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Abstract
Classical models for biological invasions were single-species models in homogeneous landscapes, but most invasions happen
in the presence of interacting species and in heterogeneous environments. The combination of spatial variation and species
interaction could alter the spreading process significantly. For example, the ‘environmental heterogeneity hypothesis of
invasions’ posits that heterogeneity offers more opportunities for invaders and reduces the negative impact on native species.
Environmental heterogeneity offers an obvious coexistence mechanism on the regional scale if two or more competing
species have different spatial niches, i.e. if the local competitive advantage changes in space. We consider a more subtle
mechanism of space use through individual movement behaviour when the local competitive advantage remains with the
same species. Specifically, we model the densities of two species, diffusing and competing in an infinite landscape consisting
of two types of patches. We include individual behaviour in terms of movement rate and patch preference. We consider
the scenario that one of the species is the stronger local competitor in both patch types. We then uncover a number of
mechanisms—based solely on movement behaviour—through which these two species can coexist regionally, how the
inferior competitor can replace the superior competitor globally, or how a bistable situation can arise between the two. We
calculate mutual invasion conditions as well as mutual spatial spread rates, and we show that spread rates may depend on
movement parameters in unexpected ways.

Keywords Competition · Reaction-diffusion equations · Movement behaviour · Patchy landscapes · Homogenization

Introduction

Biological invasions of alien species are a widespread phe-
nomenon that can pose a major threat for native species and
is believed to be a major cause of global decline of regional
biodiversity (Tobin et al. 2011). Understanding the cir-
cumstances under which an alien species can successfully
establish and the speed with which it can spread into a new
environment is a focal point in ecological research (Hastings
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et al. 2005; Melbourne et al. 2007). Ever since the pioneer-
ing work by Fisher (1937) and Skellam (1951), reaction-
diffusion equations have been the modelling framework of
choice for biological invasions. In the simplest case, the den-
sity of the invading species, u(x, t), with x ∈ R and t > 0
satisfies the equation

∂u

∂t
= d

∂2u

∂x2
+ ru (1 − au) . (1)

Parameter d is the diffusion coefficient, r stands for the
maximum per-capita growth rate, and a indicates the intra-
specific competition coefficient. The long-term behaviour
of solutions of (1) is well understood: a locally introduced
population will spread at an asymptotic speed of c∗ =
2
√

dr, and monotone travelling wave solutions exist for all
wave speeds c ≥ c∗ (Weinberger 1982).

As habitats become increasingly fragmented, mainly
due to human activities, invasion processes often occur
in environments composed of mosaics of patches with
different characteristics. Shigesada et al. (1986) extended
the model in (1) to include spatial heterogeneity in the
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form of periodically alternating patches of two different
characteristics (‘good’ and ‘bad’). We will refer to such
landscapes as ‘patchy’. Weinberger (2002) proved that,
under some conditions, the same spread speed results
hold as for the homogeneous landscape: there exists an
asymptotic spreading speed, and there exists a travelling
periodic wave for all speeds larger than this spreading speed.
There is no simple explicit formula for the spreading speed
in a heterogeneous landscape, but an implicit expression can
be calculated for a patchy landscape (Shigesada et al. 1986).

Many empirical studies document individual movement bias
towards favourable habitat patches (Schultz and Crone
2001; Schtickzelle and Baguette 2003; Crone and Schultz
2008), as well as patch-specific movement rates (Reeve
et al. 2008). Maciel and Lutscher (2013) extended the
original model by Shigesada et al. (1986) and included indi-
vidual movement preference at the interface between two
patch types in the equations. They calculated persistence
conditions and the minimal speed of a travelling periodic
wave. They found that the individual-level processes of
movement and habitat preference crucially affect spread
rates in heterogeneous landscapes.

Most biological invasions occur not in isolation but rather
in the presence of and interaction with resident species.
These interactions need to be included in the description of
the invasion process to assess the effects of invasions on
native communities and on biodiversity. In this work, we
will extend our previous model and analysis to the case of
two competing species. We focus on competition, since it is
known to potentially slow, halt, or reverse an invasion; see
Lewis et al. (2016) and references therein.

A classical example is the spread of the North American
grey squirrel (Sciurus carolinensis) and its resident competi-
tor, the native red squirrel (Sciurus vulgaris) in Britain in the
early 1900s (Okubo et al. 1989). Following the invasion, red
squirrels were completely eliminated from some locations.
Several hypotheses for the cause of these local extinctions
were put forward, but the negative competitive effect on the
red squirrel by the grey is generally accepted (see Okubo et
al. 1989; Gurnell et al. 2004 and references therein). Inter-
estingly, in North America, the niches for the grey squirrel
(mixed hardwood) and red squirrel (conifer) are different.
In Britain, however, red squirrels historically thrived in both
types so that there is much less niche separation. Competi-
tion between the two species is through various direct and
indirect mechanisms (again, see Okubo et al. (1989) and
references therein for details). In strongly heterogeneous
landscapes, squirrel movement exhibits the characteristics
mentioned above: patch preference and movement bias at
(but not only at) interfaces (Bakker and van Vuren 2004;
Haughand and Larsen 2004).

Okubo et al. (1989) extended (1) to two species in
a homogeneous landscape and included competition of
Lotka–Volterra type, which led them to study the system

∂u1

∂t
= d1

∂2u1

∂x2
+ r1u1 (1 − u1 − a1u2) , (2)

∂u2

∂t
= d2

∂2u2

∂x2
+ r2u2 (1 − u2 − a2u1) . (3)

Here, the densities of the two species are denoted by u1,2,

their respective diffusion coefficients and maximum growth
rates are d1,2 and r1,2, whereas the intra-specific competi-
tion coefficients have been scaled to unity. Parameters ai

denote the effects of inter-specific competition on species i.
All parameters are assumed positive.

The outcome of competition in the non-spatial Lotka–
Volterra model (i.e. when d1,2 = 0) is well understood: If
a1,2 < 1, the two species will coexist. If a1 < 1 < a2,

species 1 will outcompete and replace species 2, whereas if
a1,2 > 1, both single-species equilibria are locally stable.
In the latter case, the outcome of competition depends on
initial conditions, a situation sometimes termed ‘bistable’
or ‘founder control’. For the spatial model (i.e. when
d1,2 > 0), determining the speed at which one species
may spread in the presence of the other is more subtle
(Hosono 1998). Lewis et al. (2002) considered the scenario
that an ‘invader’ species 1 is introduced into an initially
homogeneously distributed (at carrying capacity) ‘resident’
species 2. They proved that under some sufficient, but not
necessary conditions, the spreading speed of the invader
is ‘linearly determined’ (van den Bosch et al. 1992). This
means that in practice, the speed can be calculated by
linearizing the equation for the invader at the resident-only
steady state (0, u∗

2) = (0, 1). This linearized equation reads

∂u1

∂t
= d1

∂2u1

∂x2
+ r1u1 (1 − a1) . (4)

Since this equation has the same form as model (1), the
corresponding formula for c∗ is

c∗ = 2
√

d1r1(1 − a1), (5)

provided a1 < 1. The sufficient conditions for this
reasoning to hold are

r1(1 − a1) > 0, r2a2 > 0, d2/d1 ≤ 2, and

(a2a1 − 1)/(1 − a1) ≤ (2 − d2/d1)r1/r2. (6)

If a1 > 1, then species 1 cannot invade.
One can interchange the roles of resident and invader to

arrive at mutual invasion conditions and speeds. If a1 < 1 <

a2, species 1 will eventually replace species 2, whereas if
a1,2 < 1 then both species will eventually coexist. We use
these results in our analysis below.
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In homogeneous landscapes, competing species can only
coexist under the assumption that inter-specific competition
is weak, yet coexistence is ubiquitous in nature. Habitat
heterogeneity has been shown to promote coexistence in
several studies (Cantrell et al. 2007). The question of
invasions of competitors, and in particular the speed of
invasion in heterogeneous landscapes, is studied rarely and
under limited assumptions, e.g. by Cruywagen et al. (1996)
for reaction-diffusion equations and Samia and Lutscher
(2010) for integrodifference equations. In particular, it
is not known how habitat-specific dispersal behaviour
and habitat preference (see above) affect the outcome
of the competition process and the speed at which
invasions progress. While it is obvious that individual
movement strategies offer a number of mechanisms that
impact competitive outcome and spreading speed in patchy
landscapes, the details are unclear. The exploration of these
mechanisms is the main goal of our work.

Melbourne et al. (2007) proposed the ‘environmental
heterogeneity hypothesis of invasions’ that heterogeneity
should both increase the success of invading species
and decrease the impact on native species by promoting
coexistence mechanisms that are not present otherwise.
We use our model to elucidate some of the mechanistic
underpinnings for this hypothesis and show how movement
behaviour in patchy landscapes affects invasion speeds and
coexistence opportunities.

We formulate a two-species competition model in a
patchy landscape, consisting of two types of habitat patches.
Since the invasion speed for our model cannot be calculated
explicitly, we use homogenization as an analytical technique
and compare the results with numerical simulations. We
investigate how habitat-specific movement rates and habitat
preference influence the establishment and rates of spatial
spread of an invading species. Comparisons with numerical
solutions indicate that the derived speed provides a good
approximation even beyond the small-scale heterogeneity
limit of the homogenization. We choose population dynamic
parameters in such a way that the two species cannot coexist
in any isolated patch. When invasion is successful, we
observe cases in which the resident is replaced and cases
where both species coexist. These outcomes as well as
the invasion speeds are found to be strongly dependent on
movement behaviour.

Themodel equations

Following Shigesada et al. (1986), we divide the infinite,
one-dimensional, landscape into periodically alternating
patches of two types. Patches of type 1 are of length l1

and are located at x ∈ �1 = ⋃
n(nl, nl + l1), with

n ∈ Z. Analogously, patches of type 2 with length l2 are at
x ∈ �2 = ⋃

n(nl + l1, (n + 1)l). The landscape period is
l = l1 + l2. We denote by u1,2(x, t) the population densities
of species 1 and 2, respectively, at position x ∈ R and
time t > 0. Adopting the landscape ecology perspective,
we choose the movement and growth parameters to be
piecewise constant. Thus, the reaction-diffusion system for
x ∈ �j , j ∈ {1, 2}, reads

∂u1

∂t
= d1j

∂2u1

∂x2
+ f1j (u1, u2), (7)

∂u2

∂t
= d2j

∂2u2

∂x2
+ f2j (u1, u2), (8)

where functions fij account for births and deaths of
population i = 1, 2 in a patch of type j . d1j (d2j ) is the
diffusion constant of species 1 (species 2) in �j . In the next
step, we define how the equations on each patch are related
across patch boundaries.

Interface conditions

At an interface between patches, individuals may show
preference for one or the other patch type. Accordingly, we
impose conditions that relate the population densities and
fluxes on either side of the interface. Until very recently,
the standard assumption was that densities and population
flux should be continuous across interfaces (Ludwig et al.
1979; Shigesada et al. 1986; Cruywagen et al. 1996;
Lutscher et al. 2006). However, Ovaskainen and Cornell
(2003) showed that although flux continuity is a natural
condition, indicating that all individuals that leave one patch
must enter the next, the densities across interfaces are
typically discontinuous. The mathematical and ecological
consequences of these discontinuities were discussed by
Maciel and Lutscher (2013). The interface conditions can be
derived from a random walk model, similar to the derivation
of the diffusion equation (Turchin 1998). We briefly outline
the main assumptions and procedures used. For a complete
derivation, we refer the reader to the original work by
Ovaskainen and Cornell (2003) and Maciel and Lutscher
(2013). An alternative, heuristic derivation can be found in
Maciel and Lutscher (2015).

We consider an uncorrelated, unbiased random walk of
an individual of species i on a line. In the interior of patch
type 1 (patch type 2), during a time step of length �t, the
individual moves a distance �x to the left or right with equal
probability pi1/2 (pi2/2). The so-called ‘master equation’
for this process tracks the probability of an individual’s
location from one time step to the next (Turchin 1998).
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Taking the ‘parabolic limit’ of this master equation as
�t, �x → 0, one obtains the diffusion equation with
diffusion coefficient (Turchin 1998)

0 < dij = lim
�t,�x→0

pij (�x)2

2�t
< ∞.

At an interface point, we assume that individuals can show
movement bias. Accordingly, we denote by αi ∈ (0, 1)

the probability that an individual of species i located at an
interface between two habitat types moves to patch type 1
and by 1 − αi the probability that it moves to patch type 2.
As before, one can write the master equation and take the
parabolic limit. This time, one obtains relations between the
population density and flux at either side of the interface. At
an interface point xn = nl + l1 (n ∈ Z) with a patch of type
1 to the left and a patch of type 2 on the right, the resulting
matching conditions for species i are

di1
∂ui

∂x
(x−

n , t) = di2
∂ui

∂x
(x+

n , t) (9)

ui(x
−
n , t) = kiui(x

+
n , t), ki = αi

1 − αi

di2

di1
, (10)

where u(x±
n ) = limx→x±

n
u(x) denote the one-sided limits.

Equation (9) is the flux conservation while (10) gives the
density jump across the interface. We also call the non-
dimensional parameter ki the ‘effective patch preference’.
Note that densities are discontinuous even when there is
no movement bias (i.e. αi = 0.5) as long as the diffusion
coefficients differ between patches. At the interfaces xn =
nl, where a patch of type 2 is on the left side of the
boundary, similar conditions apply. Conditions are then
written as (9) and (10) with the signs of the one-sided limits
reversed.

Population dynamics

In patches of type 1, we choose fi1 as the classical Lotka–
Volterra system so that the reaction-diffusion system reads

∂u1

∂t
= d11

∂2u1

∂x2
+ r11u1

(
1− u1

K11
− a12

u2

K11

)
in �1, (11)

∂u2

∂t
= d21

∂2u2

∂x2
+ r21u2

(
1− u2

K21
− a21

u1

K21

)
in �1, (12)

where rij > 0 and Kij > 0 are, respectively, the growth
rate and carrying capacity of species i in a patch of type
j , whereas a12 > 0 and a21 > 0 are the inter-specific
competition coefficients. In particular, since ri1 > 0, each
species in isolation can persist on a patch of type 1. These
are ‘source’ patches; we also call them ‘strongly favourable’
(SF).

For patches of type 2, we consider two distinct sce-
narios: mildly favourable (MF) and unfavourable (U).
Mildly favourable patches are population dynamic sources

(i.e. ri2 > 0), but of lesser quality than strongly favourable
patches. We choose the same Lotka–Volterra functions
for fi2 but with lower carrying capacities. Unfavourable
patches are population dynamic sinks. We neglect com-
petition in unfavourable patches and simply write fi2 =
−mi2ui , where mi2 is the mortality rate of species i in �2.

It is tempting, and even helpful, to write the model (7)
and (8) in the condensed form for x ∈ R

∂u1

∂t
= ∂2

∂x2 [d1(x)u1] + f1(x, u1, u2), (13)

∂u2

∂t
= ∂2

∂x2 [d2(x)u2] + f2(x, u1, u2), (14)

where

di(x)=
{

di1 in �1,
di2 in �2,

and fi(x, u1, u2)=
{

fi1(u1, u2) in �1,
fi2(u1, u2) in �2.

In the following sections, this form will be assumed from
time to time. We would like to point out, however, that
these equations are not well defined at the interface points
and that the notion of a ‘solution’ requires the interface
conditions (9)–(10). The existence of appropriate solutions
was recently proved (Maciel et al. 2018).

Methods

Ideally, we would consider the linearization of system
(13)–(14) at the semi-trivial state where one species is at
carrying capacity and the other is absent, and calculate
the persistence condition and spread rate of the other
species. However, since the single-species steady state is
not explicitly available, and even if it were, the spread
rate could not be calculated explicitly, we choose a
different route. Specifically, we use multi-scale analysis
and homogenization. The theory of these techniques is
mathematically well developed (Pavliotis and Stuart 2008)
and profitably used in many physical and some biological
applications (e.g. Othmer 1983), but has—despite recent
success (Duncan et al. 2017; Garlick et al. 2011; Garlick
et al. 2014; Powell and Zimmermann 2004)—not yet
reached its full potential in theoretical ecology.

The underlying idea is that there are two spatial
scales: the small scale of landscape heterogeneity and the
larger scale of dispersal. The complicated exact equations
that consider both scales are then replaced by simpler
approximate equations on the larger scale, where the effects
on the smaller scale enter as appropriate averages in
the parameters for the equation on the larger scale. The
usefulness from this technique stems from the fact that the
results derived from the equations on the large scale, while
valid formally only in the limit when the scale difference is
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large, typically provide highly accurate results even when
the scales are almost comparable.

The classical theory of homogenization assumes
smoothly varying conditions, yet the patchy landscape that
we model contains discontinuities and interface conditions.
Our previous approach for single equation (Maciel and
Lutscher 2015) does not carry over to the system of equa-
tions here; however, recent progress by Yurk and Cobbold
(2018) does and was already used for stage-structured
populations (Alqawasmeh 2017). We outline the procedure
here and refer to the literature for details.

We assume that the spatial period l in (13)–(14) is small
compared to the scales of observation and write ε = l 	 1.
We identify two distinct spatial scales, a large scale x and a
small scale y = x/ε (Othmer 1983; Garlick et al. 2011). We
furthermore assume that diffusion and growth depend only
on the small scale, i.e. di = di(y) and fi = fi(y, ui, uj ).
Population densities depend on both, small and large, scales
so that we formally write ui = ui(x, y, t). We expand
solutions in power series of ε, i.e.

ui(x,y, t) = u
(0)
i (x,y, t)+εu

(1)
i (x,y, t)+ε2u

(2)
i (x, y, t)+...

(15)

Plugging (15) into (13)–(14), we obtain equations for the
different orders in ε that can be solved iteratively, yet
the procedure is very tedious and quite delicate. Yurk and
Cobbold (2018) and Alqawasmeh (2017) show that the
leading term solution is given by

u
(0)
i (x, y, t) = gi(x, t)

hi(y)
, (16)

where gi solves the homogeneous reaction-diffusion equa-
tion:

∂gi

∂t
= l̂2

i 〈di〉H ∂2gi

∂x2
+ 〈fi〉A, (17)

and hi is the step function

hi(y) =
{

1 if y in �̄1

ki if y in �̄2,

where �̄i = �i/ε. The averaged parameters in the
equations for gi are the scaled period

l̂i = l1 + l2

l1 + l2/ki

, (18)

the effective diffusion (the harmonic mean)

〈di〉H =
⎛

⎝ l1 + l2/ki

l1
di1

+ l2/ki

di2/k
2
i

⎞

⎠ , (19)

and the arithmetic mean of the growth functions

〈fi〉A =
[
l1fi1(g1, g2) + l2fi2(g1/k1, g2/k2)

l1 + l2/ki

]
. (20)

Powell and Zimmermann (2004) gave a nice intuitive
explanation for the appearance of the different averages
above in terms of residence times, but in the absence
of interface conditions (i.e. when k = 1). Residence
time in a patch is proportional to patch size (li), and the
growth rate (fi) is measured per unit time. Therefore, the
average growth on a patch is the arithmetic mean, (l1f1 +
l2f2)/ l. Residence time is also inversely proportional to
the diffusion constant. Hence, the mean residence time
is proportional to (l1/d1 + l2/d2)/ l. The inverse of this
expression is the diffusion coefficient on the larger scale,
the harmonic mean of the diffusion coefficients on the small
scale.

With three different patch types (SF, MF, U) and four
possible outcomes of competition on source patches, our
model allows for too many combinations to exhaustively
classify the dynamic behaviour in all of them. Instead, we
focus on the ‘environmental heterogeneity hypothesis of
invasions’ (Melbourne et al. 2007) and carefully choose
our setup to investigate the effects of movement rates (dij )
and patch-type preference (αi) on whether and how fast
a competing species can invade an existing resident. By
exchanging the role of resident and invader, we examine
whether successful invasion leads to replacement or
coexistence. We consider two scenarios where coexistence
is impossible, locally or regionally, in the absence of
movement.

Results

In what follows, we will study the equations for gi in (17)
as indicated above: we linearize at the semi-trivial state and
calculate persistence conditions and spread rates from that,
using the theory from Lewis et al. (2002). We note that the
homogenization approach in (17) is valid for a large class of
nonlinear growth functions. Our particular choice of Lotka–
Volterra (polynomial) interactions, however, is particularly
suitable for the averaging process because the arithmetic
average of the polynomials is again a polynomial of the
same degree, so that we remain within the class of equations
studied by Lewis et al. (2002).

Both patches are sources

In this scenario, the landscape consists of strongly and
mildly favourable patches (‘sources’). Each species can
sustain its population in the absence of the other on each
patch (type). The dynamics are given by (11)–(12) with
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competition coefficients being equal on both patch types but
carrying capacity being lower on MF than on SF patches.

Setup and simplifications

We reduce the number of parameters in our model by
non-dimensionalization, and we make a few simplifying
assumptions. In terms of the non-dimensional quantities

U1 = u1

K11
, U2 = u2

K21
, Rij = rij

r11
, Dij = dij

d11
,

T = r11t, X = x

√
r11

d11
, Li = li

√
r11

d11

the scaled equations on SF patches read

∂U1

∂T
= ∂2U1

∂X2
+ U1 (1 − U1 − A12U2) in �1 (21)

∂U2

∂T
= D21

∂2U2

∂X2
+ R21U2 (1−U2−A21U1) in �1 (22)

and on MF patches are given by

∂U1

∂T
= D12

∂2U1

∂X2
+R12U1

(
1− U1

K1
−A12

U2

K1

)
in �2 (23)

∂U2

∂T
= D22

∂2U2

∂X2
+R22U2

(
1− U2

K2
−A21

U1

K2

)
in �2. (24)

The remaining non-dimensional parameters are A12 =
a12

K21
K11

, A21 = a21
K11
K21

, K1 = K12
K11

and K2 = K22
K21

. Since
the carrying capacities on MF patches are lower, we have
K1, K2 < 1. To write interface conditions (9)–(10) in non-
dimensional quantities, we simply need to replace dij with
Dij (setting D11 = 1).

We now apply the homogenization procedure (described
earlier), with a series expansion solution in ε = L = L1 +
L2, to each of the two densities of the competition system
(21)–(24). The lowest-order term of the solution according
to (16) is given by

U
(0)
i (X, Y, T ) = ḡi (X, T )

h̄i(Y )
, (25)

where Y = X/ε is the small-scale variable. The time-
dependent function ḡi (X, T ) depends only on the large-
scale variable and is obtained from (17) written in the
dimensionless variables. It turns out that under the rescaling

ĝ1 =
(

L1 + R12L2/(K1k
2
1)

L1 + R12L2/k1

)

ḡ1 and

ĝ2 =
(

R21L1 + R22L2/(K2k
2
2)

R21L1 + R22L2/k2

)

ḡ2, (26)

the homogenized equations have the same form as (2)–(3),
namely

∂ĝ1

∂T
= D1

∂2ĝ1

∂X2
+ R1 ĝ1

(
1 − ĝ1 − A1ĝ2

)
, (27)

∂ĝ2

∂T
= D2

∂2ĝ2

∂X2
+ R2 ĝ2

(
1 − ĝ2 − A2ĝ1

)
. (28)

Here, D1 = L̂2
1〈D1〉H and D2 = L̂2

2〈D2〉H are the
homogenized diffusion coefficients, with L̂i and 〈Di〉H
given as in (18) and (19). The growth rates and competition
coefficients in the homogenized model are given by

R1 =
(
L1+R12L2/k1

L1+L2/k1

)
, R2 =

(
R21L1+R22L2/k2

L1+L2/k2

)
, (29)

A1 =A12

(
L1+R12L2/(K1k1k2)

R21L1+R22L2/(K2k
2
2)

)(
R21L1+R22L2/k2

L1+R12L2/k1

)
, (30)

and A2 = A21

(
R21L1+R22L2/(K2k1k2)

L1 + R12L2/(K1k
2
1)

)

×
(

L1 + R12L2/k1

R21L1 + R22L2/k2

)
. (31)

We can apply the theory in Lewis et al. (2002) to (27)–(28).
In particular, species 1 can invade the resident-only (species
2) steady state if A1 < 1, and under the conditions stated
in the introduction, the spread rate of species 1 invading
resident species 2 at equilibrium is

C = 2
√

D1R1(1 − A1). (32)

To illustrate our results, we make the additional simplifying
assumption K1 = K2 (< 1) so that the outcome of local
competition is determined by the coefficients Aij only.
Resident species 2 wins the competition in both patch types
if A21 < 1 < A12; the invading species 1 wins in both
patches if the inequalities are reversed, i.e. A12 < 1 < A21.
We begin exploring how invasion conditions and spread
rates depend on the diffusion coefficients of the two species
in each patch.

The effect of diffusion rates

For the scenario when the resident is the stronger competitor,
the stability results are illustrated in Fig. 1a. The horizontal
axis shows the ratio of movement rates in bad versus good
patches for the resident, the vertical axis for the invader.
The light grey region indicates the set A1 > 1. Here, the
resident semi-trivial state is stable, the invasion fails, and
the resident wins. In the white regions, the inequality is
reversed and species 1 can invade. Since, in addition, we
have A2 < 1 in the entire region, the semi-trivial invader
state is always unstable. Hence, the white regions indicate
coexistence of resident and invader. We see that species 1
has no chance to invade if the resident has roughly equal
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(a) (b)

Fig. 1 Competition outcomes as a function of the resident and invader
diffusivity ratios, D22/D21 and D12, respectively. In light (dark) grey
regions, species 2 (1) wins; in white regions, coexistence is possible.
In a, the resident is the stronger competitor in both patch types with
A21 = 0.8 < 1 < 1.2 = A12. In b, the invader is the stronger
competitor in both patch types as we set A12 = 0.8 < 1 < 1.2 =
A21. At interfaces, individuals choose each habitat type with equal
probability, i.e. α1 = α2 = 0.5. The remaining (default) parameters
are L1 = L2 = 1, R12 = R21 = R22 = 1 and K1 = K2 = 0.8

mobility in both patch types. If, however, the resident moves
much faster in one of the two patch types, then the species
1 can invade when it moves much slower in that patch
type. Since movement rates are inversely correlated with
residence times, we can also say that if the residence time
of the resident in one patch type is much higher than in the
other, then the invader can be successful by choosing its
residence times in the opposite way. Similar considerations
apply in the other scenario when the invader species 1 is the
better competitor in both patch types. Figure 1b indicates
this scenario, with the dark grey region representing the
exclusion of the resident and the white region representing
coexistence as above.

We now illustrate how the spread rate of the invader
depends on the diffusion rate of the resident in bad patches,
D22. While the competition outcome depends on movement
rates only through the ratios D22/D21 and D12, as can be
seen from (30) and (31), the speed does not. We plot the

spread speed from the homogenization formula in (32)
and compare it with the results of numerical simulations
of the original system, obtained by a backwards Euler,
finite difference scheme (Strikwerda 2004). In all cases,
the homogenization approximation (solid lines) and the
numerical speed (black dots) agree very well, even though
the period of the landscape is not particularly small
compared to the diffusivities.

We begin again with the scenario where the resident is the
better competitor in both patch types, and we fix the invader
diffusion constant to D12 = 1, i.e. the invader moves
at the same rate in both patch types. Its spread rate first
decreases with D22 until it hits zero where the invasion is not
successful. For large enough values of D22 the spread rate
increases again; see Fig. 2a. When the invader is the better
competitor in both patch types, the speed is positive across
the range of D22, but has a local minimum at intermediate
values; see Fig. 2b. Hence, in both cases, the slowest speeds
occur when the resident moves similarly in the two patch
types; faster speeds are possible when the resident uses
different movement rates.

The effect of habitat preference

So far, we only considered movement rates of the
two species. Now we illustrate the influence of habitat
preference. Figure 3 illustrates the regions of coexistence
(white), species 2 dominance (light grey) and species 1
dominance (dark grey) as before. Figure 3a is for the
scenario where the resident is the stronger species in
both patch types. We see again that the two species are
more likely to coexist if their habitat preferences are more
dissimilar. Figure 3b shows the case where the invader is the
stronger competitor in both patch types. The corresponding
spread rates (for α1 = 0.5) are illustrated in Fig. 4a, b,
respectively. We see a similar pattern as before: the invasion
is fastest when the resident patch preference is very high or
very low, and it spreads more slowly (or not at all) when the
resident patch preference is intermediate.

Fig. 2 Spread speed of species 1
(with D12 = 1) as a function of
species 2 diffusivity in
unfavourable patches, D22. In a,
species 2 is the stronger
competitor in both patch types
(A21 = 0.8 < 1 < 1.2 = A12).
In b, species 1 outcompetes 2 in
both patch types
(A12 = 0.8 < 1 < 1.2 = A21).
We set D21 = 1 and all other
parameters are the default values
from Fig. 1

(a) (b)
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(a) (b)

Fig. 3 Competition outcomes as a function of habitat preference
of resident and invader species. White regions correspond to a
coexistence state. In light (dark) grey regions, species 2 (1) wins.
In a, the resident species wins local competition in both patches
(A21 = 0.8 < 1 < 1.2 = A12). In b, the invader wins both local
competitions (A12 = 0.8 < 1 < 1.2 = A21). Movement parameters
are D12 = D21 = D22 = 1; all other parameters are set at the default
values from Fig. 1

The effect of carrying capacities

Next, we look at how the scenarios of coexistence and
exclusion depend on the difference in habitat quality
between SF and MF patches. We choose K1 = K2 = K

as our control parameter. When K is near one, MF are
almost as good as SF patches. When K is near zero, MF
patches are much worse than SF patches. Figure 5a, b
shows how the resulting competitive outcome depends on
the resident species’ movement rates. When the resident
species is the stronger competitor (Fig. 5a), the invader
can replace it if K is low and the resident moves slowly
in MF patches (low D22/D21). For high K, the (stronger)
resident cannot be replaced but the two species will coexist
for small or large D22/D21. When the invader is the stronger
competitor (Fig. 5b), it will always exclude the resident
for high K . The invader is eliminated at small K and high
D22/D21. Coexistence arises at intermediate K and large
D22/D21.

Similar competitors

In previous sections, we had chosen the competition
coefficients ‘far away’ from unity, so that the species
had a relatively strong competitive (dis-)advantage. In that
case, we saw that movement behaviour in a heterogeneous
environment could lead to coexistence of the two species
even though one species dominated the local competition
in both patch types. Here we choose the competition
coefficients closer to unity so that the competitive advantage
is weak. We shall see that in addition to the scenarios
presented before, bistability can also arise.

The setup in Fig. 6 is similar to the one in Fig. 1b.
The resident is the weaker competitor in both patch types,
but this time, the competitive disadvantage is small. In
comparing the two figures, we see that the region in which
the invader excludes the resident is smaller and a new
region emerges where the inferior resident excludes the
invader. The light grey region where the resident wins may
be separated from the dark grey region where the invader
wins by the white region of coexistence (Fig. 6a), or it
may overlap, leading to the diagonally striped region of
bistability (Fig. 6b). In these figures, neither species shows
habitat preference, i.e. αi = 0.5, but the same qualitative
behaviour can be observed when the diffusion rates are
constant and equal in both patch types, and the habitat
preferences vary (similar to Figs. 3, plots not shown).

We conclude that if the competitive advantage is
relatively large (Fig. 1), the stronger competitor has nothing
to fear: it cannot be replaced (irrespective of movement
strategy); it just may not be able to eliminate the weaker
competitor (depending on movement strategy). When the
competitive advantage is relatively small, though (Fig. 6),
the stronger competitor faces the risk of elimination due
solely to the chosen movement strategies.

We use again the formula in (32) to calculate the spread
rate of species 1 into the resident species 2 (and vice versa).
We fix the diffusion coefficient of species 1 in bad patches
to D12 = 5. The results are depicted in Fig. 7. Similarly to

Fig. 4 Invader spread rates as a
function of resident habitat
preference α2. Competitive
scenarios correspond to those in
Fig. 3,
i.e. A21 = 0.8 < 1 < 1.2 = A12
in a and
A12 = 0.8 < 1 < 1.2 = A21 in
b. In both cases, we have
α1 = 0.5

(a) (b)
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Fig. 5 Competition outcomes as
a function of resident diffusion
rates and carrying capacities in
lower quality patches. In light
(dark) grey regions, species 2
(1) wins; in white regions,
coexistence is possible.
Competition coefficients are as
in previous figures,
i.e. A21 = 0.8 < 1 < 1.2 = A12
in a and
A12 = 0.8 < 1 < 1.2 = A21 in
b. We have D12 = 1,
α1 = α2 = 0.5 and other
parameters at default values

(a) (b)

Fig. 2, the speed of species 1 is minimal for intermediate
values of D22. In contrast to Fig. 2b, the speed even reaches
zero so that invasion is impossible even though species 1
is locally the better competitor in both patch types. When
D22 is small, species 1 spreads quickly since it uses mostly
the SF habitat type whereas species 2 uses mostly the MF
habitat type. When D22 is large, species 1 also spreads
quickly since it uses the habitat in a similar way to species 2
and it is the superior competitor. For intermediate values of
D22, species 1 loses its local competitive advantage. Since
it moves quickly in MF habitat, its density there is so low
that species 2 can persist there and even outcompete species
1 globally.

The spread rate of species 2 (dashed lines in Fig. 7) is a
hump-shaped function of D22. Clearly, when D22 = 0, the

(a) (b)

Fig. 6 Competition outcomes as a function of the resident and invader
diffusivity ratios, D22/D21 and D12, respectively. In light (dark) grey
regions, species 2 (1) wins; in white regions, coexistence is possible;
in the diagonally striped region, we have founder control. Please note
that, because of the scale, the behaviour in the bottom left corner is
difficult to see. In a, the light and dark grey regions are separated by
a very narrow white region of coexistence; in b, the light and dark
grey regions overlap and create a region of bistability. In both cases,
the invader is the stronger local competitor in both patch types with
A12 = 0.95 < 1 < 1.05 = A21 in a and A12 = 0.95 < 1 < 1.1 = A21
in b. At interfaces, individuals choose each habitat type with equal
probability, i.e. α1 = α2 = 0.5. The remaining (default) parameters
are L1 = L2 = 1, R12 = R21 = R22 = 1 and K1 = K2 = 0.8

species cannot spread. When D22 is small, species 2 spends
most of the time in MF habitat and uses the resources there
so well that it can spread into species 1 and even outcompete
it. As D22 increases further, species 2 spends more time
in SF habitat, just as species 1, and it loses the local
competition there. The spread rate decreases and eventually
becomes zero. If the species 2 spread rate becomes zero
before the species 1 rate becomes positive (Fig. 7b), we have
a bistable situation; otherwise, we have a coexistence region
(Fig. 7a).

Please note that we indicate by the cross-hatched region
the parameter range for which the sufficient conditions
for linear determinacy in (6) are not satisfied. Our
simulations show that the linearized formula still predicts
the numerically simulated spread rate very well.

The various outcomes that we found depend in complex
ways on species behaviour and environmental attributes.
This complexity can be expected in models with many
parameters. Our goal, however, is to elucidate the role of
movement patterns in the competitive outcome. The key
to this understanding is the observation that a species’
occupancy in a type 1 patch increases if its patch preference
α increases and/or its relative movement rate in patch type
1 decreases. In other words, occupancy times in a SF patch
is high (low) if the ‘effective patch preference’ (ki) is high
(low). In Table 1, we summarize the conditions for the
different competitive outcomes based on patch occupancy.
Note that on this level of abstraction, the conditions for
founder control are the same as for competitive reversal; the
detailed differences between the two depend on parameter
values.

Unfavourable patches are sinks

We now consider the scenario of a source-sink landscape:
patches of type 1 are strongly favourable (SF) and patches of
type 2 are unfavourable (U). In SF patches, we have Lotka–
Volterra competition and the (rescaled) dynamics are as in
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Fig. 7 Spread speed of species 1
(solid) and species 2 (dashed)
into its respective competitor as
a function of species 2
diffusivity in bad patches, D22.
Species 1 locally outcompetes 2
in both patch types with a
A12 = 0.95 < 1 < 1.05 = A21
and b
A12 = 0.95 < 1 < 1.1 = A21.
Parameters are D12 = 5,
D21 = 1 and all other
parameters are the default values
from Fig. 1 (a) (b)

(21) and (22). Due to the presence of U patches, persistence
of each species in the absence of the other is conditional on
the relative size of SF and U patches, the respective growth
rates and movement behaviour. We studied these conditions
in detail in Maciel and Lutscher (2013). Here, since we
focus on competition, we shall always assume that each
species can persist in the absence of the other.

Setup and simplification

As before, we non-dimensionalize the equations to reduce
the number of parameters. Non-dimensional equations in U
patches are given by

∂U1

∂T
= D12

∂2U1

∂X2
− M12U1 in �2, (33)

∂U2

∂T
= D22

∂2U2

∂X2
− M22U2 in �2, (34)

where M12 > 0 and M22 > 0 are the rescaled mortality
rates of species 1 and 2, respectively.

Applying the homogenization technique as in the previous
scenario, we obtain solutions at leading order in the form of
(25). The persistence conditions for each species in isolation
in the homogenized equations are L1 − M12L2/k1 > 0 and
R21L1 − M22L2/k2 > 0. They both express that growth
on SF patches has to be stronger than loss on U patches.

As mentioned above, we shall henceforth assume that these
conditions are satisfied. Instead of the scaling in (26), we
now introduce the scaled variables

ĝ1 = L1

L1−M12L2/k1
ḡ1 and ĝ2 = R21L1

R21L1−M22L2/k2
ḡ2.

By the persistence conditions, these scalings are positive.
We then arrive at homogenized equations for ĝ1 and ĝ2,

analogous to (27) and (28), namely

∂ĝ1

∂T
= D1

∂2ĝ1

∂X2
+ R1 ĝ1

(
1 − ĝ1 − A1ĝ2

)
, (35)

∂ĝ2

∂T
= D2

∂2ĝ2

∂X2
+ R2 ĝ2

(
1 − ĝ2 − A2ĝ1

)
, (36)

with D1 = L̂2
1〈D1〉H and D2 = L̂2

2〈D2〉H as before. The
homogenized growth rates and competition coefficients are
now given by

R1 =
(

L1 − M12L2/k1

L1 + L2/k1

)
, (37)

R2 =
(

R21L1 − M22L2/k2

L1 + L2/k2

)
, (38)

A1 = A12

R21

(
R21L1 − M22L2/k2

L1 − M12L2/k1

)
, (39)

A2 = R21A21

(
L1 − M12L2/k1

R21L1 − M22L2/k2

)
. (40)

Table 1 Summary of competitive outcomes when both patches are sources. Please refer to text for more details

Outcome Conditions

Stronger competitor wins – SF and MF habitats are similar; effective patch preference of the two species are similar (Figs. 1, 3, and 6).

– SF and MF habitats differ substantially; effective patch preference of the weaker
competitor is not much higher than the stronger competitor (Fig. 5).

Weaker competitor wins – SF and MF habitats differ substantially; effective patch preference of the weaker competitor is substantially
higher than the stronger competitor (Fig. 5).

– Competitive advantage is small; competitors prefer same patch type (k1,2 > 1 or k1,2 < 1); inferior
competitor occupies both patches more equally (Fig. 6).

Coexistence – SF and MF habitats are similar; effective patch preference between species differ (Figs. 1, 3, and 6).

Founder control – Competitive advantage is small; competitors prefer same patch type (k1,2 > 1 or k1,2 < 1); inferior
competitor occupies both patches more equally (Fig. 6).
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As above, these expressions are positive because of the
condition that each species can persist in isolation.

The effect of diffusion rates

We proceed with the analysis by focusing on the diffusion
rates, analogous to the SF/MF scenario. The solid black
rectangles in Fig. 8 indicate that neither species can persist
(in isolation) when their movement rates in U habitat are
too low. If the invader has a high enough diffusion rate
in U patches, it will persist and spread in isolation, as
indicated by the dotted rectangle on the left of Fig. 8. The
dotted rectangle on the lower part of the figure indicates
the opposite scenario that D22/D21 is high enough for the
resident to persist, but D12 is too small for the invader to
persist alone. As the invader’s movement rate in U patches
increases, it could persist on its own, but is outcompeted
by the resident (light grey region), even though the resident
is locally the weaker competitor for the parameter values
chosen in Fig. 8. As D12 increases even more, the invader
will be able to persist and spread, and for high enough
values of D12 eventually outcompete the resident (dark grey
region). The transition between the two scenarios can occur
via a coexistence region of mutual invasion (white region
in Fig. 8a) or, for slightly different parameter values, via
a region of founder control (diagonally striped region in
Fig. 8b). Which situation occurs depends on the reverse
question of when species 2 can invade species 1.

The different scenarios are reflected in the plot of
the spread rates in Fig. 9. As in the SF/MF scenario
before, the speed depends on the diffusion rates individually
while competitive outcome depends only on the ratio
D22/D21. When D22 is too small for species 2 to persist,

(a) (b)

(a) (b)

Fig. 9 The spread rate of species 1 (solid) and species 2 (dashed) as
a function of the diffusion constant D22, with D21 = 1 and D12 = 1
fixed. a Both species have positive spread rates at intermediate values,
so that there is coexistence based on mutual invasion. b The region
where both spread rates are zero indicates bistability. The spread rate
of species 1 is constant for small values of D22 since species 2 is absent
from the environment at these values. In the cross-hatched region, the
sufficient conditions for linear determinacy in (6) are not satisfied. The
remaining parameters are a A12 = 0.8 < 1 < A21 = 1.1 and b
A12 = 0.9 < 1 < A21 = 1.2 and other defaults as before

then the spread rate of species 1 is independent of the
motility of species 2 (solid curve). When motility is
large enough for the species to persist, then the invader’s
spread rate decreases as the resident uses some of the
resources. Eventually, the invader’s speed goes to zero
when the resident motility is high. At that point, the
resident outcompetes the competitively superior invader.
Switching the roles of resident and invader, we obtain the
spread rate for species 2 as the dashed curve in Fig. 9.
Here, we can clearly distinguish species coexistence from
bistability. Coexistence occurs when both species have a
positive spread rate for some motility parameters (Fig. 9a),
yet bistability arises when the two speeds are never both
positive (Fig. 9b). The cross-hatched region in Fig. 9b
indicates the parameter range where conditions for linear
determinacy in (6) are not satisfied. Yet, simulations show
again a very good agreement with the approximate speed.

The effect of habitat preference

The reasoning about the effects of the patch preference
parameters αi is very similar to the preceding case. We only
illustrate the coexistence scenario in Fig. 10. When a species
has low preference for the good patches, it cannot persist.
This region is indicated by the black rectangle (neither can
persist) and the dotted regions (only one can persist). If
the preference for good patches increases, a species can
persist on its own, and it may coexist or outcompete its
competitor, depending on parameter values. Coexistence
happens when both species have a positive spread rate in
the presence of the other species. When the preference for
good patches becomes very high, the speed of spread slows
down because individuals do not leave good patches any
more. In summary, the resident can achieve a competitive

Fig. 8 Outcome of competition in a source-sink landscape, depending
on diffusion ratios D22/D21 and D12. In light (dark) grey regions,
species 2 (1) wins; in the white region, both coexist; the diagonally
striped region indicates bistability. The dotted and black areas
correspond to one or both species being unable to persist in the absence
of the competitor. In both cases, parameters are chosen such that
species 1 is the stronger local competitor. Parameter values are a
A12 = 0.8 < 1 < A21 = 1.1 and b A12 = 0.9 < 1 < A21 = 1.2.
In both cases, we have Mij = 0.5. Other parameters have the default
values from previous figures
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Fig. 10 Competitive outcome
(left plot) and spread rates (right
plot) as a function of habitat
preference parameters αi .
Colour patterns are as in the
previous two figures. Parameters
are A12 = 0.8 < 1 < A21 = 1.1
for a and b. We set α1 = 0.5 in
b and the diffusion coefficients
are D12 = D21 = D22 = 1
in both panels

(a) (b)

advantage by high diffusion rates in bad patches and/or high
preference for good patches. In other words, the outcome of
competition is decided again, in large parts, by the effective
patch preferences ki, defined in (10).

We can explicitly calculate the outcome of competition
for two competing species that differ only in their movement
behaviour as follows. We make the simplifying assumption
that the two species are identical in growth rate (Rij = 1)
and mortality (Mij = 1) and that the two patch types
are of equal length. Then, the homogenized competition
coefficients in (39)–(40) can be written in terms of the
effective patch preferences as

A1 = A12
1 − 1/k2

1 − 1/k1
, A2 = A21

1 − 1/k1

1 − 1/k2
.

In particular, the condition for coexistence (A1, A2 < 1)
becomes

A21 <
1 − 1/k2

1 − 1/k1
<

1

A12
,

whereas the condition for founder control or bistability
(A1, A2 > 1) is simply the reverse. Hence, we see that
coexistence is possible if A12A21 < 1, whereas founder
control may arise if A12A21 > 1.

In Table 2, we summarize the conditions for obtaining the
different competition outcomes when unfavourable patches

are sinks. We again focus on patch occupancy as determined
by effective preferences.

Discussion

Biological invasions are occurring more and more fre-
quently, and they have the potential to permanently alter
ecosystems, for example by removing native species.
Accordingly, there is enormous recent interest in empirical
and theoretical investigations of invasion processes (Hast-
ings et al. 2005; Taylor and Hastings 2005). A typical first
modelling approach considers a single species (the potential
invader) in a homogeneous landscape and aims to under-
stand the mechanisms behind reproduction and dispersal
to estimate spread. Realistic invasion processes, however,
happen in the presence of other interacting species and in
heterogeneous landscapes. The combination of these two
aspects leads to new opportunities for the potential invader
and the species it interacts with. For example, the ‘envi-
ronmental heterogeneity hypothesis of invasions’ speculates
that heterogeneity could both increase the success of invad-
ing species and decrease the impact on native species by
promoting coexistence mechanisms that are not present
in homogeneous landscapes (Melbourne et al. 2007). The
main motivation for our work was to study movement-based
mechanisms that could support or dispel this hypothesis or,
more generally, affect the invasion process in a heteroge-
neous landscape.

Table 2 Summary of outcomes when unfavourable patches are sinks

Outcome Conditions

Stronger competitor wins Stronger (weaker) competitor has sufficiently large (small) effective preference

Weaker competitor wins Stronger (weaker) competitor has sufficiently small (large) effective preference

Coexistence Effective preference is similar; inferior competitor occupies favourable patches more efficiently; competition is weak

Founder control Same as for ‘coexistence’, but competition is strong
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Since the work by Fisher (1937), reaction-diffusion equa-
tions are often the framework of choice to model biological
invasions, most frequently as single-species models. Several
consumer-resource/predator-prey models in homogeneous
environments exist, see Lewis et al. (2016) and references
therein, but only a few treat competitive interactions (Okubo
et al. 1989; Lewis et al. 2002). Models for population spread
in fragmented landscapes were formulated by Shigesada
et al. (1986) and then extended to include a detailed descrip-
tion of movement behaviour at interfaces between habitat
types (Maciel and Lutscher 2013, 2015). These are almost
exclusively single-species models with only a few excep-
tions (Pacala and Roughgarden 1982; Cruywagen et al.
1996). In our current work, we studied how the patch-
type-dependent movement behaviour affects and alters the
interaction of two competing species in a periodic, patchy
environment.

We considered two combinations of patch types in an
infinite, periodically alternating landscape: SF/MF, where
both patch types are population dynamic sources that differ
in carrying capacity, and SF/U with sources and sinks. To
focus on movement behaviour, we chose the two species to
be as similar as possible otherwise, i.e. in terms of growth
rates and carrying capacities. We chose interaction param-
eters in such a way that the same species won the local
competition in each patch type. We then illustrated that
movement behaviour, encoded by the single dimension-
less parameter ki in (10), the ‘effective patch preference’,
can change the outcome of competition to coexistence,
to bistability, and to a reversal of competitive dominance.
The two scenarios revealed two different insights. In the
SF/U scenario, high effective patch preference is beneficial
for species persistence. Since the lesser-quality patches
are sinks, individuals should enter these at a low rate but
move through them at high speed. This negative relation-
ship between probability to enter a patch of certain habitat
quality and the movement rate inside the patch has been
confirmed empirically for a number of species, in particular
for habitat specialists (Kuefler et al. 2010). On the other
hand, in SF/MF environments, intermediate effective patch
preference seems to be best for species persistence. Very
high preference values in the competitively superior species
can lead to a reversal of the competitive outcome and favour
the competitively inferior species. Our next step in this direction
is to study the evolution of patch preference and dispersal
in an adaptive dynamics setting (Maciel et al. 2018).

Questions of population persistence and competitive
outcomes provide long-term information, but in the
management of invasive species, short-term predictions of
spread are often more important. We therefore studied the
predicted rates of spatial spread of one species into its
competitor at steady state. The insights here are somewhat
more subtle. For example, a high probability of moving

into a good patch (αi) enhances population persistence but
can slow its spread since individuals tend to stay in a good
patch and not move on. A higher diffusion rate in MF
patches can slow or even inhibit the spread of a weaker
competitor (Fig. 7). Most interesting, however, is the insight
that movement characteristics of an inferior resident species
can decrease or increase the spread rate of a superior invader
indirectly but strongly, for example prohibiting spread. It is
therefore clear that biological invasions are more complex
than single-species models make us believe and that species
interactions need to be taken into account, in particular if
landscapes are heterogeneous.

With regard to the ‘environmental heterogeneity hypoth-
esis’ (Melbourne et al. 2007), our investigation shows that
both predictions can arise: heterogeneity can lead to higher
invasion success and can decrease the negative impacts
on resident species. But heterogeneity can do a lot more:
depending on how otherwise almost identical species move,
the competitive outcome can be reversed or bistability can
result.

Red squirrels are being driven to extinction by invasive
grey squirrels in much of Britain, and the invasion takes
place in a highly heterogeneous environment (Rushton et al.
1997). Red squirrels remain mostly in remote coniferous
forests, but as they can sometimes coexist with grey
squirrels for decades after the grey squirrels arrive in a
location, it is not clear for how much longer. Habitat
requirements are somewhat similar for both species in that
both prefer coniferous trees, but grey squirrels also use
mixed and broadleaved forests (Bryce et al. 2002). Squirrels
have home ranges, and a young squirrel often must disperse
to find its own range. Squirrels are highly mobile. They
can disperse on the order of several home-range sizes, and
there is evidence that males can view the landscape as fine-
grained, so that individuals easily move between fragments
(Andrén and Delin 1994). There is also clear evidence
that squirrels adjust their movement to landscape features
(quality, edges) (Bakker and van Vuren 2004; Haughand and
Larsen 2004). Okubo et al. (1989) studied the spread of the
grey squirrel in Britain with a spatially homogeneous model.
Their estimated diffusion rates, however, take spacing
between suitable habitat patches into account. They suggest
values between 1 and 20 km2/year.

For an order of magnitude difference (i.e. ε = 0.1),
one would like to consider heterogeneity in terms of
patches of 0.1 to 2 km2 or less. Forest inventory and
other landscape data are often available on even smaller
scales. Many animals, however, have home ranges; for
squirrels, these range between 0.01 and 0.1 km2. For
scales smaller than these, the pointwise density approach
of reaction-diffusion equations and species interactions may
not be the appropriate modelling framework any more.
Yet, as we demonstrated with our numerical simulations,
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the order of magnitude difference in scales is necessary
for the derivation of the homogenized equation but not
(necessarily) for it being a surprisingly good approximation
to the small-scale equations.

Gurnell et al. (2004) demonstrated negative population
dynamic effects of grey on red squirrels on patches of 0.4 km2.
The effects include a reduction in recruitment and summer
breeding of red squirrels in the presence of grey squirrels.
The authors caution that longer-term studies are required
because of large annual variation. Okubo et al. (1989)
consider the competitive effect of the red squirrel on the
grey as very small. According to our results, in regions
where favourable (woodlands) and unfavourable (e.g. farm-
land) habitats are interspersed, the stronger competitor (grey
squirrel) will dominate if it has a reasonably strong effec-
tive preference (Table 2). Since grey squirrels are also larger
than red ones, we speculate that their potential movement
rate in unfavourable patches is at least as large as for the
red ones, so that they will win the competition (Fig. 8).
In regions where more (coniferous) and less (broadleaved)
favourable forest patches are interspersed, the stronger com-
petitor only needs to have a similar effective preference to
outcompete the inferior species, so that the greys should
again win (Table 1). Overall, our work indicates that red
squirrels would need to have significantly different effective
patch preference (in terms of movement behaviour) to stand
a chance against their grey relatives. This is, however, only
one tiny piece of the puzzle. There are several other factors
(e.g. disease) that contribute to the interaction between red
and grey squirrels and to the decline of the red ones.

Our analysis is based on homogenization techniques and
multi-scale analysis. These techniques are well developed in
general, although the application to models with discon-
tinuous interface conditions is very recent (Alqawasmeh
2017; Yurk and Cobbold 2018). As is often the case, the
results from this technique are valid far beyond the formal
limit of fine-scale heterogeneity, in which they are derived.
Our comparison between the prediction by the homogenized
model and the numerical results for the full spatial model
confirms this pattern and underlines the value that these
techniques can have for theoretical ecology. As mentioned
above, care is required when choosing the spatial scales of
the model and testing the applicability of homogenization.
We pose as a future challenge the development of homog-
enization techniques on more than two scales: the scale of
habitat variation, the scale of population interaction, and the
scale of observation.

Previous reaction-diffusion models for competing species
in two-type landscapes (Pacala and Roughgarden 1982;
Cruywagen et al. 1996) did not incorporate movement
behaviour at interfaces and, because of that, may have
missed some important relationships (Maciel and Lutscher
2013). However, the work by Cruywagen et al. (1996) in

particular used another approximation to find profiles of
steady states. Extending their techniques to our more general
model is one of the future challenges that results from our
work and that may give even more insights into the way
in which movement shapes competition in heterogeneous
landscapes. A much greater challenge is to extend the
existence results for spreading speeds and travelling waves,
as well as conditions for linear determinacy, to the full,
spatially heterogeneous equations, and to characterize
situations better in which the linearization technique could
fail. Our work is also related to earlier work on discrete-time
integrodifference equations in patchy landscapes, where
movement behaviour was independent of patch type, for
example for wind-dispersed plants (Samia and Lutscher
2010). Recent developments on the theory of dispersal
kernels (Musgrave and Lutscher 2014) will allow us to
examine the mechanisms from our work in the context of
integrodifference equations more closely.

Our work limits patch preference (α) in movement
locally to the interface between patch types. Work by
Cantrell et al. (2007) considers habitat quality a continuous
variable and uses a taxis term to model movement
upwards an environmental gradient. The authors did not
consider spatial spread rates, but their results on persistence
conditions and outcome of competition are comparable to
ours. For example, they found that taxis towards better
habitat is helpful for species persistence and that very strong
taxis towards favourable sites in one species allows a weaker
competing species to coexist by using less favourable sites.

Finally, we remark that we assumed that neither of the
two species experiences an Allee effect where the per-
capita growth rate peaks at intermediate densities. With
an Allee effect, the linearization procedure to determine
population persistence and spread rates will not work.
The homogenization technique can still be applied. In a
single-species model, it has already revealed a number of
interesting outcomes such as front localization (Maciel and
Lutscher 2015). In a non-spatial model for competition and
Allee effect, a number of interesting effects were found,
for example the scenario that neither species can persist
individually but together they can Lutscher and Iljon (2013).
Since Allee effects are quite common in nature and might
help manage invasions (Tobin et al. 2011), future research
should aim to include these features into multi-species
models for invasions.
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