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Abstract
In this paper we give an electrically charged traversable wormhole solution 
for the Einstein–Maxwell-dilaton theory when the dilaton is a phantom 
field, i.e. it has flipped sign kinetic term appearing in the action. In the limit 
when the charge is zero, we recover the anti-Fisher solution, which can be 
reduced to the Bronnikov–Ellis solution under certain choices of integration 
constants. The equations of motion of this theory share the same S-duality 
invariance of string theory, so the electrically charged solution is rotated into 
the magnetically charged one by applying such transformations. The scalar 
field is topological, so we compute its topological charge, and discuss that 
under appropriate boundary conditions we can have a lump, a kink, or an anti-
kink profile. We determine the position of the throat, and show the embedding 
diagram of the wormhole. As a physical application, we apply the Gauss–
Bonnet theorem to compute the deflection angle of a light-ray that passes 
close to the wormhole.

Keywords: wormholes, exact solutions, Gauss–Bonnet theorem

(Some figures may appear in colour only in the online journal)

1.  Introduction

Phantom fields are defined as the fields whose kinetic term appears in the action with flipped 
sign1, resulting in a negative kinetic energy. The motivation for considering such fields comes 
from cosmological observations [1, 2], which suggest the existence of a fluid with negative 
pressure that could be a phantom field, and also from a theoretical point of view, since for 
a nontrivial kinetic term P(− 1

2 (∂φ)
2) they give a ghost condensate in a consistent infrared 

modification of gravity [3]. Although negative energies are in general a sign of instabilities, 
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it is argued that such instabilities can be cured [4]. In string theory, phantom fields appear in 
the study of ‘negative branes’ [5, 6] (called also ‘topological anti-branes’ or ‘ghost branes’). 
In the same way as ordinary branes, negative branes are extended objects which give rise 
to a gauge group SU(M), for a stack of M negative branes on top of each other, where M 
is a negative Chan–Pathon factor associated to the endpoint of the string. They cancel the 
effects of ordinary branes. Then, SU(N|M) symmetry can be realized for a stack of N ordi-
nary D-branes, and M negative D-branes. It was argued in [7] that, if N = 4 SU(N|M) gauge 
theories exist, they must be holographically dual to AdS5 × S5 because they are indistinguish-
able from SU(N − M) theory to all order in 1/(N − M) (for N  >  M). Also, the relation among 
string dualities, the signature of spacetime, and phantom fields, was carefully studied in [8].

An interesting direction is to find and classify the charged solutions in the presence of 
phantom fields. Consider for instance the Einstein–Maxwell-dilaton (EMD) theory. By flip-
ping the sign of the kinetic term of the gauge field or the dilaton field, Gibbons and Rasheed 
showed [9] that it is possible to construct massless black holes and wormholes solutions for 
the new theories. The author of this paper has shown recently [10] that one can set the value of 
the dilaton at infinity to a specific imaginary value, and construct massless black holes for the 
EMD theory, whose observables are all real. Moreover, the same massless solutions were used 
to construct Einstein–Rosen bridges which satisfy the null energy condition (NEC). More 
general black hole solutions were found for the case when only the dilaton field is of the phan-
tom type [11]. For convenience, we follow [9] and call such a theory as Einstein–Maxwell-
anti-dilaton (EMaD), due to the fact that the kinetic term of the dilaton has a flipped sign.

An intriguing aspect about phantom scalar fields is the fact that they give rise to travers-
able wormhole solutions. A wormhole is a tunnel connecting two different regions of the 
same spacetime, or two regions of different spacetimes [12–15]. A traversable wormhole is a 
solution that allows observers to cross it from one region to the other. The surface of minimal 
area connecting the two regions is called the ‘throat’ of the wormhole. Morris and Thorne 
have shown [16] that the matter that keeps the throat open is ‘exotic’, i.e. it does not satisfy 
the null energy condition (NEC). This means that there is matter with negative energy at the 
throat of the wormhole, which is classically unacceptable. We know nowadays that violations 
of the NEC happens in quantum mechanics, which, together with the cosmological observa-
tions discussed in the first paragraph, is another motivation for the study of wormholes in the 
presence of phantom fields. Of course there are other motivations for considering wormholes. 
One recent investigation, for instance, made use of the cut-and-paste method to construct 
wormholes in the presence of non-linear Maxwell fields [17]. Also in [11], a wormhole solu-
tion was obtained for the case when the coupling of the phantom-dilaton φ with the Maxwell 
field is given by the term e2λφF2, where λ2 > 1.

In this paper we give an analytical charged traversable wormhole solution for the EMaD 
theory2 for the case when the coupling of the phantom-dilaton φ with the Maxwell field is 
given by the term e−2φF2. The solution we present is electrically charged, and, as the equa-
tions of motion are invariant under S-duality, we can also obtain the magnetically charged 
solution by aplying such transformation. In the limit when the electric or magnetic charge is 
zero we obtain the old known wormhole solution discussed by Bergmann and Leipnik [12] 
(which is sometimes referred to as anti-Fisher solution [13]), which can also be reduced to the 
Bronnikov–Ellis wormhole solution [14, 15]. As a physical application, we use the method 
introduced by Gibbons and Werner [19] and apply the Gauss–Bonnet theorem to compute the 
deflection angle of the light passing close to the wormhole.

2 For a numerical study about the role of phantom scalar fields in the gravitational collapse, see [18].
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We present our results as follows. In section 2 we present the EMaD theory, and write 
the equations of motion. In section 3 we give the electrically charged traversable wormhole 
solution, and show that it reduces to known solutions in the limit when the charge is zero. We 
briefly discuss that the magnetically charged solution can be obtained via S-duality rotation. 
In section 4 we derive an equation that gives the position of the throat of the wormhole. In sec-
tion 5 we compute the topological charge of the anti-dilaton field, and then, we make the plots 
for the anti-dilaton, exponential coupling and electric field for the cases when the anti-dilaton 
is a lump and a kink. In section 6 we just present the embedding diagram for the wormhole. 
In section 7 we compute the deflection angle of a light ray passing close to the wormhole. In 
section 8 we conclude.

2.  Einstein–Maxwell-anti-dilaton theory

The field content of the theory we consider is the metric gµν, a gauge field Aµ, and a phantom 
scalar φ, i.e. a scalar field whose kinetic term in the action has a flipped sign. Such theory is 
called Einstein–Maxwell-anti-dilaton (EMaD) theory, since this is just the Einstein–Maxwell-
dilaton (EMD) theory with a positive kinetic term for the dilaton. The action is written as

S =

∫
d4x

√
−g

(
R + 2∂µφ∂µφ− e−2φFµνFµν

)
.� (1)

We take units in which (16πGN) ≡ 1. The field strength has the usual form

Fµν = ∂µAν − ∂νAµ.� (2)

The equations of motion for the metric, anti-dilaton, gauge field, and the Bianchi identities 
are respectively:

Rµν = −2∂µφ∂νφ− 1
2

gµνe−2φFρσFρσ + 2e−2φFµρFν
ρ,� (3)

∇µ(∂
µφ)− 1

2
e−2φFµνFµν = 0,� (4)

∇µ

(
e−2φFµν

)
= 0,� (5)

∇[µ Fρσ] = 0.� (6)

3.  Electrically charged wormholes

We want to study electrically charged wormholes in a static spacetime with spherical sym-
metry, so we take the following ansatz for the metric

ds2 = −e−λdt2 + eλdr2 + C2(r)(dθ2 + sin2 θdφ2).� (7)

The resulting equations of motion can be combined and written as

C′′

C
= (φ′)2,� (8)

(e−λC2)′′ = 2,� (9)

P Goulart﻿Class. Quantum Grav. 35 (2018) 025012
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d
dr

(
C2 d

dr
(e−λ)

)
= −2C2e−2φFrtFrt,� (10)

d
dr

(
e−λC2φ′) = C2e−2φFrtFrt.� (11)

The solution to the gauge field equation (5) is

Frt =
Q

e−2φC2 .� (12)

Replacing this in the previous equations, we find an analytical wormhole solution given by

e−λ = exp

[
Q2

2c2
1

ec2+
2c1

l arctan( r
l ) − 2(b1 − c1)

l
arctan

( r
l

)
− (2b2 − c2)

]
,

� (13)

C2 = (r2 + l2) exp
[
− Q2

2c2
1

ec2+
2c1

l arctan( r
l ) +

2(b1 − c1)

l
arctan

( r
l

)
+ (2b2 − c2)

]
,

� (14)

φ = − Q2

4c2
1

ec2+
2c1

l arctan( r
l ) +

b1

l
arctan

( r
l

)
+ b2,� (15)

Frt =
Q

(r2 + l2)
ec2+

2c1
l arctan( r

l ),� (16)

with the condition

c1 = b1 ±
√

b2
1 − l2.� (17)

In this solution, b1, b2, c1 and c2 are integration constants. Notice that b1 and c1 have dimension 
of length, and b2 and c2 are dimensionless. The constant b2 has no geometrical meaning and 
it just contributes to the value of the dilaton at the asymptotic regions. The constant c2 shapes 
the profile of the phantom scalar, as will be explained in section 5. This is a real solution valid 
in the whole spacetime. Apart from the term (r2 + l2) in (14) and (16), the solution depends 
only on exponentials of the inverse of tangent function of the radial coordinate. So, it contains 
no singularity, as a traversable wormhole must be. The wormhole connects one Minkowski 
spacetime located at r = +∞ with another one at r = −∞. For Q  =  0, we recover the anti-
Fisher solution [12, 13]

ds2 = −e−λdt2 + eλdr2 + C2(r)(dθ2 + sin2 θdφ2)� (18)

e−λ = exp

[
−2(b1 − c1)

l
arctan

( r
l

)
− (2b2 − c2)

]
,� (19)

C2(r) = (r2 + l2) exp
[

2(b1 − c1)

l
arctan

( r
l

)
+ (2b2 − c2)

]
,� (20)

φ(r) =
b1

l
arctan

( r
l

)
+ b2,� (21)

P Goulart﻿Class. Quantum Grav. 35 (2018) 025012
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also with the condition (17). We recover the BE wormhole [14, 15] if we set b1  =  l (which 
implies b1 = c1), and also 2b2 = c2. For other solutions involving different interacting theo-
ries with Lagrangian L ∼ R − 2(∇φ)2 − Z(φ)F2 , where Z(φ) are different functions of the 
scalar field, see [20, 21].

For reasons that will be explained below, it is more convenient to express our solution 
(13)–(16) in terms of the constants Q, l, b1, b2, c1 and c2. In general, static black hole and 
wormhole solutions are expressed in terms of the asymptotic charges such as the mass M, 
the electric charge q, and the dilaton Σ. For a traversable wormhole we have two asymptotic 
regions, so we can compute the charges for each asymptotic region and write them in terms 
of these constants. Using equation (A.9) derived in appendix, the wormhole metric can be 
expressed in the positive asymptotic region, i.e. r → +∞, as

ds2 ≈ −e−m1

(
1 − m2

r

)
dt2 + em1

(
1 − m2

r

)−1
[dr2 + r2(dθ2 + sin2 θdφ2)],

�

(22)

where m1 and m2 are given by equation (A.7) also in appendix. Making the following scale 
redefinitions

t → em1/2τ , r → e−m1/2u,� (23)

the metric becomes

ds2 ≈ −
(

1 − m2em1/2

u

)
dτ 2 +

(
1 − m2em1/2

u

)−1

[du2 + u2(dθ2 + sin2 θdφ2)].

�

(24)

The term multiplying the spatial part of the metric can be expanded, and we finally obtain

ds2 ≈ −
(

1 − m2em1/2

u

)
dτ 2 +

(
1 +

m2em1/2

u

)
[du2 + u2(dθ2 + sin2 θdφ2)].

�

(25)

In the weak-field limit the static metric is expressed as

ds2 = −(1 + 2UN)dτ 2 + (1 − 2UN)[du2 + u2(dθ2 + sin2 θdφ2)],� (26)

where UN = −M
r  is the Newtonian potential, and M is the mass parameter of the gravitational 

object. Comparing equations  (25) and (26) we identify the mass parameter in the positive 
asymptotic region as

M+ =
m2em1/2

2
.� (27)

Writing this explicitly we obtain

M+ =

(
−b1 + c1 +

Q2ec2+
c1π

l

2c1

)
exp

[
−Q2ec2+

c1π
l

4c2
1

+
(b1 − c1)π

2l
+

(2b2 − c2)

2

]
.

�
(28)

This approximation is valid only for the positive asymptotic region, i.e. r → +∞. The result 
for the negative asymptotic region, i.e. r → −∞, is obtained by flipping the signs of the terms 
containing factors of π, since limr→−∞ arctan(r/l) = −π/2. So, the mass parameter for the 
negative asymptotic region is written as

P Goulart﻿Class. Quantum Grav. 35 (2018) 025012
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M− =

(
−b1 + c1 +

Q2ec2−
c1π

l

2c1

)
exp

[
−Q2ec2−

c1π
l

4c2
1

− (b1 − c1)π

2l
+

(2b2 − c2)

2

]
.

�

(29)

The electric charge in the positive asymptotic region q+ and in the negative asymptotic region 
q− are defined through the integral

q± =
1

4π

∫

r→±∞
Fµνnµmν√gθθgφφdθdφ,� (30)

where mµ = (1, 0, 0, 0) and nµ = (0, 1, 0, 0). This gives

q± =
1

4π

∫

r→±∞
dθdφ

Q
(r2 + l2)

ec2+
2c1

l arctan( r
l )(r2 + l2)eλ

= Qec2+
2c1

l arctan( r
l )eλ

∣∣∣
r→±∞

.
� (31)

This implies that

q± = Q exp

[
− Q2

2c2
1

ec2±
c1π

l ± b1π

l
+ 2b2

]
.� (32)

The dilaton charges at each region, Σ±, are defined through

φ ≈ φ± − Σ±

r
+ ...,� (33)

where φ± is the value of the dilaton at the positive region for plus sign and negative asymptotic 
region for minus sign. Using the approximations given in appendix, this gives

φ ≈ −Q2ec2±
c1π

l

4c2
1

± b1π

2l
+ b2 −

1
r

[
Q2ec2±

c1π
l

2c1
+ b1

]
.� (34)

Then we can extract

φ+ = − Q2

4c2
1

ec2+
c1π

l + b2 +
b1π

2l
,� (35)

φ− = − Q2

4c2
1

ec2−
c1π

l + b2 −
b1π

2l
,� (36)

Σ+ =
Q2ec2+

c1π
l

2c1
+ b1,� (37)

Σ− =
Q2ec2−

c1π
l

2c1
+ b1.� (38)

This allows us to rewrite the mass parameters M± and the charges q± as

M+ = (Σ+ − 2b1 + c1)eφ+− c1π
2l − c2

2 ,� (39)

M− = (Σ− − 2b1 + c1)eφ−+
c1π

2l +
c2
2 ,� (40)

P Goulart﻿Class. Quantum Grav. 35 (2018) 025012
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q+ = Qe2φ+ ,� (41)

q− = Qe2φ− .� (42)

Notice that we can not express the constants Q, b1, b2 and c2 solely in terms of the charges at 
each asymptotic region3. This is the reason why it is more convenient to express all our results 
in terms of these integration constants instead of the asymptotic charges. We will use these 
results in the end section 7.

For the analysis that follows, we will need the Ricci tensors and the Ricci scalar for our 
wormhole solution (13)–(16). Using equations (13) and (14), we compute the Ricci tensors, 
which are given by

Rtt =
Q2

(r2 + l2)2 exp

[
Q2

c2
1

e
2c1

l arctan( r
l )+c2 − 2(2b1 − 3c1)

l
arctan

( r
l

)

−4b2 + 3c2] ,
�

(43)

Rrr =
−1

2c2
1 (l2 + r2)

2

[
4c2

1

(
(b1 − c1)

2 + l2
)
+ Q4e

4c1
l arctan( r

l )+2c2

+2c1Q2(c1 − 2b1)e
2c1

l arctan( r
l )+c2

]
,

�

(44)

Rθθ =
Q2

(r2 + l2)
e

2c1
l arctan( r

l )+c2 ,� (45)

Rφφ = Rθθ sin
2 θ.� (46)

From these results we can easily obtain the Ricci scalar, an it is written as

R =
−1

2c2
1 (l2 + r2)

2

(
Q2e

2c1
l arctan( r

l )+c2 − 2b1c1

)2

× exp

(
2(c1 − b1)

l
arctan

( r
l

)
− 2b2 +

Q2

2c2
1

e
2c1

l arctan( r
l )+c2 + c2

)
.

�

(47)

Notice that the Ricci scalar (47) is finite everywhere in the spacetime, i.e. it does not contain 
any singularity in the range −∞ < r < +∞. This means that the solution is neither a black 
hole nor a naked singularity. One can check that other scalar invariants constructed out from 
the Riemann tensors are also finite everywhere. Also, due to the smoothness of the spacetime, 
all geodesics are complete. In order to check the energy conditions, we choose orthonormal 
basis vectors [16]:

êt = eλ/2 ∂

∂t
, er̂ = e−λ/2 ∂

∂r
, eθ̂ =

1
C

∂

∂θ
, eφ̂ =

1
C sin θ

∂

∂φ
.� (48)

In the hatted coordinated system, the components of the energy momentum tensor are 
T̂t̂t = ρ(r), Tr̂r̂ = −τ(r), Tθ̂θ̂ = Tφ̂φ̂ = p(r), where ρ(r) is the energy density measured by 
the static observer, τ(r) is the tension per unit area measured in the radial direction, and p(r) 
is the pressure that is measured in the directions orthogonal to the radial direction. The null 
energy condition is written as

3 Remind that c1 depends on b1 and l by (17).

P Goulart﻿Class. Quantum Grav. 35 (2018) 025012
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Tµ̂ν̂kµ̂kν̂ � 0,� (49)

where the null vector is given by kµ̂ = (1, 1, 0, 0). As we are using units in which 
(16πGN) = 1, we can use Einstein’s equations and the fact that kµ̂kµ̂ = 0 in order to show that 
Tµ̂ν̂kµ̂kν̂ = 2Rµ̂ν̂kµ̂kν̂. The term Rµ̂ν̂kµ̂kν̂ is just twice the curvature scalar given by (47). So, 
for the wormhole solution (13)–(16), the null energy condition (49) is not satisfied, since (47) 
is a stricly negative function of the radial coordinate. It is important to emphasize that this fact 
does not depend on any choice of integration constants. The curvature is negative everywhere 
in the spacetime, and it is finite at the throat.

Although the dilaton field is of the phantom type, the equations of motion for the theory 
(1) have the same S-duality invariance of the EMD theory, i.e. the equations of motion are 
invariant under

φ → −φ, Fµν → ε̃µνρσ

2
√
−g

Fρσ.
�

(50)

Here, ̃εµνρσ is the antisymmetric Levi-Civita symbol, and ̃εtrθφ = 1. We can transform our elec-
trically charged solution to a magnetically charged solution simply by applying the S-duality 
transformation (50). It would be very interesting though to obtain a traversable wormhole 
solution for the EMaD theory with both electric and magnetic charges, i.e. a dyonic solution. 
It is known that the dyonic black hole for the EMD theory (with coupling to the gauge field 
being e−2φ) contains two horizons [22], unlike its electrically (or magnetically) charged solu-
tion, which contains only one [23]. In the absence of such dyonic wormhole solution, we can 
not see whether the spacetime structure changes.

4. The throat of the wormhole

As was stated in the introduction, the throat of the wormhole corresponds to the surface of 
minimal area. Notice that the wormhole metric can be cast in the form

ds2 = −e−λdt2 + eλ
[
dr2 + (r2 + l2)dΩ2

2

]
.� (51)

The spatial part of the metric would be the same as the BE wormhole case if the factor e−λ were 
absent. In the BE wormhole the minimal surface happens when the radial coordinate is r  =  0, 
but we will see that this is not necessarily the case here. The function C2(r) = eλ(r2 + l2) has 
a minimum when

(C2)′(rmin) = 0, (C2)′′(rmin) > 0.� (52)

These two conditions imply that, at the minimum radius

2CC′ = 0, 2(C′)2 + 2CC′′ > 0.� (53)

The function C is non-zero everywhere in the wormhole spacetime, so the position of the 
minimum, rmin, can be found solving

C′(rmin) = 0,� (54)

whereas the second condition implies that the signs of C(rmin) and C′′(rmin) be the same. 
If 2(C′)2 + 2CC′′ = 0, then we must analyse the behavior of the first derivative around the 
inflection point to check that it is indeed a minimum. Using the first condition we see that the 
position of the throat rmin is found solving the equation
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rmin − Q2

2c1
ec2+

2c1
l arctan( rmin

l ) + b1 − c1 = 0.� (55)

Notice that rmin can have different values because the inverse tangent is a multi-valued func-
tion. We focus our analysis considering only the principal value of the inverse tangent, so the 
argument inside the tangent function ranges from

r
l
= tan y → −π

2
< y <

π

2
.� (56)

Notice that our solution depends on several integration constants, but, as we are interested 
only in principal values, equation (55) gives one single value for rmin. One can easily plot the 
function C2(r) and check that this value is indeed a minimum.

5. Topological charge and plots

A topological charge is a conserved quantity that is not associated to any Noether symmetry. 
The field φ given by equation  (15) is of topological nature, so it must have a topological 
charge associated to it. In fact, we can define the following current

jµ ∼ ε̃µν∂νφ,� (57)

such that

N = β

∫ +∞

−∞
drε̃tr∂rφ = β[φ(+∞)− φ(−∞)],� (58)

for a constant β, which we will fix as β = 1, and a field φ that depends only on the radial 
coordinate. Here, ε̃µν  is the antisymmetric Levi-Civita symbol with two indices, and ε̃tr = 1. 
For l  >  0 we have

lim
r→±∞

arctan
( r

l

)
= ±π

2
(1 + 4n), n = 0, 1, 2, ....� (59)

We choose the branch for which n  =  0 in order to be consistent with the choice of interval in 
equation (56). The dilaton field (15) at the two asymptotic regions is written as

φ(±∞) = − Q2

4c2
1

ec2±
c1π

l + b2 ±
b1π

2l
.� (60)

So, the topological charge is written as

N = φ(+∞)− φ(−∞) = − Q2

2c2
1

ec2 sinh
(c1π

l

)
+

b1π

l
.� (61)

The factor c2 is important because it shapes the profile of the scalar field. Depending on the 
choice of integration constants, the dilaton can be connected to two different vacua, i.e. it is 
a kink, or it can be connected to the same vacuum, i.e. it is a lump. In order to obtain a lump, 
the topological charge must be zero, which implies

φ(∞) = φ(−∞) ⇒ ec2 =
2c2

1b1π

Q2l
1

sinh
( c1π

l

) .� (62)

We first plot the dilaton field for the case when it is a lump, and this is shown in figure 1. For 
the same values of constants, the coupling e2φ also has a lump profile, as shown in figure 2. 
For completeness, the electric field is also plotted in figure 3. For values of c2 other than those 
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in (62), the dilaton will have a kink or anti-kink profile. We plot only the case when c2  =  0. 
The dilaton is shown in figure 4. Notice now, that the exponential coupling is also a kink, as 
shown in figure 5. The electric field is also plotted in figure 6.

6.  Embedding diagram

In this section we construct the embedding diagram for the wormhole. Without loss of gener-
ality, we set t  =  const and θ = π/2. The metric for this slice is then written as

ds2 = eλ(dr2 + (r2 + l2)dφ2).� (63)

This differs from the usual embedding diagram of the BE wormhole only by a ‘conformal 
factor’ eλ. We redefine our radial coordinate such that

Figure 1.  Dilaton field. Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

Figure 2.  Exponential coupling e2φ. Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.
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(r∗)2 ≡ eλ(r2 + l2).� (64)

We can not invert this equation in order to write r(r�). Taking derivatives, we have

dr∗ =

(
r − Q2

2c1
ec2+

2c1
l arctan( r

l ) + b1 − c1

)
eλ/2

√
r2 + l2

dr.� (65)

For simplicity, we redefine the term inside the parenthesis as

g(r∗) ≡ r − Q2

2c1
ec2+

2c1
l arctan( r

l ) + b1 − c1,� (66)

where it is implicit the relation r(r�). Then, (63) is rewritten as

Figure 3.  Electric field. Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

Figure 4.  Dilaton field. c2 = 0, Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.
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ds2 =
r2 + l2

g2 dr∗2 + r∗2dφ2.� (67)

The Euclidean metric of the embedding space is the same as the one used in [16]

ds2 = dz2 + dr∗2 + r∗2dφ2 =

[
1 +

(
dz

dr∗

)2
]

dr∗2 + r∗2dφ2.� (68)

This implies that

dz
dr∗

= ±
(

r2 + l2

g2 − 1
)1/2

.� (69)

Figure 5.  Exponential coupling e2φ. c2 = 0, Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

Figure 6.  Electric field. c2 = 0, Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.
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We split the function z(r�) in two parts, one for the positive sign, z+(r�), and another one for 
the negative sign, z−(r�). So we have two differential equations written as

dz+
dr∗

= +

(
r2 + l2

g2 − 1
)1/2

,
dz−
dr∗

= −
(

r2 + l2

g2 − 1
)1/2

.� (70)

These equations are integrated numerically, and the embedding diagram is shown in figure 7. 
The boundary condition we imposed is just z+(rmin) = z−(rmin) = 0. This diagram repre-
sents the wormhole, and it connects the upper region z+(r�) with the lower region z−(r�) by 
a minimal surface with area greater than zero.

7.  Deflection angle via Gauss–Bonnet theorem

In a geometrical approach to gravitational lensing theory, Gibbons and Werner showed how 
the Gauss–Bonnet theorem can be applied to the computation of the light deflection angle in 
the weak deflection limit for static and spherically symmetric spacetimes [19]. The application 
of this method for wormhole cases was done in [24, 25]. In this section, we apply this method 
to compute the deflection angle of a light ray passing close to the wormhole described by the 
solution of section 3.

Consider the following oriented surface domain D, with boundary CR = γR ∪ γḡ, as 
described by figure 8. The Gauss–Bonnet theorem states that

∫ ∫

D
KdS +

∫

∂D
κdt +

∑
i

αi = 2πχ(D),� (71)

where K is the Gaussian curvature associated to the Riemannian metric ḡ, κ is the geodesic 
curvature for CR : {t} → D , and αi is the extrerior angle with ith vertex. χ(D) is the Euler 
characteristic, which is χ(D) = 1 for a non-singular domain, and χ(D) = 0 for a singular 
domain [19]. As the wormhole spacetime is non-singular, we must use χ(D) = 1. In order 

Figure 7.  Embedding diagram: Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3, 
ec2 = (3

√
3 + 4)/(2e2π/9).
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to find the Gaussian curvature, we consider without loss of generality only null geodesics 
ds2 = 0 on the equatorial plane θ = π/2. Then, the wormhole metric reduces to

dt2 = ḡijdxidx j = e2λdr2 + e2λ(r2 + l2)dϕ2.� (72)

This is the so-called optical metric. We can easily obtain the Christoffel connections for this 
metric, which are given by

Γ̄r
ϕϕ = −r +

Q2

c1
ec2+

2c1
l arctan( r

l ) − 2(b1 − c1),� (73)

Γ̄r
rϕ =

1
(r2 + l2)

[
r − Q2

c1
ec2+

2c1
l arctan( r

l ) + 2(b1 − c1)

]
.� (74)

We will use these connections later. We introduce the Regge–Wheeler tortoise coordinate r�, 
such that

dr� = eλdr, f 2(r�) = e2λ(r2 + l2),� (75)

where r = r(r�). The optical metric (72) then takes the form

dt2 = dr�2 + f 2(r�)dϕ2.� (76)

The Gaussian curvature K is related to the Riemann tensor through the relation

Rrϕrϕ = K(ḡrϕḡϕr − ḡrrḡϕϕ) = −Kdetḡ.� (77)

The Gaussian curvature can be expressed as [19]

K = −Rrϕrϕ

detḡ
= − 1

f (r�)
d2f (r�)

dr�2 .� (78)

Notice that we can write this expression in terms of the original radial coordinate r as

K = − 1
f (r�)

[
dr
dr�

d
dr

(
dr
dr�

)
df
dr

+

(
dr
dr�

)2 d2f
dr2

]
.� (79)

Figure 8.  Gravitational lens: DR is the domain enclosed by the boundary CR, b is the 
impact parameter, and δ is the deflection angle.
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Using (75) we obtain

K = − 1
e2λ(r2 + l2)

[
λ′r +

l2

(r2 + l2)
+ (r2 + l2)λ′′

]
� (80)

= − 1
e2λ(r2 + l2)2

[
Q2

c1
rec2+

2c1
l arctan( r

l ) − 2Q2ec2+
2c1

l arctan( r
l ) − 2r(b1 − c1) + l2

]
.

�

(81)

For the metric (72), we have 
√

ḡ = e2λ
√

r2 + l2 . We will compute the first integral in (71) 
only to leading order for large values of r, i.e.

∫ ∫

D
KdS =

∫ π

0

∫ ∞

b
sinϕ

drdϕ
√

detḡK� (82)

=

∫ π

0

∫ ∞

b
sinϕ

drdϕe2λ
√

r2 + l2K� (83)

≈ −
∫ π

0

∫ ∞

b
sinϕ

drdϕ
1
r2

[
Q2

c1
ec2+

c1π
l − 2(b1 − c1)

]
� (84)

≈ −2
b

[
Q2

c1
ec2+

c1π
l − 2(b1 − c1)

]
,� (85)

where b is the impact parameter. The second integral is a little more involved. In the examples 
presented in [19] the result of the integral is always π + δ, but this is not always the case. 
In fact, there are some examples of solutions in the presence of topological defects which 
give a different contribution [26], which will be the situation here. In order to compute the 
second integral, we must find κ. Let us define the velocity and acceleration vectors along the 
curve γ respectively as γ̇  and γ̈ . The velocity vector must respect the unit velocity condition 
ḡ(γ̇, γ̇) = 1. For very large values of R the sum of the external angles for the source and the 
observer tends to π, i.e. αS + αO → π. The geodesic curvature is computed using the relation

κ = ḡ(∇γ̇ γ̇, γ̈).� (86)

Along γḡ, κ(γḡ) = 0 because γḡ is a geodesic. We must then compute

κ(γR) = |∇γ̇R γ̇R|,� (87)

where γ̇R is the velocity vector along the curve γR. The radial component of this expression 
is given by

(∇γ̇R γ̇R)
r = γ̇µ

R∂µγ̇
r
R + γ̇µ

R Γ̄
r
µν γ̇

ν
R.� (88)

Because we confine our attention on the countour CR := r(φ) = R =const for large R, there 
is no variation in the radial distance, so γ̇r

R = 0, and ḡϕϕ(γ̇
ϕ
R )

2 = 1. So, the expression above 
is written as

(∇γ̇R γ̇R)
r = Γ̄r

ϕϕ(γ̇
φ
R )

2.� (89)

Using (73) we have

(∇γ̇R γ̇R)
r =

1
e2λ(r2 + l2)

(
−r +

Q2

c1
ec2+

2c1
l arctan( r

l ) − 2(b1 − c1)

)
.� (90)
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Using the optical metric (72), we also obtain

dt = eλ
√

r2 + l2dϕ.� (91)

Combining both results (90) and (91), and also using the expansions written explicitly in the 
appendix, we evaluate the integral as

∫

∂D
κdt =

∫ π+δ

0
(∇γ̇R γ̇R)

rdϕ ≈ −e−m1(π + δ),� (92)

where m1 is given by (A.7). This is valid for large values of R and for small values of δ. 
Inserting the results (85) and (92) in (71), we can easily evaluate the light deflection angle, 
given by

δ =
2em1

b

[
2(b1 − c1)−

Q2

c1
ec2+

c1π
l

]
− π(1 + em1).� (93)

This result was derived only for the positive region, but we can easily generalize it for the 
negative region as well. In fact, using the asymptotic values of the dilaton (35) and (36), and 
the definition of the asymptotic charges (37)–(42), the deflection angle in both regions can 
also be written as

δ+ = −4M+

b
eφ+− c1π

2l − c2
2 − π(1 + e2φ+− c1π

l −c2),� (94)

δ− = −4M−

b
eφ−+

c1π
2l +

c2
2 − π(1 + e2φ−+

c1π
l +c2).� (95)

8.  Conclusions

In this paper we gave an analytical electrically charged traversable wormhole solution for the 
Einstein–Maxwell-anti-dilaton theory. We discussed that the equations of motion inherit the 
same invariance under S-duality (electric-magnetic) transformation of string theory, and so, 
the magnetically charged solution is obtained easily by applying such transformations in the 
solution. The solution depends on functions of the inverse tangent function of the radial coor-
dinate. This introduces branch cuts which can be absorbed by redefinition of the integration 
constants, or by considering only principal values of the inverse tangent. We gave an explicit 
equation that determines the position of the throat of the wormhole. We computed the topo-
logical charge of the anti-dilaton, and discussed that under appropriate boundary conditions 
it can be a lump, a kink, or anti-kink. Finally, we used the Gauss–Bonnet theorem to compute 
the deflection angle of a light-ray passing close to this wormhole.
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Appendix.  Details of the approximation

In this appendix we present explicitly the detail of the approximation used to obtain the result 
(92). The series expansion for the inverse tangent is written as
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arctan
(x

l

)
=

∞∑
n=0

(−1)n

2n + 1

(x
l

)2n+1
,
∣∣∣x

l

∣∣∣ < 1.� (A.1)

Notice that the limit for when the expansion is valid corresponds to |x| < l . We are interested 
in the limit when |r| > l, so we must use the following identity and corresponding expansion

arctan
( r

l

)
=

π

2
− arctan

(
l
r

)
≈ π

2
− l

r
+

l3

3r3 − l5

5r5 +
l7

7r7 + ...� (A.2)

The exponential of the inverse tangent has then the following expansion

exp

[
2c1

l
arctan

( r
l

)]
≈ exp

[
2c1

l

(
π

2
− l

r

)]
� (A.3)

≈ e
c1π

l

(
1 − 2c1

r

)
,� (A.4)

2(b1 − c1)

l
arctan

( r
l

)
≈ (b1 − c1)π

l
− 2(b1 − c1)

r
.� (A.5)

These will be enough to expand the function λ for large r, which results in

λ ≈ −Q2ec2+
c1π

l

2c2
1

+
(b1 − c1)π

l
+ 2b2 − c2 +

(
−2b1 + 2c1 +

Q2ec2+
c1π

l

c1

)
1
r

.

�

(A.6)

Defining

m1 ≡ −Q2ec2+
c1π

l

2c2
1

+
(b1 − c1)π

l
+ 2b2 − c2, m2 ≡ −2b1 + 2c1 +

Q2ec2+
c1π

l

c1
,

�

(A.7)

we have

λ ≈ m1 +
m2

r
,� (A.8)

e−λ ≈ e−m1

(
1 − m2

r

)
.� (A.9)

In the text, we used only the leading term in this expansion.
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