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Abstract
On September 28, 2016, an intense dust storm impacted the city of Bakersfield and surrounding areas in California. The dust 
event coincided with smoke aerosols from the forest fire located in the northwest of Bakersfield. In California, forest fires 
are frequent during summer and fall seasons. The forest fire smoke plumes were subjected to large dispersion and appeared 
widespread. In this study, we present a detailed analysis of satellite and surface observations indicating pronounced changes 
in air quality, aerosol characteristics, trace gases, along the prevailing meteorological conditions over Bakersfield associated 
with the dust event and its interactions with the forest fire smoke. Back trajectory simulations clearly show inflow of the 
dust airmass from the Mojave Desert located east of Bakersfield, in contrast to the forward trajectories originating from the 
forest fire event located in the northwestern region, suggesting possibility of mixing of smoke and dust in the Bakersfield 
area. In addition, low and strong wavelength dependence of aerosol single scattering albedo also supports the observations 
of strong aerosol mixing of dust and smoke.
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Introduction

Dust storms are common throughout the globe, during 
spring and summer seasons. Long-range transport of dust 
mainly originates over desert regions where prevailing mete-
orological conditions affect the dust transport pathways. 
Dust transport has been widely observed across continents, 
countries, provinces, and cities (Dey et al. 2004; Hegde 
et al. 2007; Gautam et al. 2009a; Christopher et al. 2011; 
Cao et al. 2014; Singh 2014; Athanasopoulou et al. 2016; 
Diaz-Hernandez and Sanchez-Navas 2016; Koo et al. 2016). 
In many cases, dust storms originate from the soils of arid 

and semiarid regions of the world, mainly from the desert 
regions (Prospero et al. 2002; Rashki et al. 2013). Dust 
originates from the northwestern China and the southern 
Mongolia (Zhang et al. 2003) that are transported for long 
distances, reaching vast areas in eastern China, Korea, Japan, 
cross over the Pacific ocean, and reach up to the western 
parts of the North America (Fairlie et al. 2007; Singh et al. 
2008; Uno et al. 2011; Huang et al. 2012; Tong et al. 2012; 
Kaskaoutis et al. 2014; Tsai et al. 2014; Chen et al. 2015). In 
some areas, the limited rainfall with climate change leads to 
the wind erosion that produces dust affecting weather, mete-
orological, atmospheric, and air quality at local, regional, 
and global scale (Prasad and Singh 2007a, b; Prasad et al. 
2007; Goudie 2009; Gautam et al. 2009b, c; Pokharel and 
Kaplan 2017). Dust contains fine particles, a serious health 
threat to the people living in the dust affected areas (Sprigg 
et al. 2014), and also impacts the ocean ecology (Singh 
et al. 2008) and radiation budget (Dey et al. 2004; Prasad 
and Singh 2007b; Gautam et al. 2009a; Raman et al. 2011; 
Chatterjee et al. 2012; Singh 2014; Kumar et al. 2015) that 
have long-term climate impacts. The dust storm events are 
observed frequently in India, China, Africa, Australia, Mid-
dle East region, and also over US continent almost every 
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year. The physical and chemical properties of dust vary from 
place to place, proximity to the ocean and these particles 
interact with the anthropogenic emissions and clouds, thus 
strong aerosol mixing is observed along the track of dust 
storms (Kaskaoutis et al. 2012). Enhancement in atmos-
pheric water vapor and trace gases was observed during 
dust storm events in India and China (Bhattacharjee et al. 
2007; Yoon et al. 2006; Cao et al. 2014). If the dust reaches 
to the higher elevation, the albedo of the snow/glaciers is 
severely affected. Snow/glaciers are darkened due to dust 
storms, absorbing more radiations that accelerate the melt-
ing of snow and glaciers (Prospero 1999; Tong et al. 2012; 
Painter et al. 2007; Prasad and Singh 2007b; Gautam et al. 
2013; Cao et al. 2014; Singh 2014). Frequent dust events 
in Africa, China, Australia, Middle East, and India impact 
the air quality, atmosphere, climate, biogeochemical, eco-
logical and meteorological parameters, radiative forcing, and 
earth system processes for short and long periods (Goudie 
2009; Shao et  al. 2011; Nastos 2012; Singh 2014; Cao 
et al. 2014; Parolari et al. 2016). Dust characteristics are 
extensively studied in different parts of the world (Eck et al. 
1999; Gautam et al. 2013). In the North American region, 
a warmer and drier southwest USA (Seager 2007; Wu and 
Lau 2016; Zhou et al. 2016; Pokharel and Kaplan 2017), 
leading to increased wildfire risks and occurrence of dust 
storms (Westerling and Bryant 2008; Dennison et al. 2014).

In this paper, we have carried out detailed analysis of 
ground and satellite data and studied several aerosol optical 
(Aerosol Optical Depth—AOD, Ångström exponent, fine 
particles, single scattering albedo-SSA), air quality (PM2.5, 
air quality index—AQI), trace gases (Nitrogen Dioxide—
NO2, Carbon monoxide—CO, Ozone—O3), and meteoro-
logical parameters (relative humidity—RH, Temperature, 
Wind Speed and Direction, Pressure) associated with the 
dust event of September 28, 2016, which was observed over 
the city Bakersfield and its surroundings, California (USA). 
The results show pronounced mixing of dust and smoke 
from the forest fires, on the air quality index, air pollutants 
(CO, NO2, and O3). Such changes have direct impact on the 
weather conditions, visibility, meteorological parameters, 
and trace gas concentrations.

Dust event of September 28, 2016, and ground data 
related to meteorological parameters

Figure 1a shows the location of Bakersfield and surrounding 
areas, and the Mojave Desert lies in the east of Bakersfield. 
According to National Weather Service in Hanford (USA), 
dust outburst was seen during thunderstorm in and around 
Bakersfield, CA (USA) (Fig. 1b) on September 28, 2016, 
around 4.00 pm. 

The AQI and meteorological data considered in this 
paper are obtained from the Air Resource Board of Cali-
fornia Environmental Protection Board (ARB of CalEPB) 
(https​://www.arb.ca.gov/homep​age.htm). AQI simplifies 
the concentrations of several air pollutants for conventional 
monitor to single digit mode and characterizes air pollution 
level and air quality status. We have analyzed separately 
four air pollutants: nitrogen oxides (NO2), carbon monoxide 
(CO), ozone (O3), and air quality (particulate matter, PM2.5) 
to study the effect of dust storm in Bakersfield, California. 
We have chosen two separate sites of ground monitoring, 
Bakersfield Municipal Airport (35.33°N, 119.00°W) and 
Bakersfield-5558 California Avenue (35.36°N, 119.06°W) 
for daily data retrieval. Daily averaged wind speed is also 
analyzed for these two sites. Rainfall data over Bakersfield 
are taken from US climate data (http://www.uscli​mated​ata.
com/clima​te/baker​sfiel​d/calif​ornia​/unite​d-state​s/usca0​062).

Due to dust storm, visibility was reduced to half km or 
less (http://www.turnt​o23.com/news/local​-news/thund​ersto​
rm-rolls​-into-baker​sfiel​d-wedne​sday). We have shown daily 
average wind speed, temperature, and pressure (Fig. 2a, b) 
at Bakersfield—5558 California Avenue (BK–CA) and Bak-
ersfield Municipal Airport (BK–MA). Daily average wind 
speed on September 28, 2016, reaches to 29.61 km per hour 
at BK–MA and 15.12 km per hour at BK–CA (Fig. 2a). 
Temperature and pressure data are available only at BK–MA 
site along with wind speed. These are two air quality meas-
urement sites of the Air Resource Board of California Envi-
ronmental Protection Board. Prior to September 28, 2016, 
ambient temperature enhanced (Fig. 2b) with the low pres-
sure caused formation of thunderstorm at Bakersfield fol-
lowed by scattered unfrozen rainfall 0.27 kg per m2. The area 
averaged rainfall (unfrozen) data have been obtained from 
NASA Giovanni website (https​://giova​nni.sci.gsfc.nasa.gov/
giova​nni/) with 0.125 degree resolution model data of the 
North American Land Data Assimilation System.

Strong wind speed up to 31.68 km per hour was observed 
with dominant southeast wind component brought the dust 
mass from the Mojave Desert (Fig. 3). Due to dust storm, 
visibility reduced to 2.8 km from the normal visibility up 
to 16 km and gust speed varies in the range 37–50 km/hr 
(Fig. 4). These data are taken from Bakersfield ground sta-
tion (35.35°N, 118.97°W) (https​://www.wunde​rgrou​nd.com/
US/CA/Baker​sfiel​d.html). The NOAA HYSPLIT trajectory 
model (http://ready​.arl.noaa.gov/HYSPL​IT.php) is used to 
track dust source at different altitudes. The back trajectories 
available after running NOAA HYSPLIT model are over-
laid with the Google Earth and the images are analyzed. To 
compute the back trajectories, we have used meteorological 
data available from global data assimilation system (GDAS) 
developed by the global forecast system (GFS) model with 
spatial resolution of 1°. Figure 5 represents the NOAA 
HYSPLIT model back Trajectory with starting time 23 h 

https://www.arb.ca.gov/homepage.htm
http://www.usclimatedata.com/climate/bakersfield/california/united-states/usca0062
http://www.usclimatedata.com/climate/bakersfield/california/united-states/usca0062
http://www.turnto23.com/news/local-news/thunderstorm-rolls-into-bakersfield-wednesday
http://www.turnto23.com/news/local-news/thunderstorm-rolls-into-bakersfield-wednesday
https://giovanni.sci.gsfc.nasa.gov/giovanni/
https://giovanni.sci.gsfc.nasa.gov/giovanni/
https://www.wunderground.com/US/CA/Bakersfield.html
https://www.wunderground.com/US/CA/Bakersfield.html
http://ready.arl.noaa.gov/HYSPLIT.php
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Fig. 1   a Google Earth image showing Bakersfield, California State boundary and Mojave Desert, b dust blowing into Bakersfield, CA (USA) on 
September 28, 2016, during thunderstorm (http://www.turnt​o23.com/news/local​-news/thund​ersto​rm-rolls​-into-baker​sfiel​d-wedne​sday)

http://www.turnto23.com/news/local-news/thunderstorm-rolls-into-bakersfield-wednesday
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on September 28, 2016. The back trajectory of airmass con-
firms that the source of dust storm observed in Bakersfield 
from the Mojave Desert located in the eastern parts of the 
Bakersfield.

Details of data used in the present study

AERONET and satellite data

Using AERONET data (Holben et al. 1998), changes in aerosol 
characteristics associated with the dust storms over the Indo-
Gangetic basin and also in China have been studied (Prasad 
et al. 2007; Cao et al. 2014; Chauhan et al. 2016). We have used 
AERONET (version 2, Level 1.5, L1.5 is preliminary data) 
data from Bakersfield (35.33°N, 119.00°W). We have studied 
total column aerosols properties such as volume particle size 

distribution (dV/dLnR), refractive index, and single scattering 
albedo from this station during dusty and non-dusty days. The 
detailed methodology of retrieval of aerosol parameters from 
AERONET stations is discussed in detail by Dubovik and King 
(2000) and Dubovik et al. (2000). Further, we have used satel-
lite-derived aerosol optical depth (AOD) and Ångström expo-
nent (α) data (Collection 6) obtained from the moderate-resolu-
tion imaging spectroradiometer (MODIS) AQUA and TERRA 
satellites for the bounding area (34–35°N, 118–119°W) through 
the NASA Giovanni portal. NLDAS–Noah Land Surface 
Model L4 (hourly, 0.125 × 0.125 degree and version 2) rain-
fall (unfrozen) data have been used to study after effect of dust 
storm. We have used hourly meteorological data from Bakers-
field ground station (35.35°N, 118.97°W) (https​://www.wunde​
rgrou​nd.com/US/CA/Baker​sfiel​d.html) of wind speed and wind 
direction of the day September 28, 2016, were used to make 

Fig. 2   a Daily average wind 
speed during September 
21–October 3, 2016, at two 
locations Bakersfield–5558 
California Avenue (BK–CA) 
and Bakersfield Municipal 
Airport (BK–MA), b daily 
average atmospheric pressure 
and surface temperature during 
September 21–October 3, 2016
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wind rose plot (WRPLOT Wind Rose Plots for Meteorology, 
version 7.0.0, (http://www.webla​kes.com/produ​cts/wrplo​t/
index​.html) and analyze wind conditions.

Result and discussion

Variability of AOD and Ångström exponent 
from AERONET station

Figure 6 shows daily variations of aerosol optical depth 
(AOD) and Ångström exponent around Bakersfield. On 

an average AOD in the surroundings of Bakersfield was 
lower in general, average AOD (0.19) and AE of 0.66 were 
observed during September–October 01, 2016, from the 
Aqua MODIS and average AOD (0.18) and Ångström expo-
nent (0.57) for the Terra MODIS during the same period.

Variations in the two data sets were due to different time 
of measurements but the variation was almost similar in both 
Terra and Aqua MODIS data. Dust event occurred in the 
evening around 4:00 pm on September 28, 2016, and satel-
lite pass time over Bakersfield region was before 4:00 pm, 
so the effect of dust storm was not seen on September 28, 
2016. Pronounced effect of dust storm was clearly seen on 

Fig. 3   Wind rose diagram for September 28 using meteorological data from Bakersfield monitoring station which is overlaid on Google Earth, 
southeast wind show a dominant component

Fig. 4   Ground measurement of 
visibility and gust speed show-
ing the influence of dust storm 
in and around Bakersfield on 
September 28, 2016
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the next day September 29, 2016. On September 28, 2016, 
low AOD (0.20 and 0.16) with high Ångström exponent 
(0.56 and 0.60) was observed prior to the dust storm. Higher 
Ångström exponent clearly shows the presence of fine par-
ticles from the forest fires and also anthropogenic activities. 
On September 29, 2016, after dust storm AOD was high 
(0.28) with low Ångström exponent (0.04 and 0.09), show-
ing characteristics of dust. Low AE values are the charac-
teristics of coarse particles due to dust. Dust event occurred 
on September 28, 2016, and the effect was clearly evident 
on the next day, showing the presence of course particles for 
long period in the atmosphere.

Changes in air quality parameters

We have considered average daily data from two ground 
monitoring stations. The daily average of all AQI param-
eters (CO, PM2.5, NO2, NOx, and O3) is shown for the 
period 21 September 21, 2016–October 03, 2016, in 
Fig. 7a–c. Prior to September 28, 2016, the wind speed 
in Bakersfield was low, but high CO (0.28  ppm) and 
PM2.5 (18 µgm/m3) were observed (Fig. 7a). CO is the 

main sources from vehicular emissions and forest fire, 
and higher CO (Fig.  7a) is likely from the emissions 
from forest fires on September 23–27 northwest of Bak-
ersfield area. The back trajectories (Fig. 5) confirm that 
the airmass reaching at the Bakersfield coming from the 
ongoing forest fire, that may enhance CO concentrations 
which is obvious. In general, during winter season, PM2.5 
concentrations reach up to 50 µgm/m3 which was recently 
reported by Nallathamby et al. (2014). In the afternoon 
on September 28, 2016, the wind was strong and dust 
storm occurred in Bakersfield area, a sharp sudden drop 
in CO (0.21 ppm) and increase in PM2.5 (19 µgm/m3) was 
observed. On September 29, 2016, due to strong aerosol 
mixing, sudden drop in CO (0.18 ppm) and PM2.5 (12.80 
µgm/m3) was observed (Fig. 7a).

Figure 7b shows changes in surface ozone (O3) on the 
dusty days from the two sites of ARB located at Bakers-
field (BK–MA and BK–CA). The average ozone during 
September 21, 2016–October 03, 2016, was about 0.036 
and 0.035 ppm, respectively, at BK–MA and BK–CA sites. 
Prior to the dust event, i.e., on September 27, 2106, Ozone 
concentration was 0.042 and 0.04 ppm at the two locations, 
after the dust storm the concentrations were decreased 
on September 28, 2016, up to 0.032 and 0.033 ppm at 
two locations. On September 29, 2016, Ozone concentra-
tions (0.035 and 0.036 ppm, respectively, at BK–MA and 
BK–CA) increased but it was still low 0.041 at both the 
stations on September 30, 2016, this is obvious due to for-
est fire plume reaching in Bakersfield. Similar results are 
also observed during desert dust by Eck et al. (1999) and 
O’Neill et al. (2001). After the dust storm, an enhance-
ment in Ozone concentration was observed (Fig. 7b) which 
could be due to advection from the troposphere to strato-
sphere. Due to the forest fire, an enhancement in NO2 was 
observed till September 27, 2016, showing the effect of 
forest fire in Bakersfield region, however, the NO2 and 
NOx concentrations decreased during and after the dust 
event (Fig. 7c).

Fig. 5   Shows NOAA back 
trajectories on October 1, 2016, 
the airmass reaching over Bak-
ersfield within 24 h at altitudes 
500 m, different color trajecto-
ries show change in the airmass 
reaching in Bakersfield within 
24 h, and the dominant airmass 
is from the Mojave Desert 
located in the eastern side of 
Bakersfield
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Fig. 7   a Daily variation of CO 
and PM2.5, b daily variation 
ozone (ppm), c daily variation 
of NO2 (ppm) during September 
21–October 3, 2016
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Changes in relative humidity and air temperature

Figure 8a shows daily relative humidity (%) and day maxi-
mum temperature (°C) over the two sites of ARB located at 
Bakersfield (BK–MA and BK–CA). Temperature data were 
available only at BK–MA location. During September 21, 
2016–October 3, 2016, average daily relative humidity was 
56.54 and 56.46%, respectively, at BK–CA and BK–MA 
locations and average temperature were found to be around 
30.38 °C at BK–MA location. Prior to the dust event, rela-
tive humidity declines to 43% over BK–CA and 42% over 
BK–MA, a slight decrease in temperature (36 °C) well 
above the average value was observed. On the dust day, rela-
tive humidity increased (55% over BK–MA and 49% over 
BK–CA), showing that the site BK–MA was more affected 
by dust storm, and sharp enhancement up to 86% in RH 
was observed with a drop in temperature on September 29, 
2016. A sharp reduction in the relative humidity associated 
with the dust storm was observed from the ground weather 
station located in Bakersfield. The increased temperature 

leads to an increase in the saturated vapor pressure point. In 
this case, the water vapor in the air becomes more difficult 
to coagulate (Hu et al. 2017). After the dust storm, relative 
humidity steadily increased and reached at the maximum 
level (about 35%) after 8 pm local time.

Changes in volume density and particle size

Figure 9a shows an increase in the volume density of large 
particles derived from Bakersfield AERONET station soon 
after the dust event on September 29 until October 1, 2016, 
afterward concentrations of large particles decreased. In 

Fig. 8   a Daily variation of rela-
tive humidity and temperature 
during September 21–October 
3, 2016, b ground observed rel-
ative humidity shows enhance-
ment in relative humidity 
associated with the dust event in 
Bakersfield observed at around 
4 pm on September 28, 2016
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Fig. 9   a Particle size distribution, b variations of single scattering 
albedo (SSA) during September 25–October 9, 2016, c showing for-
ward trajectories computed using NOAA HYSPILT model (https​://
ready​.arl.noaa.gov/HYSPL​IT_traj.php) from forest fire in Santa Cruz 
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tember 2016

▸
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surrounding areas of Bakersfield, forest fire occurred in 
northwest location during September 17–24 at Canyon, 
Santa Barbara County, consequently SSA decreased dur-
ing September 25–28 showing increasing concentrations of 
black carbon. A strong mixing of dust and black carbon from 
the forest fire on September 28, 2016, was clearly reflected 
from the increase in SSA values and also due to strong wave-
length contrast in the absence of dust event (Fig. 9b). The 
strong wavelength dependency of SSA especially with low 
SSA clearly shows dominance of black carbon particles due 
to mixing of dust aerosols and plume from forest fires. The 
NOAA forward trajectories (Fig. 9c) clearly show transport 
of airmass (emissions) reaching to Bakersfield that have 
mixed with the black carbon particles in the atmosphere of 
Bakersfield and surroundings.

Conclusion

California State is adjacent to the Mojave Desert in the east, 
and forest fire is very common during spring and summer 
especially when Santa Ana winds are prevalent. Santa Ana 
winds are characterized by strong winds, low humidity, and 
higher temperature originated from Mojave Desert located 
adjacent to California in the eastern part. During Santa Ana 
winds, easterly and north-easterly winds bring airmass con-
taining dust particles from dust, as a result the air quality 
degraded, visibility reduced, and weather conditions change 
drastically. Detailed analysis of the ground and satellite data 
shows pronounced changes in air quality, trace gases, mete-
orological and aerosol optical parameters, and also changes 
in aerosol optical parameters associated with September 28, 
2016, dust storm. The volume density of large size aero-
sol particles enhanced due to dust event. Prior to the dust 
event, forest fire occurred in the surrounding areas show-
ing enhancement in CO, and NO2 concentrations, but the 
ozone concentrations of the ground level reduced. The SSA 
retrieved from Bakersfield AERONET station, character-
ized by low and high SSA, low SSA is characterized by the 
presence of absorbing aerosols (carbon soot) in the atmos-
phere (i.e., likely to be associated with the forest fire. The 
NOAA back trajectories clearly show arrival of dust mass 
from desert region that have mixed with the smoke plume 
containing black carbon particles (higher SSA values) from 
the northwest forest fire. In California, forest fire frequently 
occurs every year, during this period dust from the adja-
cent Mojave Desert area are likely to mix that will influence 
atmospheric chemistry and weather conditions. Quantita-
tive evaluation of mixing and its impact on atmospheric and 
meteorological parameters will help the atmospheric and 
climate community for better forecast of weather conditions.
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