jr.
etal.[25] and Mao et al. [26] obtained heritability estimates
equal to 0.46 + 0.05 and 0.64 + 0.15 in the Simmental and
Charolais breeds, respectively.

According to Cammack et al. [27], the heritability esti-
mates for female reproductive traits are generally low in
beef cattle. However, Aby et al. [28] highlighted that
reproductive traits are economically important to the pro-
duction system and that the genetic potential of herds
could be slowly enhanced over the years through selection.
The heritability estimate found in our study for AFC was
equal to 0.24 + 0.02. This estimate was higher than most of
the consulted literature for the Nelore breed [4,29-31].
Martinez-Veldzquez et al. [32] and Bernardes et al. [33]
obtained heritability estimates of 0.28 + 0.06 and
0.09 + 0.02 in Angus heifers and Tabapud beef cattle,
respectively.

As the selection process has been conducted over the
years in the Nelore herd (Nelore Brazil Program), the ge-
netic variability is being introduced and precocious heifers
are being selected. A better-controlled environment could
also be affecting the heritability estimate observed for AFC.
The genetic trends from 1988 to 2003 presented by Grossi
et al. [29] indicated significant reduction (P < 0.01) for AFC.
Furthermore, minimum and maximum phenotypic values
for AFC observed by these authors were equal to 27 and
49 months, respectively, whereas values equal to 21 and 49
were observed in our study. However, the overall mean for
this trait remains unaltered [2,11,16].

Low direct heritability estimates were observed for BF
and RF (Table 3); thus, slow response to direct selection for
these traits would be expected. This result could be indic-
ative of low genetic variability for these traits when the
ultrasound measures were taken, which suggests that
Nelore cattle present late fat deposition; Yokoo et al. [9] and
Zuin et al. [21] found higher heritability estimates for BF
and RF, equal to 0.50 and 0.21, and 0.39 and 0.23, respec-
tively. For Angus and Brangus breeds, Kemp et al. [34] and
Moser et al. [35] obtained heritability estimates for BF equal
to 0.39 and 0.11 & 0.03, respectively. Reverter et al. [36]
observed heritability estimates for RF data obtained in
abattoirs equal to 0.44 and 0.08 in Angus and Hereford
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breeds. The same authors estimated the heritability for RF
measured by ultrasound in bulls and heifers of Angus and
Hereford breeds, which was equal to 0.51 and 0.75, and
0.25 and 0.37, respectively.

The genetic correlations between AFC and REA and be-
tween RF with SC365, SC450, and AFC presented high
standard errors (Table 3), indicating no reliability for these
estimates and no linear association among the traits. A high
genetic correlation was observed between SC365 and
SC450 (094 + 0.01), which means that the genes of
addictive action that are acting in younger ages are still
acting in later ages. Boligon et al. [10] and Yokoo et al. [37]
observed a high genetic correlation between scrotal cir-
cumferences measured at different ages and suggested that
adequate response to selection would be achieved if post-
weaning scrotal circumferences are used.

Favorable genetic correlations were observed between
the scrotal circumferences and AFC (Table 3), which
indicates a common genetic background that controls these
traits. Evidence of gonadotrophic hormones acting on male
and female physiological development and reproductive
activity has been reported by Land [38]. According to
Lunstra et al. [39], animals with higher scrotal circumfer-
ence could achieve puberty earlier. Furthermore, the hor-
monal background which promotes the testicular
development in males is also acting in the ovarium devel-
opment in females [40]. Similar results were observed by
Grossi et al. [2] for the genetic correlations between AFC
with SC365 and SC450. For genetic correlation between
AFC and scrotal circumference at 550 days of age, Pereira
et al. [41] found estimates which varied from —0.23 to
—0.29. In addition, Santana et al. [30] highlighted that
scrotal circumference measures obtained after 440 days of
age presented higher genetic correlations with AFC.

Moderate to low genetic correlations were obtained
between scrotal circumferences with REA and BF; however,
estimates were favorable (Table 3). Thus, selection for
SC365 or SC450 would promote slow improvement in
carcass traits. Yokoo et al. [37] found similar results for
these traits and suggested the existence of low pleiotropic
effects. Low genetic correlations between the described
traits were observed by Barbosa et al. [42] and Marques
et al. [43] in the Nelore breed.

The genetic correlation between AFC and BF may indi-
cate that fat deposition is a requirement for calving per-
formance. One of the factors which influence the onset of
early estrus is the fat deposition, considering that the hy-
pothalamus is programmed via the Leptin, which is a fat-
derived hormone [12]. According to Cunningham et al.
[44], Leptin has the potential to act as a metabolic signal to
indicate that the energy reserves are sufficient for initiating
the onset of puberty and reproduction. Caetano et al. [11]
observed a high genetic correlation between AFC and BF
and suggested that animals with higher RF present early
carcass finishing, which may influence the sexual precocity.

Carcass traits presented genetic correlations varying
from 0.23 £ 0.08 to 0.59 & 0.07 (Table 3), indicating that
selection for any of these traits would benefit the others.
One of the first stages of animal’s growth is muscular
development, followed by fat deposition [45]. Thus,
animals with early muscular development could be

precocious in fat deposition and present better carcass
quality. Zuin et al. [21] estimated genetic correlations
between REA and BF, REA and RF, and BF and RF equal to
0.15, 0.09, and 0.64, respectively. Similar results were found
for the same traits by Lima Neto et al. [46] and Yokoo et al.
[9]. High genetic correlation between BF and RF was
expected because both have similar tissue features and are
largely determined by the same sets of genes with additive
action.

4.1. Conclusions

Testing for the inclusion of maternal effects in genetic
parameter estimation for scrotal circumference should be
evaluated in the Nelore breeding program, mostly for
correctly ranking the animal’s EBVs. Similar heritability
estimates were observed for scrotal circumferences, as well
as moderate and favorable genetic correlations of this trait
with AFC and carcass traits. Thus, scrotal circumference
measured at 365 days of age would be a target trait to be
considered in the Nelore selection index in order to
improve most of the traits herein analyzed.
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