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The mechanistic model reported in Lee et al. (2015) estimating the Secchi disk depth (ZSD) was applied to an
oligo- to mesotrophic reservoir in Brazil. The model was originally validated with data covering lake, oceanic,
and coastal waters; however, the model used the quasi-analytical algorithm (QAA) designed for optically deep
waters as input and was applied to oceanic and coastal waters to derive absorption [a] and backscattering [bb]
coefficients. The hypothesis is that the use of QAAv5 (http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf)
to estimate both a and bb (step M1) to retrieve Kd (step M2) and ZSD (step M3) will lead to errors caused by
M1 preventing an accurate estimate in oligo- to mesotrophic water. To test this hypothesis, data collected in
three field trips were used to apply the mechanistic model based on the spectral bands from OLI/Landsat-8,
(often applied to oceanic and coastal waters), and multispectral instrument (MSI)/Sentinel-2 bands (applied to
QAA designed for very turbid inland water). The impact of step M1 over steps M2 and M3 was analyzed by the
error analysis. The mean absolute percentage error (MAPE) for Kd using QAAv5 ranged between 10.35% and
19.76%, while the error usingQAAM14 varied between 12.68% and 28.29%. Regarding the errors of stepM3 and ap-
plying QAAv5, the total root-mean-square difference (RMSD) varied from 0.55 to 1.18 m and MAPE ranged be-
tween 12.86% and 31.17%, while the RMSD ranged between 0.70 and 1.50 m and MAPE varied from 14.33% to
39.13% when using QAAM14. However, the result from QAAv5 showed a better correlation with in situ data, al-
though underestimating Kd and ZSD. Therefore, a modified version of QAAv5 (QAAR17) was evaluated. The results
showed an improvement of Kd (MAPE ranging between 8.89% to 18.76%) and ZSD (RMSD ranging between 0.32
and 0.90 m and MAPE ranging between 8.65 and 19.75%), bringing the values close to the 1:1 line. The largest
errorwas observed for the data of the second field trip, where the bio-optical properties showed a horizontal gra-
dient along the reservoir. In addition, the magnitude of the remote sensing reflectance (Rrs) also varied depend-
ing on thewater quality. Thus, with respect to ZSDmapping, this research showed that environments with a high
variability in Rrs can limit the accurate estimation of inherent optical properties (IOPs) based onQAAv5. Therefore,
the limiting step of the model was attributed to M1, which means that the mechanistic model from Lee et al.
(2015) can be considered an universal approach if M1 is modified based on the type of water.

© 2017 Elsevier Inc. All rights reserved.
Keywords:
Optical properties
Inland waters
Tropical reservoirs
Water clarity
1. Introduction

The water clarity can be considered to be key information for the
evaluation of the water quality. The attenuation of light with depth is
dictated by water molecules, phytoplankton productivity, and particle
and dissolvedmatter distribution (Kirk, 1975;Mobley, 1994). The inter-
action of solar radiation and in-water constituents can impact the pho-
tosynthesis and photo-oxidation (Doron et al., 2007). The attenuation of
light can be described by the vertical diffuse attenuation coefficient, Kd

(m−1), and the beam attenuation coefficient, c (m−1). The inverse of c
is related to the horizontal visibility (Zaneveld and Pegau, 2003),
tara).
while the vertical visibility, analogous to the Secchi disk depth (ZSD), is
the inverse of the sum of Kd+c (Tyler, 1968; Preisendorfer, 1986). The
ZSD is ameasure of transparency in the vertical direction and the trophic
state of awaterbody; thus,much effort has beenmade to estimate ZSD of
oceanic, coastal, and inland water (Buiteveld, 1995; Doron et al., 2007;
Majozi et al., 2014; Fukushima et al., 2015; Lee et al., 2015).

The relationship between ZSD and Kd is not universal; the correlation
between ZSD and Kd is almost the same as that between ZSD and c (Aas et
al., 2014; Lee et al., 2015). Therefore, empirical and semi-analytical
approaches were carried out to derive Kd and ZSD. Mueller (2000a)
empirically derived Kd(490) of seawater based on the band ratio of
water-leaving radiances at 490 and 555 nm. Morel (1988) proposed
an empirical relationship between Kd(λ) and the chlorophyll concentra-
tion for oceanic water, which was further updated by Morel and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.06.018&domain=pdf
http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf
http://dx.doi.org/10.1016/j.rse.2017.06.018
mailto:enner.alcantara@ict.unesp.br
http://dx.doi.org/10.1016/j.rse.2017.06.018
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


214 T. Rodrigues et al. / Remote Sensing of Environment 198 (2017) 213–228
Maritorena (2001). Based on the radiative transfer theory, Lee et al.
(2005a) proposed a semi-analytical model aiming to retrieve the Kd of
ocean water (Gordon et al., 1975).

All previously presented models are focused on seawater properties;
therefore, the optical water quality is different from that of inland water
with high absorption coefficients. Buiteveld (1995) introduced a semi-
analytical way tomodel ZSD and diffuse attenuation of photosynthetically
active radiation (PAR), Kd(PAR), using data from four eutrophic lakes in
the Netherlands. The model is based on the relationship described in
Tyler (1968) and Preisendorfer (1986). Recently, good results were
achieved with the empirical ZSD-based model for inland water. Majozi
et al. (2014) retrieved Kd(490) to estimate the euphotic depth (Zeu) in
Lake Naivasha, Kenya, and found that the ratio between the bands at
560 and 490 nm yielded the best outcome for Zeu. Al Kaabi et al. (2016)
tested several approaches to derive Kd(490) and then correlated it to
the in situ ZSD; they found a reasonable relationship (R2 = 0.62, total
root-mean-square difference, RMSD = 26.68%) between Kd(490) and
ZSD calculated using the model reported in Lee et al. (2005a).

The semi-analytical model from Lee et al. (2015) based on radiative
transfer was reformulated to derive ZSD relying only on Kd at a wave-
length representing the maximum transparency. This new model was
validated using a large dataset covering different optical environments
such as oceanic, coastal, and inland water. The average absolute error,
abe, was ~18% and R2 was 0.96 between measured and estimated ZSD
(Lee et al., 2016). The inherent optical properties (IOPs) predicted
using the quasi-analytical algorithm (QAA) were used as input, consid-
ering the referencewavelength (λ0) at 55× or 670 nm (Lee et al., 2016).
The native QAAwasmore applicable towaterwith lower absorption co-
efficients; however, many reparameterizations were conducted aiming
to use the algorithm for inland water (Lee et al., 2002, 2009; Yang et al.,
2013; Mishra et al., 2014; Watanabe et al., 2016a).

Several authors highlighted important liminations of the native QAA
for applications to inland water, which might affect its accuracy (Le et
al., 2009; Yang et al., 2013), such as the estimation of the total absorp-
tion coefficient at a reference wavelength, a(λ0), which was based on
synthetic data. Secondly, the spectral power of the particle backscatter-
ing coefficient, η, was calibrated considering the data from open oceans
or coastal water. The last issue concerns the use of synthetic data for the
estimation of the phytoplankton absorption. Those steps were listed by
Lee et al. (2002) as second order of importance because they have a nar-
row range of variation and small influence on the output; however, the
authors mentioned that they affect the final product and therefore im-
provements must be carried out considering regional and seasonal in-
formation or using better algorithms (Lee et al., 2010).

The ZSD model uses the remote sensing reflectance (Rrs) to estimate
the IOPs and then Kd, which is used to estimate ZSD. The literature
showed that the QAAv5 fails in estimating the IOPs of inland water. The
ZSD model uses QAAv5 to estimate the IOPs; therefore, our hypothesis
is that the limiting factor to obtain the ZSD accurately is the estimation
of the IOPs. To test this hypothesis, data collected in three field trips
were used to apply the ZSDmodel based on the spectral bands from Op-
erational Land Imager (OLI)/Landsat-8 and multispectral instrument
(MSI)/Sentinel-2A sensors. The aim of this workwas to evaluate the ap-
plicability of the ZSDmodel to inlandwater. The specific objectiveswere:
to (1) bio-optically characterize the Nova Avanhandava (Nav) Reser-
voir; (2) evaluate the performance of the ZSD semi-analytical scheme
based on QAAv5 using OLI bands and the QAAM14 from Mishra et al.
(2014) using MSI bands to derive ZSD; and (3) apply the ZSD model to
satellite images to retrieve the spatial–temporal distribution of ZSD.

2. Materials and methods

2.1. Study site

Nav is a run-of-river reservoir (Fig. 1) with a mean water level fluc-
tuation lower than 0.50 m year−1 (Petesse et al., 2014). Nav is also the
fifth of six reservoirs situated along the Tietê River in the western region
of São Paulo State, Brazil. The reservoir activity started in 1982, flooding
an area of 210 km2 (at its maximum quota), with a usable volume of
3.8 × 108 m3, perimeter of 462 km, maximum depth of 30 m, mean
water residence time of ~46 days, and an average flow of 688 m3 s−1

(Torloni et al., 1993). The reservoir is part of a region that is influenced
by continental tropical and polar Antarctic air masses. The former
air mass is hot and dry and occurs mainly during summer (24 °C
and 30 °C), while the latter one is cold and damp and despite being
active all year, its occurrence is more intense during winter, causing
a temperature drop (14 °C to 22 °C; CBH-BT, 2009).

Nav is an oligo- to mesotrophic reservoir with the upper portion of
the water column being well oxygenated and pH ranging from slightly
acid to alkaline (6.47–8.2), a relatively high conductivity (83–150
μS cm−1), and low concentrations of nutrients (total N: 0.05–0.23
μg l−1, total P: 18.02–32.33 μg l−1; Rodgher et al., 2005; Smith et al.,
2014). Togetherwith the high transparency of thewater, a favorable en-
vironment for submergedmacrophyte growth is created (e.g., Egeria sp.:
Elodea; Smith et al., 2014, Rotta et al., 2016). The catchment basin sur-
rounding the reservoir receives input from nonpoint source pollution
such as sugarcane and citric plantations (orange and lemon) and cattle
breeding.
2.2. Laboratory analysis

The field trips were carried out in austral autumn (Nav1: April 28 to
May 2) and austral spring (Nav2: September 23 to 26) of 2014 and aus-
tral autumn (Nav3:May 9 and 14) of 2016. The Nav1 andNav2field col-
lections resulted in 19 samples each; 18 samples were collected during
Nav3 (see Fig. 1 for sampling station locations) following the sample ar-
rangement described in Rodrigues et al. (2016), which consisted of
selecting samples randomly taking into account spectrally different re-
gions (stratum) created to cover the bio-optical variability of the
reservoir.

Water samples (5 L for each sampling location) were collected just
below the air–water interface, filtered on the same day of collection
under vacuum pressure through a raw filter or pre-ashed and pre-
weighed Whatman GF/F fiberglass filter with a porosity of 0.7 μm, and
then frozen (−25 °C) before analysis. Chlorophyll-a (Chl-a) was ex-
tracted with 90% acetone solution and analyzed spectrophotometrically
at 663 and 750 nm (Golterman et al., 1978). The suspended particulate
matter (SPM) concentration was determined through the method de-
scribed in APHA (1998); the filters were dried in the oven at 100 °C
for 12 h and then weighed using an analytical scale. The inorganic mat-
ter was not measured; thus, the equation from Buiteveld (1995) was
applied aiming to retrieve the Tripton concentration. A Secchi disk
with a diameter of 30 cm was used for ZSD measurements.

To estimate the colored dissolved organic matter (CDOM) absorp-
tion coefficient (aCDOM), ~250 mL of water was filtered through a fiber-
glassWhatman GF/F with a porosity of 0.7 μmand then refiltered under
low vacuum pressure using a nylon membrane filter with a porosity of
0.2 μm. The readings were performed using a SHIMADZU UV-2600
UV–VIS spectrophotometer (SHIMADZU, Japan) in absorbance mode.
The samples were placed in a 10 cm quartz cuvette (Tilstone et al.,
2002). A water volume of 1 L was filtered at low vacuum pressure
using a 47 mm diameter fiberglass Whatman GF/F filter. The filters
were placed in a brown glass bottle and frozen until analysis. Awhitefil-
ter wetted with ultrapure water was used as reference and the filter
containing the particulate was placed on the integrating sphere module
of the spectrophotometer with a spectral range from 280 to 800 nm to
measure the optical density (OD). The Transmittance–Reflectance (T–
R) method described in Tassan and Ferrari (1995, 1998) was employed
to derive the total particulate absorption coefficient (ap). The particulate
filter was depigmented by oxidation in 10% sodium hypochlorite
(NaClO), ensuring free phytoplankton pigment influence to obtain the



Fig. 1.Maps of the study area emphasizing (a) the territory of Brazil highlighted by the OLI/Landsat-8 scene, (b) the State of São Paulo and the respective reservoirs along the Tietê River
starting with Barra Bonita, the first of the cascade followed by the downstream reservoirs of Ibitinga, Bariri, Promissão, Nova Avanhandava (Nav), and Três Irmãos, (c) the sample location
in the Nav Reservoir and (d) monthly rainfall (mm) data from NASA's GIOVANNI database for the period of 2011–2016.
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non-algal particle (aNAP). The phytoplankton absorption coefficient (aϕ)
was retrieved by subtracting aNAP from the ap.

2.3. In situ radiometric data

The above-mentioned surface remote sensing reflectance spectra
(Rrs; sr−1) were estimated from radiometric measurements taken be-
tween 10 am and 2 pm. This procedure was carried out to consider
the acquisition geometry based on the timewindow of light availability
during the day (Mobley, 1999). At each sampling station, radiometric
measurements were acquired above and below the water surface
using hyperspectral radiometers (RAMSES TriOS®; TriOS, Germany)
operating in the spectral range between 400 and 900 nm. These radio-
metric measurements were used to derive the Rrs based on Mobley
(1999) and Kd. The radiance sensor is equipped with a 7° field-of-view
and the irradiance sensor is equipped with a cosine collector. Before
being used, the radiometric quantities such as the total upwelling radi-
ance (Lt; Wm−2 sr−1 nm−1), incident sky radiance (Ls; Wm−2 sr−1-

nm−1), downwelling irradiance incident onto the water surface (Es;
Wm−2 sr−1 nm−1, and the downwelling irradiance below the water
surface (Ed; Wm−2 sr−1 nm−1) were linearly interpolated to transform
the original spectral resolution of ~3.3 nm to 1 nm. This procedure was
designed to homogenize the RAMSES measurements because the sen-
sors use different wavelengths.

The sampling rate was ~15 s/sample, resulting in 16 redundancy
values for each sampling location. From these measurements, a median
value was chosen to represent the spectrum of that location. The acqui-
sition geometry follows the protocol described in Mueller (2000b) and
Mobley (1999) to avoid effects of specular radiance and boat shading.
During the campaigns, the skywasmostly clear, with fewdayswith par-
tial cloud cover; no whitecaps or foam were observed. In addition, the
wind speed did not exceed 6 ms−1. The instruments were positioned
on a steel frame; the viewing angle of the Lt and Ls sensors were set to
40° from nadir (zenith) and an azimuth of 90° (from the sun). The Kd

value decreases exponentially with depth and is defined as (Mobley,
1994):

Kd z;λð Þ ¼ −
1

Ed λð Þ
dEd
dz

ð1Þ

Due to changes in the sun illumination, Ed can introduce uncer-
tainties; thus, normalization is required. The definition of Ed according
to Mueller (2000b) and Mishra et al. (2005) is presented below:

E0d zi;λð Þ ¼ Ed zi;λð ÞEs t z1ð Þ;λð Þ
Es t zið Þ;λð Þ ; ð2Þ

where Ed′(zi,λ) is the normalized Ed at depth zi; Ed(zi,λ) is the original Ed
at depth zi collected in the field; Es(t(z1),λ) is Es at time t(z1) on the boat
during the first scan; and Es(t(zi),λ) is Es measured from the roof of the
boat at time t(zi).

The best approximation of the Rrs values was calculated from the ra-
diometric quantities collected at the water surface as follows:

Rrs λð Þ ¼ Lt λð Þ−LSR λð Þ
Ed λð Þ ¼

Lt λð Þ− ρsky � Ls λð Þ
� �
Ed λð Þ −Δ; ð3Þ



Fig. 2. Flowchart showing the steps M1, M2, and M3 for retrieving ZSD using the
mechanistic model from Lee et al. (2015).

216 T. Rodrigues et al. / Remote Sensing of Environment 198 (2017) 213–228
where LSR(λ) is the surface-reflected light and consists of a fraction
(ρsky≈0.02−0.05) of Ls(λ) and the sun glint, residual glint, whitecaps,
and foam-reflected light (Δ; Yan and Sydor, 2006, Lee et al., 2010;
Garaba et al., 2015). The Δ value can be assumed to be zero for oceanic
water in the near-infrared (NIR); however, in turbidwater, this element
must be retrieved. The absorption by SPM decreases to almost zero be-
yond 700 nm; the increase of its concentration creates a gradient in the
NIR of Rrs due to particle scattering (Dekker, 1993; Yang et al., 2013). As
reported by Lee et al. (2010), Δ can be estimated after modeling Rrs as a
function of the spectral IOPs; it can be compared with Rrs derived from
the equation below:

Rrs λð Þ ≈ Trs λð Þ−F � Srs λð Þ−Δ; ð4Þ

where Trs(λ) is the total remote sensing reflectance, F is the surface Fres-
nel reflectance based on the viewing geometry (~0.021), and Srs(λ) is
the sky remote sensing reflectance. The value of Δ is then numerically
derived by spectral optimization that minimizes the error between the
modeled Rrs and optimized Rrs (Lee et al., 2010).

The Rrs is the input for themodels to retrieve the optically significant
constituent (OSCs) concentration. However, it is necessary tomatch the
hyperspectral data with those from satellite data by convoluting the
spectral response functions of both the MSI from Sentinel-2 and OLI
from Landsat-8 bands to derive band-weighted reflectance data
(Gordon, 1995):

RMSI;OLI
rs λkð Þ ¼

R λ j

λi
S λð ÞRrs λð ÞR λ j

λi
S λð Þ

; ð5Þ

where Rrs
MSI ,OLI stands for the remote sensing reflectance convoluted

from MSI or OLI spectral bands; λi and λj are the lower and upper
limit of the bandλk, respectively; and S(λ) is the spectral response func-
tion of the ith spectral band ofMSI (ESA, 2016) or OLI (Barsi et al., 2014).

2.4. ZSD modeling

To retrieve ZSD using the semi-analytical model of Lee et al. (2015),
three steps are required (Fig. 2): i) the first one (M1) is based on the es-
timation of the IOPs, a and bb, using version 5 of QAA (QAAv5); ii) the
second step (M2) is the estimation of Kd based on a and bb, and iii) the
third step (M3) is the retrieval of ZSD based on Kd and Rrs.

In the following section, we will show how Lee et al. (2015) used
these three models (M1, M2, and M3) to estimate the ZSD.

2.4.1. Model M1 — estimating IOPs from QAA
The QAA approach was successfully applied to optically deep water

to estimate the IOPs, assuming a(440) b 0.3m−1 (Lee et al., 2002). How-
ever, modifications were carried out to better describe the particulari-
ties of turbid inland water (Lee et al., 2009; Yang et al., 2013; Mishra
et al., 2014). Aiming to retrieve a and bb, Lee et al. (2002) described
six steps mixing empirical and analytical approaches. The models of
Lee et al. (2009) andMishra et al. (2014) followed the same steps; how-
ever, some issues were considered such as the choice of the reference
wavelength and the empirical determination of the coefficients in step
2 (see Table 1). For turbid water with high absorption coefficients, the
previous studies showed that the reference bandmust be shifted to lon-
ger wavelengths, such as the NIR region, once the contribution of other
OCSs, such as SPM, is higher than that of water (Lee et al., 2009). In a re-
cent study of Li et al. (2016), the estimated absorption coefficients at
550 and 675 nm were improved using 700 nm as reference band be-
cause the water quality of the Songhua Lake, China (SPM average of
3.32 mg l−1 and Chl-a average of 6.35 mgm−3 during summer) exhib-
ited values characteristic of ocean and coastal water for which the orig-
inal algorithm was developed.

Different QAA approaches were evaluated considering the reference
wavelength from Lee et al. (2009) and Mishra et al. (2014). The QAAv5
model used the bands from OLI/Landsat-8, while the latter one, called
QAAM14, used the bands from MSI/Sentinel-2 because the reference
wavelength at 705 nm is available in the satellite setting.

Fukushima et al. (2015) used a semi-analyticalmodel to estimate ZSD
based on IOPs retrieved by QAAv5 and QAA_turbid from Yang et al.
(2013) in 10 lakes in Japan. The parameter used to select each QAA con-
figuration was based on the type of water (clear or turbid). Considering
that the turbidity does not vary in Nav (from clear to turbid), only one
approach was applied for the entire reservoir. The model based on
Yang et al. (2013) was also tested; however, after error analysis (not
shown here), the QAAM14 showed a slight advantage over the first one.

2.4.2. Model M2 — estimating Kd from IOPs
The semi-analytical approach for Kd retrieval was presented by Lee

et al. (2013); the IOPs were derived through.

Kd λð Þ ¼ 1þm0 � θsð Þa λð Þ þ 1−γ
bbw λð Þ
bb λð Þ

� �
�m1

� 1−m2 � e−m3�a λð Þ
� �

bb λð Þ; ð6Þ

where θs is the solar zenith angle, here considered to be 30°;m0−3 andγ
are equal to 0.005, 4.26, 0.52, 10.8, and 0.265, respectively; bbw(λ) is the
backscattering coefficient for water molecules based on Smith and
Baker (1981); and a and bb are notations for total absorption and back-
scattering coefficients, respectively. This algorithm is based on the IOPs
and can be retrieved analytically through QAA (Lee et al., 2002). The co-
efficients of Eq. (6) were originally derived by Lee et al. (2013) using
Hydrolight (Mobley, 1995) simulations on oligotrophic waters (the
Chl-a concentrations were set to 0.01, 0.02, 0.05, and 0.1 mg m−3)
and the Case-1models ofMorel andMaritorena (2001) for optical prop-
erties (Lee et al., 2013).

2.4.3. Model M3 — estimating ZSD from Kd and Rrs
Based on the results from M1 and M2, the ZSD is retrieved as:

ZSD ¼ 1
2:5 Min Ktr

d

� � ln
0:14−Rtr

rs

�� ��
0:013

 !
; ð7Þ

where Kd
tr is the diffuse attenuation coefficient of the downwelling irra-

diance in the transparent spectral window and here represents themin-
imum value within the visible domain (443–665 nm); similar to Lee et
al. (2016), the green bandwas chosen to represent thisminimumvalue.



Table 1
QAA steps following version 5 from Lee et al. (2009), termed QAAv5, and the version from Mishra et al. (2014), named QAAM14, considering highly turbid water; bb is defined as
bb=bbw+bbp.

Step Property QAAv5 QAAM14

0 rrs =Rrs/(0.52+1.7Rrs) Same
1 u(λ)

¼
−g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þ g0ð Þ2 þ 4g1rrs λð Þ
h ir

2g1

Same

2 a(λ0)

¼ log
rrs λ1ð Þ þ rrs λ2ð Þ

rrs λ0ð Þ þ 5� rrs λ3ð Þ
rrs λ2ð Þ�rrs λ3ð Þ

0
BB@

1
CCA

a(λ0)=aw(λ0)+10−1.146−1.366χ−0.469χ2

(λ0=55x;λ1=443;λ2=490;λ3=667)

¼ log
0:01� rrs λ1ð Þ þ rrs λ2ð Þ

rrs λ0ð Þ þ 0:005� rrs λ2ð Þ
rrs λ1ð Þ � rrs λ2ð Þ

0
BB@

1
CCA

a(λ0)=aw(λ0)+10−0.7153−2.054χ−1.047χ2

(λ0=708;λ1=443;λ2=620)
3 bbp(λ0) ¼ u λ0ð Þa λ0ð Þ

1−u λ0ð Þ −bbw λ0ð Þ Same

4 η ¼ 2:0 1−1:2 exp −0:9
rrs 443ð Þ
rrs 555ð Þ


 ��  Same

5 bbp(λ) ¼ bbp λ0ð Þ λ0

λ

� �η Same

6 a(λ)
¼ 1−u λð Þ½ � bbw λð Þ þ bbp λð Þ� �

u λð Þ
Same
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According to Buiteveld (1995), themaximum transmission of light hap-
pens in the green region in eutrophic water, which is due to the selec-
tive absorption in the blue and red spectral regions. The Rrs

tr parameter
represents the remote sensing reflectance of this wavelength.

The spatial distribution of ZSDwill be obtained by applying the semi-
analytical scheme to a time series of OLI/Landsat-8 images; the first step
is to use the most appropriate atmospheric correction method for our
study area.
2.5. OLI/Landsat-8 atmospheric correction and acquisition

The application of imagery data to retrieve information about
waterbodies requires high-quality atmospheric correction. Franz et al.
(2015) used SeaDAS (version 7.2) and concluded that OLI/Landsat-8 im-
agery has enough attributes to support the standard atmospheric cor-
rection approach developed by NASA's global ocean color missions; in
addition, it determines and removes aerosol contributions by compari-
son with real aerosol models derived by OLI/NIR and SWIR information.
Classical methods, such as Fast Line-of-sight Atmospheric Analysis of
Hypercubes (FLAASH) and Atmospheric and Topographic Correction
for Satellite Images (ATCOR), were tested due to their simplicity of use
and reasonable success in retrieving OSCs of inland water (Kutser et
al., 2016; Kong et al., 2015). The ACOLITE, which is an atmospheric cor-
rection and processor for the OLI/Landsat-8 and MSI/Sentinel-2 data,
was also evaluated once this approach was created to meet aquatic en-
vironments (Vanhellemont and Ruddick, 2014, 2015). Recently, the
provisional Landsat 8 Surface Reflectance (L8SR) product, which is pro-
duced using a specialized software and acquired through the Earth Ex-
plorer on-demand service, has been applied to aquatic environments
to retrieve water quality parameters (USGS, 2016; Yunus et al., 2015,
Concha and Schott, 2016; Pahlevan et al., 2017). The OLI/Landsat-8
image fromMay4, 2014,wasused for atmospheric correction validation
and sixteen images covering the years of 2014 and 2016 (Path 222, Row
075) were evaluated for long-term analysis. The images were acquired
from the United States Geological Survey website (http://
earthexplorer.usgs.gov/).

2.6. Long-term trend of ZSD

The long-term ZSD dynamics in Nav were analyzed considering all
images available from 2014 and 2016. The criteria used for data selec-
tion were based on cloud free OLI/Landsat-8 images. Thus, eight images
were downloaded for each year. The available months for 2014 were
January, February, April, May, July, August, September, and December,
while those for 2016 were January, February, March, April, June, July,
August, and October. Atmospherically corrected images were used to
create the long-term map.

2.7. Accuracy assessment

To retrieve ZSD values of Nav, the semi-analytical scheme described
by Lee et al. (2015) was used and the simulated Rrs data from the MSI
and OLI sensors were applied as input. Once themain goal was to verify
the accuracy of the originalmodel to retrieve ZSD of inlandwater, such as
Nav, which is an oligo- to mesotrophic reservoir, data from three field
trips were used. Six samples from Nav1 were employed to validate the
model based on satellite data. The OLI/Landsat-8 image was acquired
on May 4, 2014 (Path 222, Row 075), and the samples were collected
on May, 1–2, 2014. The same procedure could not be accomplished
using MSI/Sentinel-2 data due to the absence of data for a date closely
matching the field data collection.

The statistical indicators used for validation were the total RMSD,
bias, and MAPE. To provide a broader statistical overview of the error,
the normalized bias (B*), normalized standard deviation (σ*), linear
correlation (R), andnormalized unbiased RMSD (uRMSD*)were also ap-
plied. The term “normalized” stands for all statistical metrics divided by
the standard deviation of the reference, here named σmeas, while the
term “unbiased” emphasizes that themeasure removes any information
about the potential bias; σ * and R represent the magnitude of data

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/


Table 2
Descriptive statistics from three field trips carried out in Nav (the notations in the table
stand for: Aver–average, SD–standard deviation,Min–Max–minimum–maximum, CV–co-
efficient of variation). Tripton was measured based on Buiteveld (1995), where
Tripton=SPM−0.07Chl−a.

Nav1 (n = 19) Nav2 (n = 19) Nav3 (n = 18)

SPM (mg l−1) Aver ± SD 1.00 ± 0.64⁎ 1.00 ± 0.58 2.83 ± 0.65⁎⁎

Min–max 0.10–2.60⁎ 0.50–2.80 1.87–3.67⁎⁎

CV (%) 63.96⁎ 57.73 23.12⁎⁎

Chl-a (μg l−1) Aver ± SD 6.30 ± 2.53 9.01 ± 4.21 26.56 ± 7.03⁎⁎

Min–max 2.46–12.56 4.51–20.48 15.84–38.59⁎⁎

CV (%) 40.12 46.76 26.49⁎⁎

Tripton Aver ± SD 0.66 ± 0.53⁎ 0.52 ± 0.50 0.97 ± 0.40⁎⁎

Min–max 0.10–2.15⁎ 0.09–2.04 0.37–1.76⁎⁎

CV (%) 79.34⁎ 96.53 40.79⁎⁎

Turbidity (NTU) Aver ± SD 1.63 ± 0.42 1.73 ± 0.41 –
Min–max 1.01–2.47 1.01–2.56 –
CV (%) 25.45 23.55 –

ZSD(m) Aver ± SD 3.19 ± 0.62 3.41 ± 0.62 2.97 ± 0.63
Min–max 2.29–4.80 2.45–4.65 1.91–3.80
CV (%) 19.44 18.07 21.03

a(443) (m−1) Aver ± SD 0.75 ± 0.12 0.80 ± 0.22 0.99 ± 0.18
Min–max 0.49–1.06 0.42–1.45 0.65–1.37
CV (%) 16.13 27.77 18.30

aϕ(m−1) Aver ± SD 0.17 ± 0.07 0.24 ± 0.09 0.29 ± 0.13
Min–max 0.10–0.38 0.10–0.43 0.11–0.57
CV (%) 39.97 35.98 44.87

⁎ n = 16.
⁎⁎ n = 09.
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dispersion and shape patterns. To obtain ideal conditions, the magni-
tude and shapemight assume σ*= R=1,which leads to theminimum
uRMSD*.

A different perspective about the contribution of the error was
achieved using the Taylor and Target diagrams (Taylor, 2001; Jolliff et
al., 2009). In the polar coordinate diagram (Taylor graphic), the radial
(along-axis) distance from the origin is related toσ∗ and the angular po-
sition corresponds to R. The distance between the reference and the
modeled points is proportional to uRMSD*. The observation is the refer-
ence point, which is indicated by the polar coordinates (1.0, 1.0) when
the metrics are normalized. The target diagram considers the Cartesian
plane (uRMSD*, B*), where uRMSD* N 0 means that the model standard
deviation is larger than the reference, while uRMSD* b 0 indicates the
contrary; B* N 0 signifies positive bias, while B* b 0 indicates negative
bias. The distance from the origin to the model value is defined by the
normalized total RMSD (RMSD*). A circle is created to represent
RMSD* = 1.0 and the model values falling inside the circle (total
RMSD values less than the σmeas) tend to provide a better estimate
than the mean of the observations (Friedrichs et al., 2009).

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
xest;i−xmeas;i
� �2s

ð8Þ

MAPE ¼ 100%
n

∑
n

i¼1

xest;i−xmeas;i

xmeas;i

����
���� ð9Þ

bias ¼ 1
n
∑
n

i¼1
xest;i−xmeas;i
� � ð10Þ

B� ¼ xest−xmeas

σmeas

� �
ð11Þ

σ � ¼ σest

σmeas
ð12Þ

RMSD� ¼ RMSD
σmeas

ð13Þ

uRMSD� ¼ sign σ est−σmeasð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ�2−2σ �R

p
; ð14Þ

where n is the number of samples xest ,i and xmeas ,i represent the estimat-
ed and measured values, respectively; xest and xmeas represent the aver-
ages of the estimated and measured values, respectively; and σmeas and
σest are the standard deviation of the measured and estimated values,
respectively.

3. Results

3.1. Biogeochemical and optical characterization

The water quality parameters are displayed in Table 2. The table
shows how homogenous the data are, except when compared with
those from Nav3. The data from 2014 does not show statistical dif-
ferences between austral autumn an austral spring, exhibiting sea-
sonal independence. However, considering the data collected in
2016, the variables show a statistical change, indicating the impact
of rainfall conditions on the water quality (see Fig. 1d for rainfall
data).

The SPM and Chl-a concentrations from all field trips are peculiar for
an oligo- tomesotrophic environment. The averages between Nav1 and
Nav2 did not show statistical differences for SPM, turbidity, tripton, and
ZSD (p N 0.05); however, the contrary was observed for the Chl-a con-
centration (p b 0.05). The SPM and Chl-a averages related to Nav1 and
Nav2 were statistically different from that of Nav3 (p b 0.05). In addi-
tion, the average ZSD and tripton for Nav1 did not statistically differ
from that of Nav3; however, the contrary was the case for Nav2 and
Nav3. These results imply that some factor led to the differentiation of
the water quality from 2014 to 2016; according to Coelho et al.
(2015), southeastern Brazil experienced a major drought event in
2014, affecting the water quality and availability in this region. In
2016, the precipitation rate led to the increase of the surface runoff
and therefore the input of sediment load into the reservoir.

The abundance of phytoplankton is generally higher during dry pe-
riods (austral winter/spring), probably caused by the decrease of the
river input, relatively high water temperature, and increase of water
residence time and light availability (Wang et al., 2010; Curtarelli et
al., 2015). In Nav3, for example, the Chl-a concentration increased con-
siderably compared with Nav1 and Nav2. This can be explained by the
dry period established in March and April of 2016, depicting values
even lower than 2014, that created a favorable environment for phyto-
plankton growth. In the data collection month (May 2016), the rainfall
started to increase, reaching the highest value since 2011; thus, Chl-a
reduction was expected due to light limitations and the dilution effect
(Watanabe et al., 2016b).

The IOPs provide information about the contribution and dominance
of certain OSCs in the water and also assist in the estimation of these
components using proper algorithms (Mishra et al., 2014; Riddick et
al., 2015). The proportion of each IOP in detriment to the total absorp-
tion budget, except for the water contribution (at−w), was computed
considering the wavelengths of OLI bands (443, 560 and 655 nm). The
absorption of Nav1 was represented by the NAP at 443 and 560 nm of
with 42.90% ± 6.51% and 48.69% ± 7.61%, respectively. At 655 nm, the
phytoplankton contributed with 48.69% ± 7.61%, highlighting the
high variability of the inland water composition (Fig. 3a–c). Regarding
Nav2, CDOM contributed with 40.44% ± 8.39% at 443 nm, followed by
NAP with 46.00% ± 9.68% at 560 nm and 46.88% ± 10.69% at 655 nm.
Nav3 had a NAP dominating the blue and green wavelengths of
62.74%± 9.31% and 71.68%± 13.13%, respectively. At 655 nm, the phy-
toplankton achieved 53.86%± 13.67% of the at−w. Nav1 and Nav3were
characterized by thepredominance of aϕ at 655 nm,which is considered
a typical diagnostic feature of phytoplankton attributed to the backscat-
tering by CDOM (Gitelson, 1992).

At all wavelengths, Nav3 presented the lowest percentage of CDOM
(b10%). The allochthonous organicmatter basically originated from ter-
restrial plants; however, it is worth mentioning that Nav is surrounded



Fig. 3. Ternary plots depicting the relative contribution of aCDOM, aNAP, and aϕ at (a) 443, (b) 560, and (c) 655 nm.
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by sugar cane, citrus plantations, and bare soil. After rainfall events, the
runoff carries mostly inorganic matter, which can also be observed in
the ternary plots based on the predominance of NAP in the blue–
green spectral region (Fig. 3). The water level of the reservoir does not
vary significantly; thus, the vegetation near the waterbody is not
flooded, limiting the production of dissolved organic matter (DOM). In
addition, the shoreline is basically sand with less influence of clay
(Cavenaghi et al., 2003). Gücker et al. (2016) reported that dissolved or-
ganic carbon (DOC) concentrations are higher in urban streams when
compared with pasture, natural and agriculture streams. The two
months that precededNav3 showed the lowest rainfall data considering
the period between 2011 and 2016; therefore, limited input entered the
reservoir.

The Rrs spectra are quite similar, presenting absorption and reflec-
tance features typical for inland water (Fig. 4). The spectral range be-
tween 400 and 750 nm was chosen to display the main features for
the three time periods. The reflectance peak at ~550 nm is related to
the weak absorption of chlorophyll and high contribution of particulate
backscattering. The feature near 630 nm is related to phycocyanin ab-
sorption (Cheng et al., 2013). A smooth absorption feature near
675 nmrepresents the absorption of chlorophyll. At longerwavelengths
(N650 nm), pure water starts to strongly absorb, while the scattering of
particulate influences the reflectance (Yacobi et al., 2011). Overall, the
spectral features did not change much from one field trip to another;
the main change was the magnitude of reflectance near 560 nm be-
tween Nav1 and Nav3 and Nav2 and Nav3 (p b 0.05). The coefficient
of variation (CV%) with respect to the wavelengths of 443, 560, and
655 nm was higher for Nav2 (61%, 51%, and 57%, respectively) and
lower for Nav1 (25%, 28%, and 35%, respectively), while Nav3 showed
intermediary values (34%, 49%, and 51%, respectively). This variability
is intrinsically related to the water composition of Nav and can be di-
rectly linked to the various uncorrelated constituents that are dissolved
or suspended in thewater for which the relative concentrations change
accordingly to different biological and physical processes (Lubac and
Loisel, 2007). In addition, previous studies revealed that the variance
Fig. 4. Rrs of the three field trips carried out in 2014 and 2016: (a) Nav 1, austral aut
is mostly based on particulate backscattering (bbp) and less on dissolved
absorption (Toole and Siegel, 2001; Lubac and Loisel, 2007).

3.2. Implication of M1 for M2 and M3 accuracy

To check the performance of Kd and the ZSD model, Rrs data from
three different dates were used as input (except for Kd, which only in-
cluded in situ data from Nav1 and Nav2). The a and bb coefficients
were analytically derived from QAAv5 and QAAM14 and further applied
to satellite data to retrieve ZSD. Considering the limited number of
bands from OLI/Landsat-8 and the absence of a band near 708 nm,
which is highly recommended for studies of inland water, the IOPs
were derived usingQAAv5 (see Table 1). The QAA version 6was also an-
alyzed; however, the results were not suitable to retrieve ZSD and there-
fore are not presented here. The QAAM14 using MSI/Sentinel-2 bands
was used to evaluate the performance of a productive turbid water
model. The model followed the original steps including the coefficients
without reparameterization; however, two bands were replaced due to
the absence of bands 620 and 708 nm in MSI/Sentinel-2 images. By
relating the hyperspectral band at 620 nm to Rrs

MSI(665) and 708 nm to
Rrs
MSI(705), high determination coefficients (R2 = 0.9856 and R2 =

0.9995, p b 0.05, n = 56, respectively) and low relative percentage er-
rors (27.23% and 12.04%, n = 56, respectively) were obtained, indicat-
ing that both bands were suitable to replace the original ones.

The estimation of Kd depends on the inversion of a and bb from accu-
rate Rrs values. Yang et al. (2014) observed thatwhen usingQAAv5 to pro-
vide the IOPs for a turbid lake in Japan, the Kd(443, 556, 669) measures
based on Lee et al. (2005b) were underestimated, producing high errors
(relative error, RE = 66.80%). However, the result improved (RE =
22.33%) when they shifted the reference wavelength to 754 nm, but
not as much as using QAA_turbid from Yang et al. (2013), which showed
a better accuracy (RE=12.96%). The authors also evaluatedQAAv6. How-
ever, this approach led to an increased error (RE=75.05%). In the current
study, a direct validation between estimated and measured bb was not
performed; data from Nav1 and Nav2 presented in situ data for Kd.
umn 2014; (b) Nav 2, austral spring 2014; and (c) Nav3, austral autumn 2016.
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The Kd based on QAAv5 (here named Kdv5) is displayed in Fig. 5a; the
value based on QAAM14 (here termed KdM14) is displayed in Fig. 5b.

The agreement between estimated and measured Kd(561) using
QAAv5 was better in Nav1 than in Nav2, which exhibited more disperse
data. The KdM14 produced high variability for both Nav1 and Nav2, also
depicting high uncertainties. The RMSD, MAPE, and bias were
0.05 m−1, 10.35%, and −0.02 m−1 for Nav1 using Kdv5 and 0.06 m−1,
12.68%, and −0.03 m−1 using KdM14, respectively, while Nav2 yielded
low accuracies using both methods such as 0.09 m−1, 19.76%, and
0.00 m−1 for Kdv5 and 0.13 m−1, 28.29%, and −0.04 m−1 for KdM14

(Fig. 5c). Yang et al. (2014) used in situ a and bb values to retrieve Kd

based on Lee et al. (2005b) and found an agreement between the esti-
mated and measured Kd(556) of 86%, with a RE of 8.34%. However,
when they used QAAv5, the agreement dropped to 10%, with a RE of
66.06%. To overcome the poor performance of themodel, they switched
the QAA approach to QAA_turbid, which increased the performance to
56%, with a RE of 16.42%.

ZSD results from QAAv5 (here named ZSDv5) based on OLI/Landsat-8
bands are displayed in Fig. 5d. The values from all three field trips did
not show a good agreement between estimated and measured ZSD;
the worst performance was observed in Nav2, followed by Nav3. The
three datasets were underestimated; however, the values did not scat-
ter as much as the ones retrieved from QAAM14 (here named ZSDM14).

The errors obtained from the use of ZSDv5 are shown in Fig. 5e (Nav1:
RMSD=0.55m,MAPE=12.86%, and bias=−0.35m; Nav2: RMSD=
1.18 m, MAPE = 28.83%, and bias =−1.00 m; Nav3: RMSD= 0.99 m,
MAPE = 31.17%, and bias = −0.90 m). The results presented in Lee et
al. (2016) showed that the semi-analytical model achieved a R2 of 0.96
using OLI/Landsat-8 bands for a ZSD ranging between ~0.1 and 30 m in
seawater and an average unbiased absolute percentage difference of
16.7% and 18.2% using data covering different regions including inland
water (Lee et al., 2015). Al Kaabi et al. (2016) applied the empirical re-
lationship between ZSD and 1/Kd(490) based on Lee et al. (2005a) and
obtained a R2 of 0.62 and RSMDof 26.68% for the ArabianGulf. These re-
sults highlight the success of the semi-analytical approach over the em-
pirical model; however, the method used in Lee et al. (2015) did not
Fig. 5. Comparison between estimated and measured Kd(561) values using: (a) Kdv5 and (b) Kd

using: (d) ZSDv5 and (e) ZSDM14. (f) Uncertainties of ZSD represented by RMSD (m), bias (m), an
show the same accuracy for Nav, which is probably related to the
input data originating frommodel M1 (see Fig. 2), as observed in Fig. 5.

The performance of Kd and ZSD is highly affected by the estimation of
IOPs fromQAA; according to Li et al. (2016), the success for inlandwater
demands the shifting of the reference band to longer wavelengths
(700 nm) and a high contribution of aCDOM(443) to a(λ). The high influ-
ence of aNAP(440) can lead to a poor accuracy of the algorithm. The au-
thors observed a contribution of CDOM of N70% to a(λ) in the Songhua
Lake, China, which has water quality parameters very close to that of
Nav. InNav, the slight dominance of NAP in at−w(443) is evident, except
for Nav2, which showed a CDOMwith a proportion of 40%, followed by
phytoplanktonwith 30% (Fig. 3). Thus, different from Li et al. (2016), the
total absorption budget was balanced between the absorption coeffi-
cients, making it difficult to achieve a good performance with QAA. In
addition, the authors also drew attention to the need of large amounts
of seasonal and regional information to calibrate the model in different
water types.

Fig. 5e shows that most of ZSD values retrieved by ZSDM14 were
underestimated, showing that the model was not suitable to map this
variable using this setting. The errors for ZSDM14 exceeded the uncer-
tainties of ZSDv5 (Nav1: RMSD = 0.70 m, MAPE = 14.33%, and bias =
−0.26 m; Nav2: RMSD = 1.50 m, MAPE = 35.94%, and bias =
−0.35 m; and Nav3: RMSD = 1.26 m, MAPE = 39.13%, and bias =
−1.19 m). The QAAM14 was designed for very turbid cyanobacteria-
dominated water with high aϕ(443) ranging between 3.44 and
47.21 m−1, representing N54% of a(443). This scenario is very different
from that in Navwith aϕ(443) b0.57m−1. To retrieve a(λ), Mishra et al.
(2014) shifted the reference wavelength to 708 nm and the band com-
bination in step 2 (Table 1) included the band at 620 nm, which is a di-
agnostic feature for phycocyanin (Simis et al., 2005). In addition to
QAAM14, many other efforts have been made to study inland water (Le
et al., 2009; Yang et al., 2013; Li et al., 2016). However, most of them fo-
cused on very turbid water with high absorption coefficients. As pre-
sented here, these types of approaches were not suitable to derive
IOPs in a waterbody with a(443) b 1.45 m−1 and the consequence is
propagated to the ZSD values. In addition, Yang et al. (2014) showed
M14. (c) Uncertainties of Kd represented by RMSD (m), bias (m), and MAPE (%). ZSD values
d MAPE (%); L8 and S2 stand for OLI/Landsat-8 and MSI/Sentinel-2, respectively.
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that, even when shifting the reference wavelength to longer wave-
lengths, the improvement in the IOP estimationwould be compromised
due to the spectral slope (η) of bbp that also affects the estimation of
IOPs. Therefore, we proposed to change the empirical steps of QAAv5

to reduce the errors in estimating the IOPs and consequently improve
the performance of the ZSD model.

3.3. Improvement of M1 for M2 and M3 modeling

As shown previously, the QAA version led to different performances
of the Kd and ZSD models, with a slight advantage of ZSDv5 over ZSDM14.
Therefore, the estimation of ZSD can be improved by recalibrating the
empirical steps of QAAv5. The same band combinations of all steps
were maintained and one factor (C1) was included in the numerator
of χ; the factor of the denominator (C2) was then changed (Table 1)
to retrieve a(λ0), similar to Mishra et al. (2014), aiming to move the
ZSD data upwards closer to the 1:1 line because the estimated values
showed an underestimation pattern (Eq. (15)).

χ ¼ log
C1 � rrs λ1ð Þ þ rrs λ2ð Þ

rrs λ0ð Þ þ C2 � rrs λ3ð Þ
rrs λ2ð Þ�rrs λ3ð Þ

0
BB@

1
CCA; ð15Þ

This step is important because it includes the a(λ0) estimation. If this
procedure fails, the errorwill be propagated to the next step [e.g., the es-
timation of bb(λ0)]. To estimate bbp(λ) accurately, bb(λ0) and η are need-
ed. The parameter η (step 4, Table 1) was modeled empirically using
data from the NOMAD dataset with sampling sites in the open ocean
and coastalwater (Yang et al., 2013). Therefore, step 4was also changed
by replacing the value 2 by 2.2, similar to Lee et al. (2002). It is notewor-
thy that in situ IOPs were not used for QAA improvement; instead, the
Fig. 6. (a) Relationship between estimated andmeasuredKd values using KdR17 andOLI bands, (b
measured ZSD values using ZSDR17 and OLI bands, (d) Uncertainties of ZSD.
final Kd and ZSD retrieved by the semi-analytical model were compared
with in situ data.

After a simple optimization, the values of C1 and C2 were assigned to
0.02 and 0.005, respectively. The IOPswere further converted toKd, con-
sidering the sun zenith angle at the timeof observation of each sampling
location. As result, the uncertainties of Kd of the new version (here
named KdR17) related to Nav1 and Nav2 slightly improved and showed
a MAPE of 8.89% and 18.76%, respectively (Fig. 6a, b). The improvement
was also propagated to the ZSD retrieval (ZSDR17). The uncertainties di-
minished for Nav1, Nav2, and Nav3; however, data from Nav2 were
more dispersed, leading to an underestimation of ZSD (Fig. 6c, d).

The R2 of Nav1 increased to 0.65 and the RMSD andMAPE decreased
to 0.52 m and 11.71%, respectively. Nav2 also showed improvements;
however, not as significant as that of the other two field campaigns.
The R2 was 0.19, while RMSD and MAPE decreased to 0.90 m and
19.75%, respectively. The R2 of Nav3 was 0.75 and the RMSD and
MAPE were 0.32 m and 8.65%, respectively.

The only difference between the native scheme of ZSDv5 and ZSDR17 is
the replacement of QAAv5 by the improved QAAR17 to estimate a(561)
and bb(561). Yang et al. (2015) also noticed improvements of the trans-
parency of available photosynthetic radiation (TPAR) and euphotic zone
depth (Zeu) for a lake in Japan by replacing the native QAAv5 with
QAA_turbid. The current results indicate the underestimation of Kd,
which is probably due to the IOP's retrieval, leading to the underestima-
tion of ZSD. The results also imply that the estimation ofKd and ZSD can be
improvedwhen a newQAA approach is used,whichwas also confirmed
by Yang et al. (2015), assuming that reparameterization of the semi-an-
alytical scheme of Lee et al. (2015) is not required for oligo- tomesotro-
phic inland water. In addition, improvements can also be achieved by
using different band combinations for the empirical steps of QAA (e.g.,
red and NIR wavelengths) presented on other spatial platforms, such
as Sentinel-2/3, and suggested for inland water dominated by inorganic
or organic matter.
) Uncertainties of Kd represented by RMSD (m), bias (m), andMAPE (%). (c) Estimated and
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Furthermore, to compare the performance of the ZSD model using
three different QAA versions, a broader statistical analysis based on
the Taylor and Target diagrams was applied. The terms magnitude and
shape of two dataset patterns were considered, where the magnitude
is related to the variance of the data retrieved by the model and the
measured data, while the shape regards the agreement between
modeled and measured data. The Taylor diagram allows us to discern
how both magnitude and shape of the modeled data change as the
model is modified (Jolliff et al., 2009).

Fig. 7 depicts the performances of all three approaches used in this
work. With respect to Nav1 (Fig. 7a), both ZSDv5 (σ ∗ = 0.78, R = 0.73,
and uRMSD∗ = 0.69) and ZSDR17 (σ ∗ = 0.44, R = 0.81, and uRMSD∗ =
0.69) show a good correlation with the measured data, which means
that the distribution of the samples followed a similar pattern,matching
the in situ ZSD well.

The uRMSD ∗ defines the distance of the modeled to the reference
data. If the goal is to minimize the uRMSD∗, then the best situation is
to have σ ∗=R; however, this does not mean that the magnitude of
the data dispersion will be low. It only means that the uRMSD∗ between
themodeled andmeasured data is low, as depicted in Fig. 7a. The ZSD re-
trieved using ZSDM14 (σ ∗=0.91, R=0.39, and uRMSD∗=1.06) present-
ed the highest uRMSD∗ and the worst agreement with the reference
data; however, σ ∗ almost reached the value 1, indicating that the mag-
nitude of the data dispersion resembled the reference data. Based on the
Target diagram (Fig. 7), all models underestimated the measured ZSD in
case of Nav1 (Fig. 7d). Models inside the circle indicate that the total
RMSD is smaller than the standard deviation of the reference; this
means, it ismore desirable to obtainmodel values close to the reference.
The distance between the reference andmodel is defined by the RMSD∗;
therefore, the closest model was ZSDR17 (RMSD∗ = 0.83 and B∗ =
−0.45), followed by ZSDv5 (RMSD∗ = 0.88 and B∗ = −0.55) and
ZSDM14 (RMSD∗ = 1.13 and B∗ = −0.40). All of the models presented a
negative bias and depicted a smaller standard deviation than that of
the reference (Fig. 8a).

With respect to Nav2, Fig. 7b shows that the performances of both
ZSDv5 (σ ∗ = 1.00, R = 0.46, and uRMSD= 1.04) and ZSDR17 (σ ∗ = 0.86,
R=0.44 and uRMSD∗ =0.99) are similar, which was expected because
Fig. 7. Summary diagrams depicting the performances of the threemodels (ZSDv5, ZSDM14 and ZSD
the Target diagram of (d) Nav1, (e) Nav2 and (f) Nav3. The red dot refers to the reference data
the improved version preserved the original framework of ZSDv5. In ad-
dition, the correlation of both models was moderate, which means
that the shape of the modeled and reference data does not match well
(Fig. 8b). The model ZSDM14 (σ∗ = 2.54, R = 0.30, and uRMSD∗ = 2.44)
exceeded the reference values; its position in the Taylor diagram was
therefore far from that of the other models and reference. Fig. 7e
shows that ZSDR17 had the lowest B∗ (RMSD∗ = 1.49 and B∗ = −1.11)
when compared with the reference; the standard deviation of ZSDv5
(RMSD∗ = 1.93 and B∗ = −1.62) was larger than that of the reference,
while the standard deviation of ZSDR17 was lower than that of the refer-
ence. The ZSDM14 model (RMSD∗ =2.50 and B∗ =−0.57) presented the
worst performance, showing high errors compared with the reference.

Fig. 7c shows that ZSDR17 (σ∗ = 0.97, R= 0.86, and uRMSD∗ = 0.51)
outperformed the results of other models (ZSDv5: σ∗ = 1.10, R = 0.79,
and uRMSD∗ = 0.68; ZSDM14: σ∗ = 0.41, R = 0.88, and uRMSD∗ =
0.67), illustrating that the modification of QAAv5 improved the retrieval
of ZSD. In addition, themagnitude of the data dispersion of the reference
and improved version were comparable and the correlation of both
measures was good (Fig. 8c). The Target diagram highlights the
advantage of ZSDR17 (RMSD∗ = 0.52 and B∗ = 0.08) over the other
models (ZSDv5: RMSD∗ = 1.59 and B∗ = −1.44; ZSDM14: RMSD∗ = 2.02
and B∗ = −1.91). As previously mentioned, the use of QAAv5 led to an
underestimation of ZSD, justifying the use of the improved version.

3.4. Atmospheric correction assessment

To evaluate the semi-analytical model using orbital data and taking
into account the availability of OLI/Landsat-8 images after two and
three days of sample collection, three widely used atmospheric correc-
tion methods were tested and one atmospherically corrected product
was evaluated. Aiming to compare both satellite (dimensionless) and
TriOS data (sr−1), the surface reflectance of OLI/Landsat-8 imagery, as-
sumed to be the in situ data, was divided by π (Moses et al., 2012;
Wang et al., 2015).

Fig. 9a shows that, of all themethods, L8SR performedwell at station
13, collected with three-day delay of the OLI/Landsat-8 overpass. The
coastal, blue, green, and red bands present a relative percentage error
R17) in retrieving the ZSD values. The Taylor diagramof (a)Nav1, (b) Nav2 and (c) Nav3 and
and the black circle corresponds to a RMSD∗ of 1.0.



Fig. 8.Graphics depicting the ZSD for each sampling station showing the values observed in
the field (red line) and generated by different QAA versions (ZSDv5 – yellow line, ZSDM14 –
blue line, ZSDR17 – green line) and based on different field campaigns: (a) Nav1, (b) Nav2
and (c) Nav3. The colored bars represent the standard deviation of each model and the
reference data.
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(ε) of 46.04%, 36.09%, 19.82%, and 46.40%, respectively; on the other
hand, the NIR band shows the worst performance, with ε = 91.68%.

The second best result was acquired with ACOLITE for the coastal
(391.72%), blue (34.69%), green (15.00%), red (32.16%), and NIR
(110.27%) bands. The ε values of FLAASH were: coastal = 22.16%,
blue = 141.44%, green = 51.77%, red = 113.82%, and NIR =
156.28%. The ε values of ATCOR were high, similar to FLAASH: blue
(64.91%), green (82.13%), red (170.84%), and NIR (211.49%). The settings
of both atmospheric corrections required similar information such as
visibility and atmospheric and aerosol models. Regarding the retrieval
of the IOPs in QAA, the presence of bands at 443, 482, 561, and 658 nm
Fig. 9. Atmospheric correction method comparison for (a) statio
is mandatory; therefore, even with a good approximation of ACOLITE
for the latter three bands, the worst result for the band at 443 nm of
OLI/Landsat-8 prevents its use.

Based on Fig. 9b that shows the performance of the atmospheric cor-
rection considering station 17 with two-day delay of the OLI overpass,
ACOLITE performed with a high accuracy mainly with respect to the
blue (1.80%), red (2.47%), andNIR (9.85%) bands. In contrast, the coastal
(630.12%) and green (34.13%) bands show the highest errors. The use of
FLAASH reduced the error of the coastal band (9.68%) but not that of the
blue (80.76%), green (30.25%), red (65.98%), and NIR (58.03%) bands.
The L8SR provided more consistent results for all bands, even with the
highest error for the coastal band (81.17%), followed by the blue
(44.39%), green (19.23%), red (40.22%), and NIR (21.56%) bands. The
ATCOR approach presented the following errors: coastal (44.94%),
blue (64.11%), green (47.42%), red (103.32%), and NIR (58.03%).

The results clearly show the difficulty in correcting the bands at
shorter wavelengths, such as coastal and blue bands, due to high scat-
tering in those spectral regions. Several studies described this issue
such as Kutser et al. (2016). Overall, L8SR achieved the best result; it
was used in studies of the water quality in inland water, showing
good outcomes in terms of spatialmodeling ofwater quality parameters
(Concha and Schott, 2016). Therefore, this product was selected to spa-
tially display the ZSD values.

3.5. Validation and long-term trend of ZSD

The samples from the first campaign (n=6)were separated from the
whole dataset to validate the image data. The modified semi-analytical
model () based on the L8SR product (Fig. 10) produced uncertainties in
the two-day delay data (n = 3), with MAPE = 9.76%, RMSD = 0.31 m,
and bias = −0.27 m, and in the three-day delay data (n = 3), with
MAPE = 18.86%, RMSD = 0.79 m, and bias = −0.68 m. The bias ob-
served in the data can be attributed to the date difference between in
situ collection and satellite overpass.

Shang et al. (2016) applied the same approach to the ZSD retrieval
using MODIS images of the Bohai Sea, China. After validation (n =
20), they determined a RMSD of 0.126m (log scale) and an average un-
biased percentage difference (ε) of 23%. Applying the same error met-
rics as reported in Shang et al. (2016), our validation result (n = 6)
presented a RMSDof 0.09m and ε of 16%. These results show the poten-
tial of using OLI/Landsat-8 to monitor the water quality in this type of
environment using orbital data with a temporal resolution of 16 days.

The ZSD values for Nav were then derived using the QAAR17 version
and the semi-analytical algorithm from Lee et al. (2015) and were fur-
ther applied to OLI/Landsat-8 images corresponding to long periods in
2014 and 2016. Themaps (Fig. 11) showed a distinct spatial and tempo-
ral variability. The lowest averages in 2014 were observed in January
(1.69 ± 0.15 m) and December (1.74 ± 0.24 m), coherent with the
wet season, where the system receives high loads of sediment via run-
off, leading to the increase of the water turbidity. On the other hand,
the months of August (3.03 ± 0.42 m) and April (2.99 ± 0.44 m)
showed the highest averages, which is in agreement with the dry
n 13 (three-day delay) and (b) station 17 (two-day delay).



Fig. 10. Comparison between estimated ZSDR17 and in situ ZSD (a) and error analysis (b). The estimated datawere retrieved from theOLI/Landsat-8 image fromMay 4, 2014, while the in situ
data refer to samples collected with a three-day (May 1, 2014) and two-day (May 2, 2014) temporal gap.
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seasons. The zones A and Bmarked by the red circle (Fig. 11a) depict the
regions with low ZSD. The first one is placed in an area with many resi-
dential clusters, while zone B is mostly surrounded by sugar cane plan-
tations. The wind and river dynamics also indicate the decrease of the
ZSD in zone B.

In general, the lowest ZSD followed the wind direction; here, it is sit-
uated at the left border of the reservoir. The lowest averages of the ZSD in
2016 occurred in February (1.40 ± 0.28 m) and January (1.44 ±
0.21 m), but the autumn months (March: 1.70 ± 0.23; April: 1.71 ±
0.24m) also depicted low averages. On the contrary, thewintermonths
showed the highest averages (June: 2.73± 0.26m; July: 2.96± 0.24m;
and August: 2.90± 0.31m). Such a seasonal variability was also report-
ed by Wu et al. (2015) who observed the decrease of the transparency
in spring and summer and an increase in winter. The reasons were at-
tributed to the seasonal rainfall variation, which showed lower values
in winter and higher values in spring and summer. In addition, the
Fig. 11. Application of the semi-analytical model (ZSDR17) to OLI/Landsat-8 images in diffe
low transparency was also linked to the increase of phytoplankton bio-
mass, indicating an exponential trend (LaBounty, 2008). The turbidity
can be intensified by activities, such as sand dredging, which create sed-
iment resuspension, leading to the decrease of the water clarity. In case
of Nav, zone A is characterized by such activities.

The amount of rainfall (mm) in each season varied between 2014
and 2016 (Fig. 12). The rainfall in summer was significantly higher in
2016 (602.64 mm) than in 2014 (436.96 mm), while the difference in
autumn (2014: 334.39 mm; 2016: 356.97 mm) and winter (2014:
127.58 mm; 2016: 130.05 mm) was insignificant. On the other hand, a
distinct difference between both years was observed in spring (2014:
416.94 mm; 2016: 219.27 mm). Based on the ZSD pattern for both
years, an indirect relationship with the rainfall data can be observed,
which was also reported in Wu et al. (2015).

Erosion due to rainfall and runoff intensifies the increase of
suspended particles in inflowing streams, leading to the decrease of
rent months of 2014 (a–h) and 2016 (i–p). The arrays represent the wind direction.



Fig. 12. Relationship between monthly rainfall (mm) and ZSD in (a) 2014 and (b) 2016. The dashed black line marks the average rainfall, while the dotted black lines indicate the linear
rainfall trend. The blue and orange dotted lines represent the linear ZSD trends for 2014 and 2016, respectively.
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the water transparency. This was expected and well documented. The
wet season in 2016 is considered normal, with high values in January
that decrease toward March. During this period, the ZSD presented
very low values, probably due to the input of sediment loads from the
surrounding regions. On the contrary, the dry season led to an increase
of the ZSD values. The same patternwas also observed in 2014 but at dif-
ferent magnitudes.
4. Discussion

4.1. Relationships between ZSD and water quality constituents

The water transparency is mostly represented by the ZSD values and
is a valuable parameter to study thewater quality of all aquatic systems.
The reason for the low or high water clarity can be attributed to water-
shed activities.With respect to the low Tietê River Basin,which includes
Nav, the main use is agriculture with sugar cane plantations, citric cul-
tures, and cattle raising. All these activities provide sediment load and
nutrient (N and P) input to the water (Li et al., 2008). The enrichment
of the water with nutrients promotes the increase of the primary pro-
duction (Chl-a is a proxy), which highly correlates with aϕ(443). The in-
organic and organic composition also affect the relationship between
SPM and aNAP(443) (Le et al., 2015).
Fig. 13. Relationships between in situ ZSD and in situ (a) turbidity, (b)
The relationship between the SPM and Chl-a concentrations was
very weak (not shown here) when data from Nav1 and Nav2 were an-
alyzed (R=0.37). However, the relationship between those parameters
was strong for Nav3 (R=0.80), indicating differentwater compositions
between field campaigns. These results indicate that 37% of the SPMdy-
namics can be explained by the Chl-a variations of Nav1 and Nav2,
while 80% of the SPM variance can be explained by the Chl-a variations
of Nav3. In addition, the correlation between SPM and tripton for Nav1
and Nav2 was strong (R = 0.95), while the correlation was 0.66 for
Nav3. Based on these relationships, the SPM concentration of Nav1
and Nav2 was dominated by inorganic matter instead of organic matter
due to the strong relationship between SPM and tripton; the contrary is
true for Nav3 based on the weakest correlation.

Fig. 13 shows that the ZSD is negatively correlated with SPM (R =
−0.6, p b 0.001), turbidity, and Chl-a (R = −0.5 and R = −0.4, p b

0.05, respectively), which means that the water clarity deteriorates
with increasing contribution of these parameters. In addition, the corre-
lation between ZSD and SPM is higher than that between ZSD and Chl-a,
suggesting that thewater transparency is more affected by SPM than by
Chl-a. The aϕ(443) highly correlates with the Chl-a concentration (R=
0.7, p b 0.001) and aNAP(443) with SPM (R=0.7, p b 0.001). The source
andnature of the SPMcanbe explainedwith the land use and land cover
(LULC) analysis. Niyogi et al. (2006) observed a negative effect on grass-
land catchments that were converted to pasture. The main effect on
SPM, and (c) Chl-a based on three field trips carried out in Nav.
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physicochemical stream properties is often linked to increased nutrient
concentrations and fine-sediment input. Increasing the sediment cover
of the streambed would yield a linear decline of the water health. Agri-
culture reduces the water quality by increasing the nonpoint input of
contaminants (Allan, 2004).

4.2. Limitations of model M1 in retrieving ZSD

The estimation of IOPs using QAAv5 is the limiting factor for the suc-
cess of ZSDmodeling, represented by stepM1 (Fig. 2). Using the original
QAAv5, the values of ZSD were underestimated (Fig. 5c), probably due to
the underestimation of IOPs that led to the low performance of Kd (Fig.
5a). Li et al. (2016) also noticed the underestimation trend in the IOP re-
trieval usingQAAv5 for turbidwater and suggested that the larger contri-
bution of particulate absorption at 440 nm leads to the poorer
performance of the model. Similar results were observed for Nav
dataset, where the contribution of aNAP occupies most of the absorption
budget (see Fig. 3), leading to the poor accuracy of QAAv5. Ogashawara
et al. (2016) highlighted that the calculation of u(λ) (step 1 in Table
1) based on fixing the g0 and g1 values can lead to an underestimation
of a(λ). Both g0 and g1 are empirically derived and have direct influence
on the magnitude of the irradiance reflectance to IOPs. The adjustment
of these values can improve the estimation of a and bb; however, addi-
tional tuning of the operational procedures is not recommended
(Aurin and Dierssen, 2012).

Since theQAA uses Rrs as key parameter, it is worth noting that the in
situ data collected to calculate Rrs is subjected to the random motion of
the water surface and technique limitations. An accurate determination
therefore remains a challenge (Lee et al., 2010). Althoughwe used a ro-
bustmethod to reduce the sun glint to accurately determine Rrs, residual
glint might remain; also, we need to consider the inherent noise pro-
duced by the sensors (Zibordi et al., 2012). Therefore, we also need to
take the errors of the Rrsdetermination in consideration,which certainly
will be propagated to the models M2 and M3.

Despite of the reparameterization ofM1, the results are still not ideal
and require further investigation. Based on the Taylor and Target dia-
grams, the shape andmagnitude of the deviations of ZSD are comparable
to that of the reference. In other words, the ZSDv5 followed a pattern
(high correlation) of data dispersion close to that of the reference and
the variance of the data derived by the model resembled the variance
of the reference (Fig. 8). However, these observations were not verified
with ZSDM14, highlighting the restriction of its use considering thewater
quality of Nav.

The uncertainty analysis carried out by Lee et al. (2010) showed that
the contribution of Δη over Δa(λ) wasmore representative than that of
Δa(λ0); this result was more related to water with low absorption but
high scattering coefficients. For a(λ) retrieval, η was slightly modified;
however, due to the limitation of bands from OLI/Landsat-8, the band
combination was maintained. Mishra et al. (2014) also used the same
band combination from QAAv5 for turbid inland water. Lee et al.
(2010) highlighted that, with the increase of a(440), the uncertainties
also increased to a certain extent. The success of a(λ) derived by QAA
also depends on bbp; large uncertainties are related to high values of
bbp. Taking these outcomes into consideration, simple modifications of
the empirical steps 2 and 4 (Table 1) were carried out and the model
brought the derived ZSD close to the 1:1 line, which was not possible
with data from Nav2.

A close analysis of the bio-optical properties of Nav2 showed their
higher variability, here represented by the coefficient of variation. The
Rrs, for example, varied inmagnitude and showed thehighest coefficient
of variance at thewavelengths of 443 and 560 nm(61% and 51%, respec-
tively), which is probably due to particulate backscattering in thewater,
mainly at 560 nm (Lubac and Loisel, 2007). In addition, the high vari-
ability was also observed for the Chl-a concentration (CV = 46.76%)
and the absorption coefficients of NAP (CV = 33.62%) and CDOM (CV
= 17.31%) at 443 nm. The horizontal gradient observed in the bio-
optical properties of Nav2 is the main constraint for ZSD modeling
when compared to datasets from all field trips. Thus, for waterbodies
with a horizontal variability in bio-optical properties, the QAAs are lim-
ited to accuratelymodel the IOPs and the estimation of ZSD can therefore
be compromised.
5. Conclusion

A semi-analytical scheme developed to estimate ZSD was applied to
Nav datasets using simulated OLI/Landsat-8 bands from three field
trips carried out in 2014 and 2016. For validation, the OLI image-based
ZSDwas compared with the in situ ZSD; after improvements, a good rela-
tionship was observed, strongly suggesting the use of OLI/Landsat-8
data to map the water clarity in an oligo- to mesotrophic reservoir.

The algorithm inputs, such as the IOPs, Kd, and ZSD, were semi-ana-
lytically derived, here denominated as steps M1, M2, and M3, respec-
tively. The original quasi-analytical algorithm, QAAv5, using bands from
OLI was evaluated and further compared with QAAM14 using simulated
bands from MSI, designed for turbid inland water. Both algorithms
were used to derive Kd and ZSD; however, the approach using QAAv5

outperformed QAAM14, presenting a MAPE ranging between 10.35%
and 19.76% for Kd and between 12.86% and 31.17% for ZSD, while the lat-
ter model has a MAPE ranging between 12.68% to 28.29% for Kd and be-
tween 14.33% and 39.13% for ZSD. Due to the underestimation of QAAv5
with respect to Kd and ZSD, slight modifications (here named QAAR17)
of the empirical steps χ and ηwere carried out; thereafter, the estimat-
ed values moved close to the 1:1 line. The Taylor and Target diagrams
showed that QAAR17 could retrieve ZSD with high correlation and low
uncertainty; however, this is not true for bio-optical properties with
high variability. Of all the three datasets, Nav2 showed the highest coef-
ficient of variance for remote sensing reflectance, suggesting a different
biogeochemical composition along the reservoir.

To determine the best performance of QAAR17, bio-optical character-
izationwas carried out; Nav showed to be affected by NAP absorption in
the visible spectral region. When the in situ ZSD was compared with
water quality parameters, SPM was negatively correlated, suggesting
that the attenuation of light is generally dictated by suspended sedi-
ment. The need of an improved version of QAAv5 (step M1) for estima-
tion highlighted the constraint of the model. However, this does not
mean that the semi-analytical scheme from Lee et al. (2015) needs to
be reparameterized; instead the current study recommends the use of
a broader dataset covering different types of inland water to evaluate
different QAA approaches and reach an universal format. Although,
eventual modifications could be necessary based on the sensor configu-
ration. Thus, the hypothesis that QAAv5 cannot accurately retrieve IOPs
for inland water was confirmed, whichmeans that step M1 is the limit-
ing factor for ZSD retrieval. However, the results also show that the
mechanistic model proposed by Lee et al. (2015) can be considered as
universally applicable.
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