Regular Article

Photochemical reactivity of apical oxygen in KSr$_2$Nb$_5$O$_{15}$ materials for environmental remediation under UV irradiation

Juan Matosa,*, Silvania Lanfredib,*, Ricmary Montañac, Marcos A.L. Nobreb, María C. Fernández de Córdobac, Conchi O. Aniac,d

a Biomaterials Department, Technological Development Unit (UDT), University of Concepción, Av. Cordillera, 2634, Parque Industrial Coronel, Concepción, Chile

b São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Laboratory of Composites and Ceramics Functional – LaCCeF, P.O Box 467, 19060-900, Brazil

c Instituto Nacional del Carbón (INCAR, CSIC), 33011 Oviedo, Spain

d CEMHTI UPR 3079, CNRS, Univ. Orléans, 45071 Orléans, France

G R A P H I C A L A B S T R A C T

Abstract

The photocatalytic activity of a series of novel KSr$_2$Nb$_5$O$_{15}$ materials was studied using the photooxidation of methylene blue as model reaction. The influence of the calcination time upon the crystalline structure and photoactivity was verified. Characterization was performed by XRD, SEM, FTIR, UV–Vis/DR, Helium picnometry, and N$_2$ and CO$_2$ adsorption-desorption isotherms. The diffraction line profile and the refinement of the structural parameters of KSr$_2$Nb$_5$O$_{15}$ were obtained from the XRD patterns by the Rietveld method. Data showed that samples were photoactive under UV irradiation, regardless the synthesis conditions. However, the calcination time had a clear influence upon the photocatalytic activity of the samples, being more efficient towards the degradation of the dye those obtained at a lower calcination time. Indeed, the sample calcined for 4 h showed up to 4 times higher photocatalytic activity than commercial TiO$_2$. Additionally, a correlation between the photocatalytic activity and the displacement of the Nb ion from the central position in the [NbO$_6$] octahedron was found. It is suggested that this fact causes an important polarization of the niobate structure. The apical oxygen in these samples is very reactive and can lead to the formation of superoxoradical anions (O$_2^-$) showing that KSr$_2$Nb$_5$O$_{15}$ can be potentially used in photocatalytic reactions under UV irradiation.

* Corresponding authors.

E-mail addresses: jmatoslale@gmail.com (J. Matos), silvania@fct.unesp.br (S. Lanfredi).
1. Introduction

The development of more efficient processes for the remediation of polluted water remains one of the most important challenges of modern science and society nowadays [1]. Among different technologies, advanced oxidation processes (AOPs) based on heterogeneous photocatalysis have been extensively studied, due to the availability of a wide variety of efficient photocatalysts with excellent performance for the degradation of a number of pollutants. Although TiO$_2$ is considered the benchmark material in photocatalytic processes for water and air purification [2,3], this photocatalyst presents important limitations that prevent the large scale implementation of AOPs, mainly linked to a low absorption of sunlight (c.a. 6% solar spectra). For this reason, research on the development of more active and low-cost photocatalysts under solar irradiation is a widely investigated topic.

On the other hand, niobium is a particularly abundant element in Latin America, and it has been recently demonstrated that niobate-based materials are interesting candidates as photocatalysts in various applications due to the availability of precursor (i.e., low cost) and improved light absorption features—compared to titania—[4–6]. Niobate-based oxides are ferroelectric with a tetragonal tungsten bronze (TTB)-type structure, also considered a derivative of the classical perovskite structure described by the chemical formula $(A1)_{x}(A2)_{4}C4Nb_{10}O_{30}$ (where A1, A2, and C denote cations in different sites in the crystalline structure) [7,8]. The cation substitution in the interstices of the TTB structure allows modulating the physicochemical properties of the niobate-based oxides (i.e., optical, pyroelectric, electrical) [9]. Another important advantage of niobate-based oxides with a TTB structure—compared to Nb$_2$O$_5$—is their high stability in aqueous solution [10,11], which makes them potential candidates to be used at the forefront of research and industrial applications [11]. As a few examples, niobate-based oxides have been reported to show activity in various catalytic processes: oxidative dehydrogenation of alkanes [12], oxidation and ammoxidation of olefins [14], removal of nitrogen oxides in preventing air pollution [15], CO hydrogenation toward high hydrocarbons [16], hydrotreating reactions [17], organic synthesis by solid-acid assisted-catalysis [18] and water splitting [19]. More recently, our own studies investigated topic.

and low-cost photocatalysts under solar irradiation is a widely investigated topic.

2. Experimental procedure

2.1. Synthesis

KS$_2$Nb$_5$O$_{15}$ powders were prepared by the mechanical mixture of the metallic oxides and carbonates via high-energy ball milling (HEBM) [20,32]. The starting reagents were high purity K_2CO_3 (99.0% Reagen), $SrCO_3$ (99.0% Reagen), and hydrated niobium oxide, Nb$_2$O$_5$·4H$_2$O (CBMM-Brazil). The preparation was carried out using a HEBM type Attritor (Netzsch) with a milling chamber of zirconia (600 mL) with a cooling water circulation system. The mixture of the pristine reagents was carried out in isopropyl alcohol using stabilized zirconia balls of 1.2 mm in diameter (powder: ball weight ratio of 1:16). The mixture was stirred with a Molinex-type agitator shaft with eccentric radial disks that accelerated the grinding media, which gave an extra radial impulse during each rotation of the shaft with a motor of 1/3 hp. The milling was performed with a rate of 1200 rpm for 5 h. After milling, the solids were dried in a glove box with forced air flow at 100 °C (Famen – model Orion 520). Single phase powders were obtained after calcination at 1100 °C for 4, 6, 8 and 12 h; the samples were denoted as KSnB-4, KSnB-6, KSnB-8, and KSnB-12, respectively. The calcination was carried out in a tube furnace under a constant oxygen flow of 300 mL/min. The powders were finally grounded in an agate mortar, and sieved using a 350-mesh minimum.

2.2. Characterization

Structural characterization of the prepared KSn$_2$Nb$_5$O$_{15}$ powders was carried out by X-ray diffraction (XRD) using a Shimadzu (model XRD-6000) diffractometer with Cu-K$_\alpha$ radiation ($\lambda=1.5418$ Å) and a graphite monochromator. Measurements were carried out over an angular range of 5° ≤ 2θ ≤ 90° with a scanning step of 0.02° and a fixed counting time of 10 s. Divergence, scattered and receiving radiation slits were 1°, 1° and 0.2 mm respectively. The KSn$_2$Nb$_5$O$_{15}$ structure was refined according to the Rietveld method using the FullProf program [33]. The parameters and variables adopted during the refinement process were the background coefficients, and isotropic atomic displacement parameters for four kinds of atoms (K, Sr, Nb, O). In addition, profile coefficients, histogram scale, lattice parameters, linear absorption coefficients, and oxygen parameters (X) were also estimated. The background level was fitted with a five-order polynomial function and the peak shape with a pseudo-Voigt function. The angular dependence of the peak full-width at half-maximum (H) was defined by a function early reported by Caglioti and co-workers [34]. Using the atomic positions derived in the refinement step, the KSn$_2$Nb$_5$O$_{15}$ unit cell was built using the Diamond software package.

Chemical bonds were analyzed by Fourier transformed infrared spectroscopy (FTIR). The sample was diluted in KBr (ratio of 1:100) and the measurements were carried out in the range of 1000–400 cm$^{-1}$ with a resolution of 1 cm$^{-1}$ for 100 scans in a Digilab Excalibur spectrometer (FTS 3100 HE series).

The microstructure and morphology was characterized using scanning electron microscopy (SEM), in a Zeiss EVO LS15 equipment at an accelerating voltage 30 kV. For SEM analysis a small amount of powder was added in ethanol and ultrasonicated for dispersion and then, a small amount of suspension was taken and dropped on the surface of a double-sided conductive carbon tape. It was then kept for some minutes at room temperature for drying. The histograms obtained from statistical processing of images were performed using the ImageJ software [35].

The density of the samples (previously outgassed at 200 °C) was determined by helium picnometry using an Accupyc 1330 (Micromeritics) apparatus thermostatically controlled with an
external circulating bath at 35 °C to avoid erroneous measurements associated to helium adsorption during density determinations [36].

The texture of the prepared materials was characterized by measuring the N₂ and CO₂ adsorption-desorption isotherms at –196 and 0 °C, respectively, in automatic volumetric analyzers (ASAP 2010, Micromeritics). The samples were previously outgassed under dynamic vacuum (ca. 10⁻⁵ Torr) at 200 °C for 17 h. Strict analysis conditions were programmed during the gas adsorption measurements to ensure equilibrium data (the average elapsed time for each isotherm was 9–12 h), with over 80 equilibrium points. Each isotherm measurement was performed in duplicate to guarantee the accuracy of the experiments (error was below 0.1%) and to obtain reproducible data. Ultrahigh purity gases (i.e., 99.9992 and 99.995% for N₂ and CO₂, respectively) were supplied by Air Products. The isotherms were used to evaluate the specific surface area (BET equation), total pore volume (evaluated at a relative pressure of 0.99) and volume of micropores evaluated from the Dubinin–Radushkevich (DR) formulism [37].

The optical features of the niobate-based materials were determined by UV–Vis diffuse reflectance spectroscopy recorded on a Shimadzu spectrometer equipped with an integrating sphere and using BaSO₄ as a blank reference. Measurements were recorded in the diffuse reflectance mode (R) and transformed to a magnitude proportional to the extinction coefficient through the Kubelka–Munk function, F(R|X) [38]. Band-gap energies were calculated by plotting [P(R|X)-hv]¹⁰⁰ against hv. Each measurement was performed in triplicate to guarantee the accuracy of the experiments (error was below 2%).

2.3. MB adsorption in the dark and photocatalytic test

Methylene blue (MB) was analytical grade and purchased from Aldrich. An open air batch photoreactor was employed, consisting of a 200 mL cylindrical pyrex flask provided with a bottom optical window of 6 cm in diameter, as described elsewhere [39]. Irradiation was provided using an UV–visible Hg lamp (L_Hg), and filtered by a circulating water cell (thickness ca. 2.0 cm) to remove IR beams and prevent any heating of the suspension. The UV (320–390 nm) and visible light (400–780 nm) components were estimated by integration of the radiation spectrum [27]. Total radiation was verified by using a pyranometer (Solar Light PMA2100) and the total photon flux was estimated ca. 1.23 × 10¹⁷ photons·cm⁻²·s⁻¹. This value corresponds to the domain. According to the literature, this value would correspond to the domain for an optimal light power utilization, where the rate of the reaction is directly proportional to the radiant flux [2].

The photocatalytic tests were performed at 25 °C under stirring 62.5 mg of the niobate-based photocatalyst in 125 mL of MB solution (initial concentration of 12.5 ppm, ca. 39.1 μmol/L). The samples were maintained in the dark at least for 60 min in order to complete adsorption at equilibrium prior the UV-irradiation of the samples. MB aliquots were taken, centrifuged and analyzed using an UV-spectrophotometer Perkin Elmer, Lambda 35 at 664 nm and the MB concentrations were estimated using a standard calibration curve. Photocatalytic tests were performed by triplicate to guarantee the accuracy of the experiments (error was below 3%). Results were compared against values obtained on a commercial TiO₂-P25 (Evonik, ex-Degussa) and previously reported [39].

3. Results and discussion

3.1. Characterization of solids

3.1.1. X-ray diffraction (XRD)

Fig. 1A shows the XRD patterns of the KSr₂Nb₂O₁₅ powders obtained after calcination of the precursors for different times. As seen, the solids showed a tetragonal tungsten bronze TTB-type structure, identified according to JCPDS card number 34-0123 [11,32]. No evidences of the presence of other crystalline structures (oxides and/or carbonates) were detected in the patterns, suggesting that all the precursors were consumed during the calcination (or converted to non-crystalline phases). The present niobate-based materials showed a high crystallinity similar than those observed for K₆Nb₁₀.₈O₃₀ [5] and for Sr₂₋ₓKₓNb₂O₁₅₋ₓFₓ [40] TTB-type structures prepared by a solid-state reaction method.

By using the Jade 8 Plus software the crystallite size was derived from Scherrer’s equation, Eq. (1), where β is the broadening of the diffraction line measured at half of the maximum intensity, λ is the wavelength (Cu Kα = 1.5418 Å), θ is the Bragg angle for a given diffraction, and k is a constant, which is in general equal to 0.9 for powders.

\[
D = \frac{k \cdot \lambda}{\beta \cdot \cos \theta}
\]

(1)

The instrumental broadening effect was eliminated by subtracting the full width at half-maximum (β_h) of a standard sample (SiO₂) from β of the respective Bragg peaks. The lattice strain was estimated using the Williamson-Hall approach [41] according to Eq. (2), where D represents the crystallite size estimated from Eq. (1) and η represents the lattice strain.

\[
\frac{\beta \cdot \cos(\theta)}{\lambda} = \frac{1}{D} + 4 \eta \sin(\theta) \frac{1}{\lambda}
\]

(2)

Fig. 1. (A) XRD patterns for the KSr₂Nb₂O₁₅, KSr₂Nb₂O₁₅ nanostructured powders. (B) Average crystallite size and lattice strain evolution as a function of thermal treatment time at 1100 °C.
The characteristic Williamson-Hall plot corresponds to the graph of $b \cos(\theta)/k$ as a function of $4\sin(\theta)/k$. Here, $4\sin(\theta)/k$ is on the x-axis. Each point is assigned to a specific diffraction line and after point collection, a linear regression fit was obtained. The crystallite size (D) corresponds to the y-intercept and the lattice strain (η) was obtained from the slope of the fit curve.

Fig. 1B shows the average crystallite size and the lattice strain of the KSr$_2$Nb$_5$O$_{15}$ nanostructured powder as a function of the calcination time. As seen, rising the calcination time resulted in an increase in the crystallite size and a decrease in the microstrain lattice, with the highest average crystallite size of 32.5 nm obtained after 12 h of calcination. The increase in the average crystallite size as a function of the calcination time has been attributed to the particle growing and agglomerate development by the densifying mechanism [42,43], which is strongly dependent on the temperature and time of the thermal treatment.

3.1.2. Structural refinements

The X-ray diffraction patterns of the KSr$_2$Nb$_5$O$_{15}$ materials were indexed on the basis of a tetragonal unit cell. The structural parameter set of the samples was derived using the Rietveld method. The refinements of the structural parameters were performed by taking into account the space groups $P4_{2}bm$ (No. 100), that are compatible with the rule of existence ($[0 k l]$ $k = 2n$) [11,32,40]. Data and experimental conditions for the structural refinements are listed in Table S1 in the Supplementary Material. Further theoretical adjustment for the KSr$_2$Nb$_5$O$_{15}$ phase was obtained assuming that each pentagonal site $[4c(x, x + 1/2, z)]$ was statistically occupied by equal quantities of K$^+$ and Sr$^{2+}$ ions and each tetragonal site $[2a(0, 0, z)]$ was occupied by a Sr$^{2+}$ ion. The trigonal site was considered vacant. Refinement data of showed major isotropic atomic displacement parameter B_{eq} values for the sample calcined for 4 h. Because the B_{eq} parameter is related to the degree between disorder/order, a higher B_{eq} value suggests a significant degree of disorder in the structure [40]. It is possible to hypothesize that the KSr$_2$Nb$_5$O$_{15}$ materials exhibited a residual static disorder that is correlated to the A and B site occupation and Nb$^{5+}$ cation off-center. This feature is compatible with a process of rearrangement and the growth of crystallites from the sintering of nanostructures [11], as discussed above.

Fig. 2 shows the graphic representation of the unit cell of the KSr$_2$Nb$_5$O$_{15}$ powders calcined for different times, in the view of the b axis direction. The front view (b axis direction) shows that the Nb atoms are tilted and coordinated to six oxygen atoms, four of which are located, a priori, on the same plane as the niobium atoms. The other two are above and below the plane, respectively. More valuable information can be obtained from Fig. 2, showing a graphic representation of the unit cell of the series of KSr$_2$Nb$_5$O$_{15}$ powders in the view of the c axis direction. In this case, the position of Nb atoms tends to be located at the center of the polyhedron with the decreasing of the Nb–O bonds lengths related to the niobium with the apical oxygens. The Nb–O bond lengths are shown in Table 1. In the KSr$_2$Nb$_5$O$_{15}$ structure, the Nb$^{5+}$ cations can be differentiated as Nb(1) and Nb(2) because they occupy two non-equivalent octahedral sites called B1 (2b sites) and B2 (8d sites) [11,32]. Table 1 shows the interatomic distances of the Nb–O bonds.
All four bond lengths of the central plane of the octahedra of Nb(2)O(6) are derived in the Nb(2)O(6) octahedron indicating some degree of rotation and tilting. The Nb(2)O(6) octahedron related to the apical oxygen atoms of the octahedra.

Table 1

<table>
<thead>
<tr>
<th>Bond</th>
<th>d (Å)</th>
<th>Bond</th>
<th>d (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-O</td>
<td>1.8386 (5)</td>
<td>Nb-O</td>
<td>1.9753 (2)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.0050 (19)</td>
<td>Nb-O</td>
<td>2.0115 (15)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.0604 (7)</td>
<td>Nb-O</td>
<td>2.1375 (5)</td>
</tr>
</tbody>
</table>

KSnB-4 h

<table>
<thead>
<tr>
<th>Bond</th>
<th>d (Å)</th>
<th>Bond</th>
<th>d (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-O</td>
<td>2.1570 (12)</td>
<td>Nb-O</td>
<td>1.9664 (2)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.0219 (17)</td>
<td>Nb-O</td>
<td>2.0580 (17)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.1515 (6)</td>
<td>Nb-O</td>
<td>2.1515 (6)</td>
</tr>
</tbody>
</table>

KSnB-6 h

<table>
<thead>
<tr>
<th>Bond</th>
<th>d (Å)</th>
<th>Bond</th>
<th>d (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-O</td>
<td>2.1816 (7)</td>
<td>Nb-O</td>
<td>2.0009 (5)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.0349 (2)</td>
<td>Nb-O</td>
<td>2.1022 (16)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.1273 (5)</td>
<td>Nb-O</td>
<td>2.1273 (5)</td>
</tr>
</tbody>
</table>

KSnB-8 h

<table>
<thead>
<tr>
<th>Bond</th>
<th>d (Å)</th>
<th>Bond</th>
<th>d (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-O</td>
<td>2.1105 (10)</td>
<td>Nb-O</td>
<td>1.9700 (5)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>1.8791 (12)</td>
<td>Nb-O</td>
<td>1.8791 (12)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>1.8506 (12)</td>
<td>Nb-O</td>
<td>1.8506 (12)</td>
</tr>
</tbody>
</table>

KSnB-12 h

<table>
<thead>
<tr>
<th>Bond</th>
<th>d (Å)</th>
<th>Bond</th>
<th>d (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-O</td>
<td>2.1816 (7)</td>
<td>Nb-O</td>
<td>1.9753 (2)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.0050 (19)</td>
<td>Nb-O</td>
<td>2.0115 (15)</td>
</tr>
<tr>
<td>Nb-O</td>
<td>2.0604 (7)</td>
<td>Nb-O</td>
<td>2.1375 (5)</td>
</tr>
</tbody>
</table>

d is the interatomic distance (Å); ζ indicates the oxygen atoms of the central plane of octahedra.

The present niobate-based materials showed a much lower level of distortion, suggesting that the coalescence is not spontaneous. Moreover, in this stage, the particles are already ferroelectric levels of distortion, suggesting that the coalescence is not spontaneous. Moreover, in this stage, the particles are already ferroelectric.

3.1.4. Density and texture of samples

The present work include by the first time a complete textural characterization by N2 and CO2 adsorption-desorption isotherms, Hg porosimetry and He picnometry. The porosity of the sample KSnB-4 shows quasi-spherical particles with several sizes, indicating the occurrence of some degree of particle's coalescence and aggregation between the particles. Different to this quasi-spherical morphology, previous works for KNb3O8 [4] and K6Nb10.8O30 [5] prepared by a solid-state reaction method showed a nearly tetragonal columnar-shaped crystalline particles [4,5].

The size of the present primary particles should be in the order of 35 nm because the coalescence actuates mainly on the secondary particles, giving rise to particles of sizes ranging from 50 to 90 nm. At converse, in the case of the sample calcined for 12 h (KSnB-12), there does not seem to be a preferential particle growth by coalescence. The micrograph in Fig. 3B shows a narrow range of nanoparticle sizes between 50 and 200 nm (i.e. 94 and 85 % nanoparticles in this range for KSnB-4 and KSnB-12, respectively); the nanoparticles of sample KSnB-12 also exhibit different levels of distortion, suggesting that the coalescence is not spontaneous. Moreover, in this stage, the particles are already ferroelectric, what in fact prevents the growth activation by coalescence [42,43].

The present niobate-based materials showed a much lower average size than those observed by Zhang and co-workers [4,5] with average sizes around 1.5 μm [4], and in the range of 0.5–1.2 μm for KNb3O8 [4] and K6Nb10.8O30 [5] TTB-type structures prepared by a solid-state reaction method.

3.1.3. Scanning electron microscopy (SEM)

SEM has been used to explore the morphology of the photocatalyst's nanoparticles and the degree of aggregation in solid state. The size and morphology of the photocatalysts calcined at 1100 °C for 4 h and 12 h was investigated by scanning electron microscopy (SEM). The micrograph in Fig. 3A corresponding to
synthesized niobate-based materials was evaluated by gas adsorption and helium picnometry. The main textural parameters are compiled in Table 2 (the corresponding experimental adsorption-desorption N2 isotherms at −196 °C are shown in Fig. S2). Data corresponding to TiO2 benchmark is also included for comparison purposes. All the samples presented reversible type II isotherms according to the IUPAC classification [44], characterized by a smooth curvature at low relative pressures and a lack of hysteresis loop in the desorption branch, typical of non-porous solids. The textural parameters calculated from the N2 adsorption isotherms confirmed the low porous features of all the samples in terms of low surface area values and micropore volumes (Table 2). The specific BET surface area values ranged from 2 to 3 m² g⁻¹ and the microporosity was negligible (about 0.001 cm³ g⁻¹) for the four samples. The narrow microporosity was also evaluated by means of the CO2 adsorption-desorption isotherms at 0 °C (also shown in Fig. S2), and data compiled in Table 2 reveled a similar trend. Hence, the porosity of the samples is mainly associated to external area. Overall, no significant differences were obtained among the samples obtained at different calcination times, despite the variation in the average particle size observed in the SEM images (Fig. 3).

Helium density values of ca. 5 g cm⁻³ were obtained for all the samples, regardless the calcination temperature (Table 2) suggesting a high sintering effect in the materials even after calcination for short periods. A similar effect has been described elsewhere by Pullar and co-workers [45] for other types of niobate-based materials. The density values calculated by helium pycnometry can be ascribed to the so-called particle density for non-porous solids.

3.1.5. Infrared spectroscopy with Fourier transformed (FTIR)

Fig. 4 shows the FTIR transmittance spectrum in the region between 400–1000 cm⁻¹ of the KSr2Nb5O15 powders obtained after thermal treatment of the precursor powder at 1100 °C for 4, 6, 8 and 12 h. All spectra showed six absorption bands of...
middle-high intensity centered between 845 and 416 cm\(^{-1}\). Only absorption bands at high wavenumbers are clearly observed while the rest show overlapping of bands. All bands were assigned to Nb–O bonds \([32,46]\). The vibrational band observed at around 416 cm\(^{-1}\) has been attributed to the normal mode of vibration, associated to binding of niobium to oxygen apical octahedron \([\text{NbO}_6]\), previously reported \([8,32,46]\). According to Fig. 4, the FTIR spectra show a shift of the bands to lower wavenumbers when the calcination time is increased. This shift to lower wavelengths is an evidence of a decrease in Nb–O bonds length. The FTIR results are in accordance with structural parameters data discussed above, and can be associated to the decreasing in the covalent character of the bond Nb–O, associated with an increased ionic character \([8]\).

Above 8 h of calcination, the shift in the spectra is no longer evidenced - samples calcined for 8 and 12 h showed practically similar spectra--, indicating that the maximum sintering effect is achieved after 8 h calcination \([45]\).

Table 2: Main nanotextural properties of the synthesized materials obtained from gas adsorption data and helium picnometry.

<table>
<thead>
<tr>
<th>Samples</th>
<th>He density (^a)</th>
<th>(N_2 \oplus -196^\circ) °C</th>
<th>(V_{\text{total}}) (^b)</th>
<th>(S_{\text{total}}) (^c)</th>
<th>(W_{\text{N}_2}) (^e)</th>
<th>(W_{\text{CO}_2}) (^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSrNb-4 h</td>
<td>5.00</td>
<td>2.7</td>
<td>0.005</td>
<td>2.4</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>KSrNb-6 h</td>
<td>5.00</td>
<td>2.8</td>
<td>0.005</td>
<td>2.7</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>KSrNb-8 h</td>
<td>5.00</td>
<td>2.4</td>
<td>0.004</td>
<td>2.4</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>KSrNb-12 h</td>
<td>5.00</td>
<td>3.1</td>
<td>0.006</td>
<td>2.9</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>TiO(_2)-P25</td>
<td>3.84</td>
<td>53</td>
<td>0.118</td>
<td>51.3</td>
<td>0.019</td>
<td>0.006</td>
</tr>
</tbody>
</table>

\(^a\) Density measured in a He pycnometer.

\(^b\) Specific surface area determined by the BET equation.

\(^c\) Total pore volume evaluated at relative pressure 0.99.

\(^d\) External surface area evaluated using the \(t\)-plot method.

\(^e\) Micropore volume evaluated from the Dubinin–Radushkevich equation applied to either the \(N_2\) or \(CO_2\) adsorption isotherm.

3.1.6. UV–Vis/DR spectroscopy

The optical properties of KSr\(_2\)Nb\(_5\)O\(_{15}\) samples were studied by diffuse reflectance (DRS) spectroscopy in the UV–visible range (ca. 200–800 nm). The corresponding spectra are shown in Fig. 5 and displayed the typical absorption band edge below 360 nm, ascribed to the transitions of electrons from 2p orbitals in O atoms to 3d orbitals in Nb atoms, contributing to the formation of the valence and conduction bands responsible for the band-gap \([47]\). There is almost no difference in the location of the absorption band edge of the different samples, indicating that the calcination does not modify the optical band gap. The band gap energies of the samples can be estimated from the tangent lines in the plots of the modified Kubelka-Munk function versus the energy of exciting light \([38,48]\) by considering KSr\(_2\)Nb\(_5\)O\(_{15}\) as an indirect semiconductor \([38,47,48]\). The obtained values were similar for all the samples (ca. 3.5 eV), and very similar to those reported by Zhang and co-workers for non-complex structural niobate-based materials such as KNbO\(_3\) crystals \([6]\) (ca. 3.47 eV). By contrast, same authors reported \([49]\) a lower value (ca. 3.3 eV) for KSr\(_2\)Nb\(_5\)O\(_{15}\) showing a micrometric structure and prepared by a solid-state method that involves conventional mechanical mixture of solids followed by calcination. These differences have to be attributed to the mixing procedure of the precursors, since the methodology reported in this work involves a (strong) high-energy ball milling procedure.
followed by a controlled calcination, as opposed to the (soft) conventional mechanical mixture reported Zhang et al. So, the UV–vis spectra shown in Fig. 5 demonstrates that herein synthesized KSr$_2$Nb$_5$O$_{15}$ materials can be catalogued as indirect semiconductors photoactive in the UVA range [6,49].

3.2. MB adsorption and photocatalytic test

Fig. 6 shows the kinetics of methylene blue (MB) adsorption in the dark along with the kinetics of MB photodegradation under UV–visible irradiation. The corresponding kinetic parameters therein evaluated are compiled in Table 3. The performance of herein synthesized KSr$_2$Nb$_5$O$_{15}$ nanostructured materials has been compared to that of commercial titania powders, for clarity. It can be seen that the adsorption rate is very fast for all the catalysts, reaching the equilibrium uptake for the adsorption of the dye after 30–60 min (Fig. 6A). Accordingly, the photocatalytic tests under UV–vis irradiation were conducted after an initial period of 60 min adsorption. It is interesting to remark that the amount of MB adsorbed decreased with the calcination time (ca. 0.863 vs 1.123 μmol, for calcination during 12 and 4 h, respectively). This effect cannot be attributed to a decrease in the surface area of the samples, since all of them displayed similar porous features as discussed above (Table 2); on the other hand, it has been reported that long periods of calcination promote the sintering of niobate-based samples [45], therefore leading to higher mean crystal size of the particles. This sintering effect was also confirmed by the SEM images (Fig. 3) and the XRD refinements, with the highest average crystallite size obtained after 12 h calcination.

It is important to point out that KSnNb-4 sample adsorbed almost the same amount of MB than TiO$_2$ powders, despite the surface area of the latter is remarkably higher (Table 2). However, this was rather expected due to the chemical nature of methylene blue; being a strong Lewis base, its adsorption is thermodynamically favored on acid Lewis solids such as herein synthesized niobate-based materials. Indeed, a stronger acid Lewis character is expected for the prepared niobate-based nanostructured materials than for TiO$_2$ because of the high electron affinity of Nb ions (i.e. 86.1 kJ/mol compared to 7.6 kJ/mol for Ti ions).

For a better understanding of the influence of the methylene blue adsorption on the photocatalytic activity of the studied materials, the surface concentration (d$_{MB}$) of the adsorbed MB molecules on the KSnO$_{15}$ materials was estimated as [50,51]:

![Fig. 6. Kinetics of MB adsorption in the dark (A), and MB photodegradation (B) on KSnO$_{15}$ samples.](image-url)
Table 3
MB adsorption in the dark (n_{ads}), first-order apparent rate-constant (k_{app}) and reaction-rate \((v_{\text{reac}}) \) for MB photodegradation on K\textsubscript{Sr}2Nb\textsubscript{5}O\textsubscript{15}.

<table>
<thead>
<tr>
<th>Sample</th>
<th>n_{ads} (\mu mol)a</th>
<th>d_{MB} (\mu mol m-2)b</th>
<th>k_{app} (min-1 \times 10-3) c</th>
<th>R2 d</th>
<th>v_{\text{reac}} \times 10-3 (\mu mol m-2 min-1) e</th>
<th>\Phi_{rel} f</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO\textsubscript{2}-P25</td>
<td>1.222 g</td>
<td>0.391</td>
<td>6.05 h</td>
<td>0.9952 a</td>
<td>2.37</td>
<td>1.00</td>
</tr>
<tr>
<td>K\textsubscript{Sr}Nb-4</td>
<td>1.123</td>
<td>6.655</td>
<td>1.42</td>
<td>0.9781</td>
<td>9.45</td>
<td>3.99</td>
</tr>
<tr>
<td>K\textsubscript{Sr}Nb-6</td>
<td>0.972</td>
<td>5.554</td>
<td>1.64</td>
<td>0.9842</td>
<td>9.11</td>
<td>3.84</td>
</tr>
<tr>
<td>K\textsubscript{Sr}Nb-8</td>
<td>0.950</td>
<td>6.333</td>
<td>1.22</td>
<td>0.9494</td>
<td>7.73</td>
<td>3.26</td>
</tr>
<tr>
<td>K\textsubscript{Sr}Nb-12</td>
<td>0.863</td>
<td>4.454</td>
<td>1.30</td>
<td>0.9245</td>
<td>5.79</td>
<td>2.44</td>
</tr>
</tbody>
</table>

a Values taken from Ref. \[36\].
b MB adsorbed in the dark after 60 min (Fig. 6A).
c Surface concentration MB molecules estimated by Eq. (3).
d k_{app} estimated by Eq. (4).
e R2 is the factor linear regression.
f Reaction-rate estimated by Eq. (6).
g Photoactivity relative to TiO\textsubscript{2}. \(\Phi_{rel} = \frac{v_{\text{reac}}}{v_{\text{reac}}-\text{TiO}_2} \).

\[
d_{MB} = \frac{n_{ads}}{S_{BET}} \cdot m \tag{3}
\]

where \(n_{ads} \) is the amount of adsorbed MB in the dark after 60 min (Table 3), \(S_{BET} \) is the surface area estimated by BET equation (Table 2), and \(m \) is the mass of solid (i.e., 62.5 mg). Data corresponding to TiO\textsubscript{2} is also included in Table 3 for comparison purposes [39].

Despite the surface area of TiO\textsubscript{2} is more than one order magnitude higher than the values of the K\textsubscript{Sr}2Nb\textsubscript{5}O\textsubscript{15} materials, the latter showed a much higher MB surface concentration than TiO\textsubscript{2}. This is in agreement with the fact that the niobate-based catalysts present a more acid surface pH than TiO\textsubscript{2} [21], and accordingly, have a high affinity towards basic amines such as MB with a high dissociation constant \((pK_a) \) in water and a high half neutralization potential [52]. No clear correlation was observed between the calcination time and/or the surface area of the niobates and the MB surface concentration, despite the lowest value was found for the sample calcined for the longest time.

On the other hand, Fig. 6B shows very similar kinetics trends in the photocatalytic degradation of MB for all the K\textsubscript{Sr}2Nb\textsubscript{5}O\textsubscript{15} photocatalysts. In order to compare the photocatalytic activity, the first-order apparent rate-constants \((k_{app}) \) were estimated from the linear regression of the kinetic data in Fig. 6B, using equation 4 and assuming that MB photodegradation follows a first-order reaction-rate mechanism [50,51]:

\[
\ln \left(\frac{C_0}{C_t} \right) = k_{app} \cdot t \tag{4}
\]

where \(C_0 \) is the MB concentration after achieved the adsorption equilibrium in the dark and \(C_t \) the MB concentration at time \(t \). The \(k_{app} \) values are included in Table 3 as well as the factor linear regression \((R^2) \) which values were in all cases close to 1 indicating that the assumption of a first-order reaction-rate mechanism was correct.

It can be inferred from Table 3 that the dependence of the photocatalytic activity \((k_{app}) \) and the calcination time of the prepared materials followed a Vulcan-type trend. The \(k_{app} \) reached a maximum of \(1.64 \times 10^{-3} \text{ min}^{-1} \) for the K\textsubscript{Sr}Nb-6 h, and then the photocatalytic monotonically decreased when the catalysts were calcined for longer periods of time. We have attributed this maximum in the photocatalytic activity to the presence of tilted and very reactive apical oxygen atoms bonded to niobium in the [NbO\textsubscript{6}] octahedron as suggested by the XRD refinement analysis discussed above (Table 1, Fig. 2). In addition, the increase in the average crystallite size as a function of the calcination time was well correlated with the photocatalytic activity, indicating that an optimal aggregate development of the niobate-based materials is required to achieve a good photocatalytic performance. A similar behavior was reported for hybrid Ti\textsubscript{O}_{2-x}C \textsubscript{2} binary materials during the photocatalytic degradation of 4-chlorophenol [53].

3.3. General discussion

In terms of the first-order apparent rate-constants (Table 3), it must be pointed out that all niobates-based materials showed lower photocatalytic activity than commercial TiO\textsubscript{2}. Based on the nonporous nature of the solids (Table 2), the conversion of methylene blue is most likely attributed to a series of chemical reactions occurring in the external surface of the materials. Thus, a deepest analysis of the photocatalytic activity can be performed to obtain the global reaction rate \((v_{reac}) \) considering the MB surface concentration \((d_{MB}) \) estimated above (Table 3), since this primary fraction of MB molecules will suffer the photodegradation.

The photocatalytic degradation of MB can be considered as an unimolecular catalytic surface reaction \[21.12,25,51\], where the MB adsorption followed by photodegradation under UV–vis irradiation can be described by Eq. (5).

\[
\text{MB} + \text{S} = \text{MB}_{\text{ads}} \rightarrow \text{Intermediates} \rightarrow \text{Products} \tag{5}
\]

where MB is the reactant, S an adsorption site on the surface niobate-based and TiO\textsubscript{2} photocatalysts, and MB\textsubscript{ads} the MB adsorbed after achieved the steady-state condition of adsorption in the dark.

The reaction rate \((v_{reac}) \) can be estimated [2,22] by Eq. (6), where \(v_{reac} \) is expressed in \(\mu \text{mol m}^{-2} \text{ min}^{-1} \) and \(d_{MB} \) is the surface concentration of MB on K\textsubscript{Sr}2Nb\textsubscript{5}O\textsubscript{15} or TiO\textsubscript{2}.

\[
v_{reac} = k_{app} \cdot d_{MB} \tag{6}
\]

The values for \(v_{reac} \) are included in Table 3. It can be seen that the \(v_{reac} \) obtained on TiO\textsubscript{2} was clearly lower than the values of any of the studied K\textsubscript{Sr}2Nb\textsubscript{5}O\textsubscript{15} materials. It is also important to note that there is a monotonic decrease in the \(v_{reac} \) with increasing the calcination time. In other words, the reaction rate for the degradation methylene blue was faster for the photocatalysts calcined during lower times. The higher the photocatalytic activity relative to TiO\textsubscript{2} (\(\Phi_{rel} \)) was achieved for the sample calcined 4 h, with a value up to about 4 times higher than that of titania. These results suggest that changes in the crystalline structure of the niobate-based materials (mainly, the increase in the \(\mathrm{Nb}–\mathrm{O}(6) \) bond lengths discussed above) would remarkably influence the photocatalytic activity. Indeed, the FTIR results (Fig. 4) showed a direct correlation between the wavenumber of bands and the magnitude of displacement of the Nb location off-center as a function of the increasing the calcination time of the K\textsubscript{Sr}2Nb\textsubscript{5}O\textsubscript{15} powders. In addition, the structural refinement showed that the magnitude of displacement of the Nb from the central position of the [NbO\textsubscript{6}] octahedron can be ascribed to the displacement parameter \(\Delta z \) along the polar direction.
The displacement parameter ΔZ of KSr$_2$Nb$_5$O$_{15}$, which depends on the displacement of the Nb atom from the octahedron center, affects the magnitude of the spontaneous polarization due to an increase of the Nb$^{5+}$ octahedra. The decrease of the thermal treatment time leads to an increase in the spontaneous polarization due to the Nb–O bond lengths related to the apical oxygen in the Nb$^{5+}$ octahedron. These changes increased the charge density on the surface of the material, resulting in a higher superficial chemistry activity. The characterization of the optical features by UV–Vis diffuse reflectance and the kinetics of MB photodegradation confirmed the photocatalytic activity of all the KSr$_2$Nb$_5$O$_{15}$ materials and regardless the calcination temperature. It was found that the lower the calcination time, the higher the photocatalytic activity, with sample KSrn-4 h exhibiting almost 4 times higher photocatalytic activity than commercial TiO$_2$. From the photocatalytic activity estimated in terms of reaction rates, it can be concluded that herein synthesized KSr$_2$Nb$_5$O$_{15}$ materials can be used for photocatalytic processes under very low concentration conditions under UV irradiation.

4. Conclusions

We have prepared a series of KSr$_2$Nb$_5$O$_{15}$ photocatalysts from a facile synthetic route based on a high-energy ball milling followed by calcination of oxides and carbonates of the metallic precursors. The unit cell of the synthesized KSr$_2$Nb$_5$O$_{15}$ powders showed that each pentagonal site is statistically occupied by equal quantities of K$^+$ and Sr$^{2+}$ ions, and each tetragonal site is occupied by a Sr$^{2+}$ ion. A high distortion of the Nb$^{5+}$ octahedra occurs due to contributions from both rotation and tilting and the spontaneous polarization is a function of the magnitude of the parameter displacement of the Nb atom from the octahedron center. The decrease of the thermal treatment time leads to an increase in the spontaneous polarization due an increase of the Nb–O bonds lengths related to the niobium with the apical oxygen in the [NbO$_6$] octahedron. These changes increased the charge density on the surface of the material, resulting in a higher superficial chemistry activity. The characterization of the optical features by UV–Vis diffuse reflectance and the kinetics of MB photodegradation confirmed the photocatalytic activity of all the KSr$_2$Nb$_5$O$_{15}$ materials and regardless the calcination temperature. It was found that the lower the calcination time, the higher the photocatalytic activity, with sample KSrn-4 h exhibiting almost 4 times higher photocatalytic activity than commercial TiO$_2$. From the photocatalytic activity estimated in terms of reaction rates, it can be concluded that herein synthesized KSr$_2$Nb$_5$O$_{15}$ materials can be used for photocatalytic processes under very low concentration conditions under UV irradiation.

Acknowledgments

J. Matos thanks to the Chilean grants (Basal Program PFB-27, FAE-829, FONDEF-IDEA #ID15110321, CORFO 15110321-45676, FONDECYT 1161068), for their financial support. S. Lanfredi thanks the Spanish MINECO (grant CTM2011/56770-R). PROPe), for their financial support. C.O. Ania thanks the financial support of the Spanish MINECO (grant CTM2011/56770-R).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jcis.2017.02.028.

References
