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H I G H L I G H T S

• Probabilistic simulation-based multi-objective optimization approach for hybrid power systems.

• Study the uncertainties of renewable resources availability, load demand, and components failure.

• Post-optimization sensitive analysis leads to unfeasible solutions.

• Optimization with uncertainties implies higher costs for the same level of reliability.

• Useful decision making tool to design optimum and robust power systems.
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A B S T R A C T

This paper proposes a probabilistic simulation-based multi-objective optimization approach for dimensioning
robust renewable based Hybrid Power Systems. The method integrates an Optimization Module based on a
multi-objective Genetic Algorithm, an Uncertainty Module that uses Latin Hypercube Sampling method and
Monte Carlo Simulation to generate uncertainty scenarios and a Simulation Module to simulate the power system
under real operating conditions. Uncertainties considered include the renewable resources availability, the load
demand, and the probability of the components’ failure. The performance of the proposed approach was assessed
in a rural community of the Amazonian region of Brazil. Results show that a system configuration with the same
level of reliability as in the deterministic scenario implies a higher economic cost; however, the configurations
obtained probabilistically represent feasible robust solutions and guarantee a reliable source of generation. The
proposed optimization method constitutes a useful decision making tool for dimensioning hybrid power systems
that require both optimality and robustness.

1. Introduction

Brazil has increased the electrification rate from 79.9% in 1996 to
99.6% in 2014. Nonetheless, this percentage falls down to 89.7% in the
rural areas, particularly the Northern Amazon region presents the most
precarious service with an electrification rate of 61.5% [1]. In these
remote areas, the energy supply through the conventional electric grid
is prohibitive due to the high costs derived from the difficult accessi-
bility and the low returns related to the small power demand. These

isolated rural communities use off-grid power generation systems
which generally consist of internal combustion engines coupled with
electric generators [2]. However, running generators in remote areas is
not trivial. There are difficulties involved, such as the cost of fuel, the
logistics of transportation and storage, and the constant need for
maintenance. Furthermore, is necessary to consider the environmental
issues related to fossil fuels combustion and consequent greenhouse gas
emissions [3].

One alternative to meet the energy demand in isolated communities
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Nomenclature

Abbreviations

ANEEL Brazilian Electricity Regulatory Agency
BT battery bank
CC cycle charging dispatch strategy
CONV DC/AC converter
DF defined by the user dispatch strategy
DG diesel generator
DIC interruption duration per consumer unit [hour/year]
FIC interruption frequency per consumer unit [int/year]
HPS hybrid power system
LAC AC load
LCOE levelized cost of energy [$/kWh]
LF load following dispatch strategy
LPS loss of power supply [kW]
LPSP loss of power supply probability [%]
NPVC Net Present Value of costs [$]
NSGA-II Nondominated Sorting Genetic Algorithm II
PF pareto front
PR performance ratio of the photovoltaic array
PV solar photovoltaic generator
STC standard test conditions
WT wind power generator

Symbols

Cicap j, initial capital cost of the jth component [$]
Clevel tot, total levelized cost [U$S/year]
Co m j& , operation and maintenance cost jth component [$/year]
Crep j, replacement cost of the jth component [$]
CRF (·) capital recovery factor
(det.) deterministic
DownTimerepair/substitution time [hour]
dr real discount rate [%]
Ec dispatch strategy
Ec Ec,min max range of possible dispatch strategies
EMCO2 amount of pollutant emissions [kgCO2-eq/year]
EMCO2,adm admissible amount of pollutant emissions [kgCO2-eq/

year]
F0 fuel curve intercept coefficient [L/h/kW]
F1 slope coefficient [L/h/kW]
Fdg fuel consumption of the diesel generator [L/h]
Fdg,adm admissible fuel consumption of the diesel generator [L/

year]
fexess energy excess [%]
fexess,adm admissible energy excess [%]

→f x( )m objective function of order m
fpv power reduction factor [%]
fren renewable fraction [%]
fren,min minimum renewable fraction [%]

→g x( )j greater-than-equal-to constraint of order jth
→h x( )k equality constraint of order kth

LPSPadm Admissible loss of power supply probability [%]
LTproj life time of the project [year]
M number of objectives
maxGen maximum number of generations of the Genetic Algorithm
MTBFi mean times between failure of the ith component [hour]
MTTRi mean time to repair of the ith component [h]
n number of decision variables
Nbest best individuals in the population
Nbt p number batteries in parallel of the battery bank
Nconv number of converters
Ndg number of diesel generators

Npv number of photovoltaic modules
NPVC,adm Admissible Net Present Value [$]
Nsamp number of samples
Nwt number of wind turbines
N N,j min j max, , minimum and maximum number of the jth component
p DC load fraction of converter
p κ,0 characteristic parameters of converter model
Pdc rated, converter DC rated power [kW]
Pdg diesel generator instantaneous power output [kW]
Pdgr diesel generator rated power [kW]
Pinput converter DC power input [kW]
Pload power consumed by the load [kW]
popSize population size of the GA
Ppv power delivered by the PV array [kW]
POA solar irradiance incident upon the plane of the array [kW/

m2]
POASTC incident solar irradiance at Standard Test Conditions [kW/

m2]
pr recombination probability [%]
(prob.) probabilistic
Pwt power output of the wind turbine [kW]
Pwt r, wind turbine rated power [kW]
SOC state of charge of the battery bank [%]
SOCmin minimum state of charge of the battery bank [%]
Sol (det.) solutions obtained with the deterministic algorithm
Sol prob( . ) solutions obtained with the probabilistic algorithm
t time variable [h]
T period of time considered for analysis [h]
Ta ambient temperature [°C]
Tbt model of battery
Tc temperature of the photovoltaic cell [°C]
Tc STC, temperature of the photovoltaic cell at Standard Test

Conditions [°C]
Tconv model of converter
Tdg model of diesel generator
Tj model of jth component
T T,j min j max, , range of possible models for the jth component
Tpv model of photovoltaic module
Twt model of wind turbine
u instantaneous wind speed [m/s]
U U U, ,ci co r cut-in, cut-out and rated wind speeds [m/s]
UpTime operation time [h]
→xj decision vector of order jth
→x decision vector
x x,n

L
n

U( ) ( ) lower and upper limit of the nth variable
Ypv rated capacity of the PV array [kW]

Greek symbols

αp temperature coefficient of power [%/°C]
δd daily perturbation factor
δh hourly perturbation factor
δload perturbation factor for load profile

tΔ time step used for calculation [h]
ε μ σ( , )j i i discrete samples of stochastic variables
φ t( )i time-dependent phenomena

tΦ ( )i component operation history
λ fi failure rate of the ith component [1/h]
λri repair rate of the ith component [1/h]
ηconv efficiency of the AC/DC converter [%]
ξ vector of random variables
σ Variance of the probability distribution
σday noise, standard deviation of the daily noise factor [kW]
σhour noise, standard deviation of the hourly noise factor [kW]
θ t( )i uncertain parameter ith variable

tΘ ( )j matrix of energy balance results of jth order

J.J. Roberts et al. Applied Energy 223 (2018) 52–68

53



is through autonomous power systems based on renewable energies,
especially the so called Hybrid Power Systems (HPS), which combine
two or more renewable sources to power supply different loads [4]. In
these systems solar photovoltaic and wind are the most employed re-
newable energy sources due its high technological maturity and low
implementation costs [5]. Backup generation is almost exclusively
carried out by generators running on diesel oil [6], but some works
assess the possibility of using biodiesel [7] or synthesis gas to fuel the
generator [8]. Mini and micro-hydroelectric generation is an attractive
technology due to its high efficiency and low operation and main-
tenance costs [9], however this technology is only viable in certain
regions where the resource is available. Few studies consider gas-fired
micro-turbines as generation source, being this technology still ex-
pensive for remote isolated locations [10]. Lead-acid battery is the most
common energy storage device used in autonomous power systems at
present [11]. Its success is due to its maturity, low cost, long lifespan,
fast response, and low self‐discharge rate. In recent years hydrogen
storage systems have become a promising technique to store large vo-
lumes of energy [12]. However, the cost of generating and storing hy-
drogen still limits its application. Some works study alternative tech-
nologies such as thermal storage [13] or water pumping [14].

When properly designed, the HPS present technical, economic and
environmental benefits in comparison to single-source-based renewable
power systems or traditional power systems [15]. However, the optimal
design of HPS is a complex task due to the stochastic behavior of: (a) the
renewable resources' availability and load demand, (b) the non-linear
characteristic of the system's components, and, (c) the high interaction
between operational variables [16]. From the moment an isolated rural
community has access to electricity, the users become dependent on it,
and interruptions in the service may lead to catastrophic consequences
to them. Therefore, there is a need for a method to design robust power
generation systems that ensure the electricity supply for these com-
munities.

The optimal sizing of HPS is a well addressed issue in the area of
power system research. Various classical techniques have been prof-
fered by researchers to solve this problem, among them analytical
methods [17], graphical construction methods [18], probabilistic

methods [10] and iterative methods [6]. The classical optimization
techniques present the disadvantage that only one design criterion can
be considered, typically the economic or the technical [19]. Modern
optimization algorithms enable to consider multiple optimization cri-
teria simultaneously, such as the environmental, the social and the
geographical [20]. Among these techniques Metaheuristic algorithms
provide a worthy tool for the design of hybrid power systems without
the need of extensive long-term data and with the ability to handle
multi-objective optimization problems efficiently [21].

One important aspect in the design of HPS is uncertainties in the
input variables. Uncertainties related to the operation of the HPS re-
quires their implicit consideration. The most widespread method con-
sists in performing a deterministic optimization and then exploring the
influence of uncertain parameters through a sensitivity analysis [22].
This approach is most suitable for problems with few uncertain para-
meters, were various possible combinations of deterministic values can
be tested. For large-scale problems, programming this number of
combinations may become extremely large. Regarding the sources of
uncertainty, it is observed in the literature that most of the works
consider the stochastic nature of the renewable resources (solar and
wind) [23,24], and in some cases the variability of the load demand
[10,25]. Fewer works heed the components availability in the un-
certainty model [26,27]. In this way, a sensitive source of uncertainty
for the performance of the HPS, such as the components failure rate, is
neglected. None of the works in the literature consider the three above
mentioned sources of uncertainty simultaneously.

To enable optimum performance of HPS, all sources of uncertainties
should be considered during the design stages of such systems, along
with the complex interactions that unravel as numerous components
with diverse characteristics involved in the operation of the renewable-
based power generation system.

To address this problem, the present work proposes a probabilistic
simulation-based optimization method to design a HPS. The method
combines two desirable features, multi-objective optimization and un-
certainty quantification. The uncertainties considered are related to the
renewable resources availability, the load demand, and the probability
of the components’ failure. The incorporation of these three sources of

μ mean of the probability distribution
μ Sol( )Pareto det( .) mean of the deterministic solutions simulated

probabilistically
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Fig. 1. Typical wind-solar-diesel-battery stand-alone HPS configuration.
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Fig. 2. Flowchart of the proposed probabilistic simulation-based optimization approach.
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uncertainty within the optimization process of the HPS constitutes the
main contribution of the present work.

The proposed algorithm comprises three modules which interact to
find the best configuration of the HPS, the Optimization Module, the
Simulation Module and the Uncertainty Module. In this way the method
allows to design a HPS with the lowest possible cost, and that is able to
extract the maximum potential of the renewable resources, and most
important, to guarantee a reliable electrical supply, through the correct
dimensioning of the battery bank and the backup generator.

The rest of the article is organized as follows. Section 2 presents the
methodological basis of the present research, discussing the proposed
probabilistic simulation-based optimization approach, presenting the
simulation, uncertainty and optimization modules that together com-
pose the HPS design methodology. Section 3 describes the case study. In
Section 4 the results of the implementation of the design methodology
are presented comparing the deterministic and the probabilistic opti-
mization approaches. Concluding remarks are given in Section 5.

2. Materials and methods

The renewable-based hybrid power system studied in this work is
presented in Fig. 1 and comprises an array of photovoltaic modules
(PV), a wind turbine (WT), a bank of lead-acid batteries (BT), a diesel
generator (DG), a DC/AC converter (CONV) and the AC load (LAC) to be
served. Fig. 1 also depicts the non-linear characteristic of the compo-
nents operation, and, the stochastic nature of the renewable resources
and the load which must be integrated in the system’s sizing calcula-
tions.

The complexity of the optimization problem studied here makes
impossible to know in advance the structure of the objective function
and an analytical expression of this function cannot be deduced.
Therefore, there is a necessity to derive the objective function from the
outputs of simulation runs. For this, it is proposed the probabilistic si-
mulation-based optimization approach depicted in Fig. 2. The main
algorithm is formed by three sub-algorithms, the Optimization Module,
the Uncertainty Module and the Simulation Module.

The input parameters, step ➀ in Fig. 2, are the technical and eco-
nomic characteristics of the HPS components; the characteristics of the
renewable resources and the load to be served; the parameters of the
GA; and the uncertainties considered. In step ➁, the algorithm sets the
maximum and minimum limits of the decision variables to bound the
search space and to reduce the simulation time. For this, we adopted
the pre-dimensioning method suggested by [28]. Step ➂ consists in
randomly generate the first generation of the GA, →xj , formed by popSize
individuals. In step ➃, the uncertainty scenarios are generated; for each
individual in the population a total of Nsamp samples for the availability
of renewable resources and load demand scenarios are generated using
the method explained in Section 2.2. Also, there are Nsamp generated
from chronological state transition processes for the components sub-
jected to failure. In step ➄, each individual in the population is simu-
lated Nsamp times under the uncertainty scenarios generated in step ➃.
All in all, the algorithm performs a total of ×N popSizesamp simulations
of the HPS in each generation of the GA. Thus, for each individual in the
population it is obtained a matrix of energy balance results tΘ ( )j . With
this information, the performance of the system is assessed in step ➅.
The result is a set of stochastic indices, that is, a probability distribution
for each performance index calculated. At this point it is necessary to
apply a method to obtain a deterministic value from the probabilistic
indices derived from the simulations. We adopted the minimax method
presented in Eq. (1) [29]:

→ → →f x ξ f x ξ f x ξmin [sup ( , ), sup ( , ),..., sup ( , )]F m
T

Ξ 1 Ξ 2 Ξ (1)

where →f x ξ( , )m are the objective functions; ∈ξ Ξ is the vector of random
variables; and sup(·) indicates the worst-case scenario for the specific
objective function. In step ➆, the algorithm checks the feasibility of

each solution according to the constraints imposed by the user, each
individual in the population gets a level of aptitude depending on the
value of the objective functions and the amount of constraints violated.
Thus, the best individuals (the fittest) are selected to move on to the
next generation. Next, in step ➇, the stopping criteria are checked, and
if not met, the population undergoes the GA evolution process through
recombination and mutation (step ➈). The population is updated with
the new individuals, which are expected to be better than those in the
previous generation. At this point, the algorithm completes a full gen-
eration cycle. After updating the population, the individuals are sent
back to the simulation module to compute the objective function and
restrictions and back to the optimization module again. This cycle is
repeated until the termination criteria are met. In the final step ➉, the
algorithm returns a set of non-dominated solutions that can be con-
sidered “robust” since they were obtained considering the uncertainties
in the optimization process.

2.1. Optimization module

The optimization module is responsible for searching the best con-
figuration of HPS among the universe of possible configurations, that is,
it needs to solve the optimization problem as defined in equation (2).

→ = …
→ ⩾ = …
→ = = …

⩽ ⩽ = …

f x m M

g x j J

h x k K
x x x i n

Minimize ( ) 1,2, ,

Subjected to ( ) 0 1,2, ,

( ) 0 1,2, ,
1,2, ,

m

j

k

n
L

n n
U( ) ( ) (2)

where M is the number of objective functions
→ = → → … →f x f x f x f x( ) ( ( ), ( ), , ( ))m M

T
1 2 ; →g x( )j is the jth greater than or equal to

constraint; →h x( )k is the kth equality constraint; and [x x,n
L

n
U( ) ( )] is the

range of variation of the nth variable and n is the number of decision
variables.

2.1.1. Decision vector
The decision variables correspond to the number of components of

the HPS, the model of the components and the dispatch strategy. The
system studied comprises solar, wind and diesel generation with battery
storage, thus →x results in an 11-dimension vector:

→ = =x x N T N T N T N T N T Ec[ ] [ , , , , , , , , , , ]i
T

wt wt pv pv dg dg bt p bt conv conv
T (3)

where Nwt, Npv, Ndg, Nbt_p and Nconv are the number of wind turbines, PV
modules, diesel generators, batteries in parallel (of the battery bank)
and converters, respectively. The Twt, Tpv, Tdg, Tbt and Tconv are the
model of wind turbine, PV module, diesel generator, battery and con-
verter, respectively. Finally, Ec is the dispatch strategy.

2.1.2. Objective functions
The optimization of the HPS considers two objective functions. One

of them is an economic objective computed through the Net Present
Value of costs (NPVC) according to equation (4):

=NPV
C

CRF d LT( , )C
level tot

r proj

,

(4)

where Clevel tot, ($/year) is the total levelized cost, CRF (·) is the capital
recovery factor, dr (%) is the real interest rate (discount rate) and LTproj
(year) is the lifespan of the project.

The second objective is related to the reliability of the system, and is
computed through the Loss of Power Supply Probability shown in
equation (5):

∑ ∑=
= =

LPSP LPS t P t t( ) ( )Δ
t

T

t

T

load
1 1 (5)

where LPS t( ) is the Loss of Power Supply (kW) when the energy gen-
erated by the HPS results less than the load demand, P t( )load is the
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power consumed by the load at hour t (kW), T is the period of time
considered for analysis (8760 h) and tΔ is the time step used for cal-
culation ( =tΔ 1 h).

2.1.3. Constraints
The problem constraints are shown in equations (6)–(15). The

constraints consider the following:

(a) The admissible value of LPSP, to avert unfeasible solutions (6).
(b) The admissible energy excess, fexess, which is the surplus electrical

energy that must be dumped because it cannot be used to serve the
load or charge the batteries (7).

(c) The minimum renewable fraction, fren, which is the ratio of the
energy generated by the renewable sources to the total energy
generated by the HPS (8).

(d) The maximum fuel consumption of the diesel generator, Fdg (9).
(e) The maximum amount of pollutant emissions, EMCO2 (10).
(f) The state of charge of the battery, SOC, which must be kept within

minimum and maximum levels (11).
(g) The admissible NPVC which can be specified (12).
(h) The constraints related to the upper and lower limits of the decision

variables (13), (14) and (15).

→ ≡ ⩽g x LPSP LPSP( ) adm1 (6)

→ ≡ ⩽g x f f( ) exess exess adm2 , (7)

→ ≡ ⩽g x f f( ) ren min ren3 , (8)

→ ≡ ⩽g x F F( ) dg dg4 ,adm (9)

→ ≡ ⩽g x EMCO EMCO( )5 2 2,adm (10)

→ ≡ ⩽ ⩽g x SOC SOC t SOC( ) ( )min max6 (11)

→ ≡ ⩽g x NPV NPV( ) C C7 ,adm (12)

⩽ ⩽N N Nj min j i j max, , , (13)

⩽ ⩽T T Tj min j i j max, , , (14)

⩽ ⩽Ec Ec Ecmin max (15)

2.1.4. Optimization algorithm
The HPS dimensioning problem was solved using a multi-objective

optimization algorithm based on GA, i.e., the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [30]. The NSGA-II has proven good
performance in solving complex problems due to the incorporation of
three mechanisms: (i) elitism, to prevent the loss of good solutions once
they are found; (ii) fast nondominated sorting, selection mechanism that
classifies the individuals at different levels according to the Pareto
dominance; and (iii) crowding distance assignment, mechanism that
promotes the diversity of the population.

In the present work, the original NSGA-II algorithm was adapted to
allow its integration in the probabilistic simulation-based optimization
algorithm.

2.2. Uncertainty module

The Optimization Module selects a system configuration defined by
a number of wind turbines, PV modules, backup generators, batteries in
the battery bank and converters. This HPS configuration must be si-
mulated under real operating conditions. Thus, to better represent the
annual variations of the meteorological variables, the variations in the
load and the failure probability of the system’s components, some
scenarios are generated where uncertainties are introduced around the
original value. These uncertainties are represented stochastically

through the use of probability distribution functions. There are two
sources of uncertainties:

2.2.1. External uncertainties
Involve the variations related to the meteorological variables and

load demand. Considering that φ t( )i represents the time-dependent
phenomena such as solar irradiance ( =i s), wind speed ( =i w), am-
bient temperature ( =i T ) and load demand ( =i l) derived from his-
torical measurements; the deviations from the observed behavior of the
real phenomenon can be approximated through the incorporation of a
stochastic uncertainty model. These deviations can be expressed by the
assignment of a probability distribution in the predictions of new series
from the original ones. A probability distribution with mean μ and
variance σ is a continuous function that can be approximated by a set of
randomly drawn, discrete samples ε μ σ( , )j i i with = …j N1, , samp and

=i s w T l, , , . Such samples associated to the values of φ t( )i represent the
uncertain parameter = ±θ t φ t ε μ σ( ) ( ) | ( , )|i i j . It is assumed that the in-
terannual variation of the mean values for wind speed, solar irradiance,
temperature and load demand can be represented by a Gaussian
probability distribution function [31,32].

Thus, knowing the annual mean and the standard deviation of the
uncertain variables it is possible to carry out a probabilistic analysis
using a suitable sampling method, in this case the Latin Hypercube
Sampling was used [33].

To generate the uncertain scenarios the algorithm draws a total of
Nsamp random samples from the probability distribution ε μ σ( , )j i i . Each
hourly series of resources and load demand is derived from the original
series, but its average value will be obtained according to the Gaussian
probability distribution. When the HPS is simulated under these prob-
abilistically generated conditions, the result is a series of probability
distribution functions related to each performance index.

In addition to external uncertainties, the method also includes dis-
crete uncertainties, related to the components’ failure probability.

2.2.2. Discrete uncertainties
Are related to the unavailability of the components subjected to

failure. To represent these uncertainties it is necessary to generate
chronological state transition processes (outage history) of the HPS
components using the sequential Monte Carlo simulation technique. In
this approach, chronological component state transition processes for
all the HPS components are first simulated by sampling. Then, the
chronological state transition process of the system is created by com-
bining the chronological component state transition processes. In a two-
state component representation, these are the operating and repair state
duration distribution functions and are usually assumed to be ex-
ponential [34]. The outage history of each component is generated by
simulating its operation and repair time using equations (16) and (17),
respectively.

= − ×UpTime MTBF Uln( )i i i (16)

= − ×DownTime MTTR Uln( )i i i (17)

where =MTBF λ1/i fi and =MTTR λ1/i ri are the mean time between
failure and mean time to repair of the ith component, respectively; λ fi
and λri are the failure rate and repair rate of the ith component; andUi is
a uniformly distributed random number between [0, 1].

The economic and reliability indices calculated for each configura-
tion of the HPS and used by the Optimization Module to compare the
performance of the different configurations, are the average value ob-
tained from the Nsamp scenarios.

2.3. Simulation module

The purpose of the Simulation Module is to assess the objective
functions and the performance indices for each HPS configuration for
one year of operation. It is able to run simulations for any HPS
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configuration interconnecting the components shown in Fig. 1. The
output of the Simulation Module is a series of performance indices re-
lated to economic, reliability and environmental aspects. This in-
formation is then used by the Optimization Module to guide the search
for the best HPS configuration.

After the Optimization Module selects a particular system config-
uration, defined by the number and model of components and the
dispatch strategy, the Simulation Module simulates that system opera-
tion considering time series of wind speed, solar irradiance, ambient
temperature and load demand. In the original series, external un-
certainties and discrete uncertainties are considered as described in
Section 2.2.

The algorithm is based on the hourly (Δt= 1 h) simulation of a full
year of operation of the HPS, this time interval is suitable for long-term
simulations [35]. The operation of the HPS depends on the selected
dispatch strategy, whose function is to manage the interaction between
the different components of the system. In each simulation interval (Δt)
the dispatch strategy evaluates the input information related to the
renewable resources availability, the load demand and the state of
charge of the storage system. It then decides about the energy flow in
the system, defining which components should be turned off, which
ones should be disconnected, where the energy excess should be stored
and activates the dissipative loads when it is necessary to optimize the
system performance. At the end of each simulation interval the energy
balance (sum of generation and sinks) should be zero, considering
losses and energy surplus/deficit, when applicable.

The components’ mathematical models included in the Simulation
Module are presented below, more detailed information can be found in
the cited references.

2.3.1. Solar photovoltaic power system (PV)
The mathematical representation used to estimate the energy gen-

eration of the PV system is based on the single point efficiency re-
presentation of a PV module proposed by [36]:

⎜ ⎟= ⎛
⎝

⎞
⎠

+ −P Y POA
POA

α T T f[1 ( )]pv pv
STC

p c c STC pv,
(18)

where Ppv (kW) is the power delivered by the PV array; Ypv (kW) is the
rated capacity of the PV array; POA (kW/m2) is the solar irradiance
incident upon the plane of the array; POASTC is the incident irradiance
at STC (1 kW/m2); αp (%/°C) is the temperature coefficient of power; Tc
(°C) is PV cell temperature;Tc STC, (°C) is the cell temperature at STC; and
fpv (%) is a power reduction factor that considers all the non-tem-
perature dependent loses.

The temperature of the photovoltaic cell under operating condi-
tions, Tc, is estimated using the modified implicit correlation proposed
by [37] and shown in Eq. (19). With this correlation it is possible to
estimate de cell temperature with good accuracy and little information.

= − + −T T POA POA1.52567 0.01981336· 0.000003451·c a
2 (19)

The POA irradiance is estimated from the global horizontal irradiance,
which is generally available from meteorological data. The method
applied for this calculation was proposed by [38].

2.3.2. Wind turbine (WT)
The energy generated by a WT can be estimated through its power

curve, which indicates the power supplied by the WT as a function of
the available wind speed. The HPS incorporates three-blade-horizontal
axis WT whose power curve can be approximated using the piecewise
interpolation function of Eq. (20) [39]:
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where Pwt (kW) is the instantaneous output power of the WT at wind
speed u (m/s); Pwt,r (kW) is the rated output power; a, b and c are the
polynomial coefficients of the cubic spline interpolation functions; Uci,
Ur and Uco are the cut-in, rated and cut-out wind speeds, respectively;
and n is the number of cubic spline interpolation functions corre-
sponding to n+1 value couples (speed, power) of data provided by the
manufacturers.

The real power generated by the WT is obtained after applying two
corrections to Eq. (20) First, the wind speed must be extrapolated to the
WT hub height, this is done through the power law method [40]. Then,
a correction factor that considers the variation of air density due to
installation site altitude is computed using the method proposed by
[41].

2.3.3. Battery bank (BT)
The HPS counts with a lead-acid battery bank that helps smooth out

the variability of solar and wind power production. The mathematical
model used to represent the battery incorporates a performance model
and a lifetime model.

The performance model determines the amount of energy that can
be absorbed by or withdrawn from the battery bank in each time step.
The analytical model called Kinetic Battery Model (KiBaM) was adopted
[42]. The battery lifetime model is based on the Ah-throughput ap-
proach to calculate the expected lifetime of the battery bank [43].

2.3.4. Diesel generator (DG)
The diesel generator is a backup power source used as emergency

power-supply when the renewable resources are not available and the
battery bank is at its lowest state of charge. The generator power output
is modeled using the linear function (20):

= +F F P F P· ·dg dgr dg0 1 (21)

where Fdg (L) is the DG instantaneous fuel consumption; Pdgr (kW) is the
DG rated power; Pdg (kW) is the instantaneous DG output power; F0 (L/
h/kWrated) is the fuel curve intercept coefficient; and F1 (L/h/kW) is the
slope coefficient.

2.3.5. Converter (CONV)
The model is capable of representing the converter’s efficiency over

the full range of operating conditions [44]. The efficiency of the con-
verter when referring to the input power (ηconv) of the device is given by
Eq. (21):

=
− −

η
p p κp

pconv
o

2

(22)

where p is the DC load fraction given by =p P P/input dc rated, ; Pinput (kW) is
the DC power input; Pdc rated, (kW) is the DC rated power. The parameters
p0 and κ are characteristic to each kind of inverter [44].

2.3.6. Load model
Measured hourly load data is seldom available, thus it is necessary

to synthetically generate load data from typical daily load profiles,
which are easier to obtain. The adopted method [41] initiates by re-
plicating the daily load profile for the whole simulation period
(365 days), next some randomness is added on hourly and daily basis to
simulate the stochastic nature of electric consumption. This is done by
multiplying each hourly value by a factor, = + +δ δ δ1load d h. Where δd
is the daily perturbation factor, ∼δ U σ(0, )d day noise, , drawn once per day
from a normal distribution with a mean of zero and a standard
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deviation equal to the daily noise input value; and δh is the hourly
perturbation factor, ∼δ U σ(0, )h hour noise, , drawn once per hour from a
normal distribution with a mean of zero and a standard deviation equal
to the hourly noise input value. Further, the algorithm allows specifying
a scale factor to account for weekend days and seasonal variations in
the load profile.

2.3.7. Dispatch strategy
The HPS may operate according to two dispatch strategies: (i) Load

following (LF) [45], where the batteries are only charged whenever the
renewable power exceeds the primary load, if the batteries cannot
supply the load, the DG will operate at rate that produces only enough
power to meet the load; (ii) Cycle charging (CC) [45], if the batteries
cannot meet the load, the DG runs at maximum power to supply the
load and charge the batteries up to a pre-set State of Charge (SOC). The
most appropriate dispatch strategy for a given HPS configuration is also
an optimization variable.

2.3.8. Environmental impact
Although environmental impact is not part of the optimization

process, the maximum amount of pollutant emissions is employed as a
restriction for the problem. It is assessed through the Life Cycle Analysis
methodology [46]. The main indicator used in this analysis is the
Global Warming Potential, in kgCO2-eq, representing how much a de-
termined amount of greenhouse gas contributes to global warming. The
simulation model estimates the total amount of emissions in the life
cycle of the HPS considering the contribution of direct and indirect
emissions of all the components.

2.4. Computational implementation

The HPS optimization algorithm was implemented in Matlab®
platform in the form of a dedicated toolbox. It allows the possibility of

running the algorithm using parallel computation to increase the
computational performance of very extensive and independent tasks.
Implementing the algorithm in an open-architecture software such as
Matlab® allows the necessary flexibility to constitute itself as a research
tool.

3. Case study

The proposed method is used to design a standalone HPS for a rural
community located in the Amazonian region of Brazil. The community
of Vila Campinas is located in the municipality of Manacapurú, in the
state of Amazonas, in the North region of Brazil (see Fig. 3). The
community has about 1010 inhabitants and is accessible only by boat,
which takes between three to six hours from the nearest city.

Fig. 4(a) presents the community’s hourly load profile for the year,
that was synthetically generated from the daily electricity consumption
profile reported by [47]. It was considered hourly and daily noise fac-
tors of 15%, a weekend scale factor of 1.1 and no seasonal scale factor.
This resulted in an average energy consumption of 474.9 kWh/day. The
daily consumption profile for the different seasons is presented in
Fig. 4(b), since no seasonal scale factor was considered the curves are
identical. It is a typical rural profile characterized by a fairly constant
consumption during most part of the day and a peak of consumption in
the evening when the villagers come back home after a working day.
This behavior is confirmed by the histogram of Fig. 4(c) where it is
observed that lower than the mean levels of power consumption are
more frequent.

Hourly measurements of the meteorological variables wind speed
and solar irradiance for the case study location were obtained from
references [48,49]. Fig. 5(a) presents the hourly wind speed distribu-
tion for the year and Fig. 5(b) shows the mean daily wind speed profile
for the different seasons. The wind resource presents a seasonality be-
havior with higher wind speed registries during winter and spring

Vila Campinas

Fig. 3. Geographical localization of the community of Vila Campinas in the Northern Region of Brazil.
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compared to summer and autumn. The mean wind speed is 2.54m/s at
50m height as observed in Fig. 5(c). The hourly global solar irradiance
for the year is presented in Fig. 6(a). The solar resource is fairly con-
stant all year long with a mean value of 4.6 kWh/m2/day. During
summer and autumn, the solar irradiance is lower since this period
corresponds to the rainy season with a higher presence of clouds (see
Fig. 6(b)). The mean solar irradiance when the sun is above de horizon
is 0.38 kW/m2 as observed in Fig. 6(c).

4. Results and discussion

4.1. Deterministic optimization

In this section, the HPS is dimensioned disregarding the un-
certainties. Table 1 presents the range of variation of the optimization
variables. The upper and lower limits of the variables related to the
number of components (Nj,min, Nj,max) were defined in the pre-di-
mensioning stage (see Section 2 and Fig. 2). For each system compo-
nent, there are four possible models (Tj) which were selected based on
the availability of equipment in the Brazilian domestic market. There
are two dispatch strategies available (Ec), the Load Following (LF) and
Cycle Charging (CC). The total number of combinations results equal to
1.43×1013, constituting a vast search space. The restrictions of the
problem were set as follows: LPSPadm=5%, fren,min = 0%,
fexess,adm=100%, Fdg,adm=inf (L/year), EMCO2,adm= inf (t/year) and

NPVC,adm = inf ($/year).
The technical characteristics of the adopted components and the

parameters needed for the simulations are shown in Table 2.
Table 3 shows the costs used for the economic analysis. The initial

capital cost equations are correlations derived from data provided by
local suppliers. The replacement cost and the operation and main-
tenance cost derive from values reported in the specialized literature
[50–52]. Other data used for the economic analysis are the real interest
rate of 4.8% per year and the cost of diesel fuel of 0.734 $/L [53].

Table 4 presents the emission factors employed in the life cycle
emission analysis, these values derive from [54,55].

Finally, Table 5 reports the configuration of the NSGA-II algorithm
adopted. This configuration gives the best performance of the NSGA-II
algorithm for the studied problem.

The algorithm implemented in Matlab® employed, on average, 65
minutes using a computer equipped with Windows 7, 64 Bits, an AMD
FX™-8150 8-core processor 3 GHz and 16 GB of RAM.

Fig. 7 presents the deterministic Pareto front (PF) of the last gen-
eration (200) for the multi-objective optimization problem. The LPS is
outlined in the vertical left axis and the curves show different values of
NPVC needed to obtain the design with the corresponding LPS. Also the
vertical right axis represents the LPSP.

Three solutions of interest from the PF are shown in black filled
marker. The uppermost left black marker in Fig. 7 (Sol 1), corresponds
to the solution with lowest cost and highest energy not supplied (lowest
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reliability), whereas the downmost right black marker in Fig. 7 (Sol 3)
is the highest cost solution and lowest energy not supplied (highest
reliability). The PF has two discontinuities which derive from the dis-
crete characteristic of the optimization variables. It is possible to
identify a trade-off solution which is located in the knee of the curve,
Sol 2. In Table 6 are presented the characteristics of the three solutions
of interest.

None of the solutions include wind turbines, showing that the wind
potential is low, making energy generation not viable in this region. On
the other hand, the PV contribution results are high in all the solutions.
The high values of Performance Ratio (PR), above 76%, show that the
PV plant is efficient and reliable. This, coupled with the low cost of the
PV panels makes the photovoltaic generation an attractive alternative.
Also, all the solutions include at least one diesel generator in its con-
figuration. The HPS must rely on a backup generation source to meet
the restriction of maximum energy not supplied (LPSPadm of 5%).

The battery bank resulted the same for the three solutions, both in
capacity and in the model of the component. This configuration allows
the systems to have over 29 hours of autonomy. Also, the battery life-
span is comparable for all the solutions, meaning that the batteries
undergo similar operating conditions.

The algorithm selected the Load Following (LF) dispatch strategy for
the three solutions. This strategy is suitable for power systems with a
large share of renewable generation, such as the solutions in Table 6 for
which the renewable energy fraction (RF) exceeds 80%.

The reliability indicators DIC (Interruption Duration per Consumer
Unit) and FIC (Interruption Frequency per Consumer Unit) are used to
gauge the quality of the electric-power services to individual consumer
units. The ANEEL, Brazilian Electricity Regulatory Agency, con-
tinuously monitors these indicators in the different regions of Brazil. It
establishes that for rural consumers in the region of Vila Campinas the
value of DIC is 100 hours, while the FIC is 92 interruptions per year
[56]. Considering these values, the only configuration that fulfills these
reliability standards is Sol 3.

The cost of improving the reliability from 5% to 0% energy not
supplied equals the difference of NPVC between solutions 1 and 3, i.e. $
782278.25–$ 715096.44= $ 67181.81, meaning an increase in the
NPVC of 9.39%.

4.2. Sensitivity of deterministic solutions

The HPS configurations obtained in Section 4.1 are clearly de-
termined once the input conditions are specified. Since the simulation
algorithm is deterministic, given the same input information the results
will always be the same. However, in real systems there are un-
certainties inherent to the input variables. When these uncertainties are
considered, the results must be expressed in a non-deterministic
fashion, either probabilistically or as ranges of possible values.

In this section it is assessed the influence of the uncertainties in the
input variables over the deterministic solutions obtained in Section 4.1
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for the case study of Vila Campinas.
The approach used consists in iteratively simulate the HPS in-

troducing uncertainties in the input variables wind speed, solar irra-
diance, temperature, load demand and components’ failure rate. These
are probabilistically generated according to the method presented in
Section 2.2. It was determined that a number of 1000 samples suffice to
reach the desired level of convergence, based on the speed of con-
vergence of the performance indicators NPVC and LPS. Details about the
parameters used by the sampling method can be found in Table 7.

The probabilistic simulation was performed over the three solutions

of interest studied in Section 4.1 and presented in Table 6. Simulating
each configuration probabilistically 1000 times took an average of 10
minutes using the aforementioned hardware. The probability density
curves presented in Fig. 8(a) and (b) show a clear representation of the
variability of the solutions with respect to the NPVC and the LPS.

Solution 1 incorporates only one diesel generator (see Table 6),
therefore this HPS configuration is more sensitive to uncertainties in the
operating conditions showing greater dispersion of the LPS in Fig. 8(b).
On the other hand, the operating cost of the system is greatly influenced
by the amount of fuel consumed by the backup generator, thus Solution
1 presents a lower dispersion of the NPVC as observed in Fig. 8(a). The
opposite occurs with Solution 3 that incorporates three diesel gen-
erators (see Table 6). This is a more robust configuration in the pre-
sence of uncertainties, presenting lower dispersion of the LPS in
Fig. 8(b), but higher dispersion of the NPVC in Fig. 8(a). Solution 2
presents a behavior somewhere in the middle of Solutions 1 and 3.

The results indicate that the deterministic solutions of the PF pre-
sent variability in the presence of uncertainties related to the input
variables. Fig. 9 shows how the mean of the deterministic solutions
simulated probabilistically, μ Sol( )Pareto det( .), move away from the de-
terministic PF, Sol(det.), indicating the necessity to incorporate an
uncertainty quantification method in the optimization process to obtain
robust solutions with respect to the objectives considered.
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Fig. 6. Global solar irradiance in Vila Campinas: (a) Hourly solar irradiance profile for the year. (b) Daily solar irradiance profile for the different seasons. (c)
Histogram of solar irradiance during the day.

Table 1
Range of the variables for the HPS optimization problem.

Variable Vila campinas

[Nwt,min, Nwt,max] [0, 250]
Twt, {1; 6; 7; 10} kW
[Npv,min, Npv,max] [0, 2400]
Tpv, {0.064; 0.08; 0.11; 0.12} kWp
[Ndg,min, Ndg,max] [0, 16]
Tdg, {2.8; 10; 16; 48} kW
[Nbt_p,min, Nbt_p,max] [0, 30]
Tbt {198; 226; 1192; 3565} kWh
[Nconv,min, Nconv,max] [0, 10]
Tconv {5; 7; 17; 50} kW
Ec {LF; CC}
N° of possible combinations 1.43× 1013
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4.3. Optimization under uncertainty

In this section the proposed probabilistic optimization approach
which incorporates the uncertainties within the optimization process is
implemented. The results are compared with the deterministic HPS
configurations obtained in Section 4.1 for the study case.

The uncertainties considered and the sampling methods used are the
same as those adopted in the previous Section 4.2, with the parameters
shown in Table 7. The algorithm was configured with a population size
of 100 individuals, a maximum number of generations of 200 and a
number of samples of 50. With this setting, the probabilistic multi-ob-
jective optimization algorithm needs to evaluate the objective function
1x106 times in each simulation. Using the same hardware as with the
previous simulations, and implementing parallel computing, the mean
time for simulation resulted in 15 h.

The probabilistic simulation used as a starting point the last gen-
eration obtained by the deterministic algorithm, that is, the individuals
of the deterministic PF constitute the first generation of the probabil-
istic algorithm. The idea behind this approach is to accelerate the
convergence of the probabilistic algorithm and to allow a later com-
parison with the solutions of the deterministic algorithm.

Fig. 10 shows the probabilistic PF obtained for the optimization
problem f NPV LPSmin ( , )m C for the case study of Vila Campinas. It also

depicts the deterministic PF, obtained in Section 4.1, and the mean
probabilistic solutions, μ Sol( )Pareto det( .), computed in Section 4.2.

The probabilistic PF lays to the right of the deterministic PF, in-
dicating that a robust configuration of the HPS with the same level of
reliability as in the deterministic scenario implies a higher NPVC. All the
solutions of the probabilistic PF are within the feasible region, limited
by LPSadm=5% (dashed horizontal line in Fig. 10). This is not the case
for the mean probabilistic solution located in the upper left corner of
Fig. 10 which does not satisfy this restriction. Including the un-
certainties within the optimization process ensures that all the config-
urations of the probabilistic PF represent feasible and robust solutions.

Table 8 presents the characteristics of the three solutions of interest
obtained with the deterministic and the probabilistic algorithms. This
table can be used to choose among solutions. The solutions are tagged
in Fig. 10 and correspond to Solution 1 (minimum NPVC and maximum
LPS), Solution 2 (trade-off solution) and Solution 3 (maximum NPVC

and minimum LPS).
The probabilistic algorithm increases the use of the generator and

reduces the battery bank capacity with respect to the deterministic al-
gorithm. This is observed in Solutions 1 and 2 where the configurations
obtained by the probabilistic algorithm do not include a battery bank.
The generator is a dispatchable source of generation that allows the
HPS more flexibility to offset the variations in the demand and the
renewable resources. Thus, when the uncertainties are included in the
optimization process, the generator becomes a more attractive gen-
eration option, for the case study scenario.

Solution 3 represents the configuration with the lowest energy not

Table 2
Technical data of the HPS components used in the simulations.

PV panels Technology poli-Si
Rated power (Ypv) 0.064, 0.08, 0.11, 0.12 kWp
Temperature coefficient of
power (αp)

−0.005%/°C

Cell temperature at STC (Tc STC, ) 25 °C
Power reduction factor ( fpv) 0.842%

Lifetime 25 years

WT Technology 3 blade horizontal axis
Rated power (Pwtr) 1, 6, 7, 10 kW
Hub height 20, 20, 17.5, 20m
Power law coefficient 0.143
Surface roughness 0.01m
Lifetime 20 years

DG Technology Diesel IC coupled with an electric
generator

Rated power (Pdgr) 2.8, 10, 16, 48 kW
Fuel curve intercept coefficient
(F0)

0.084 L/h/kWrated

Slope coefficient (F1) 0.246 L/h/kW
Lifetime 10000 h
Diesel fuel LHV 43.2MJ/kg

BT Technology Lead-acid battery
Nominal capacity 200, 225, 1000, 3000 Ah
Nominal voltage 12, 6, 2, 2 V
Roundtrip efficiency 80, 85, 86, 86%
Minimum State of Charge 40, 30, 30, 30%
Lifetime throughput 917, 845, 3438, 10,196 kWh

CONV Rated power (Pdc rated, ) 5, 7, 17, 50 kW
Average conversion efficiency
(ηconv)

90%

Lifetime 10 years

Table 3
Costs used in the economic analysis.

Component Initial capital ($) Replacement ($) Operation and maintenance

PV = −C P10.06( )icap pv pvr, 0.39 = ×C C 0.75rep pv icap pv, , = ×C C 0.001o m pv icap pv& , , ($/year)

WT = −C P4064.97( )icap wt wtr, 0.1656 = − ×C C H501.44rep wt icap wt torre, , = ×C C 0.002o m wt icap wt& , , ($/year)

CONV =C P617.49( )icap conv convr, 0.224 =C Crep conv icap conv, , =C 0o m conv& , ($/year)

BT = −C P148.74( )icap bt btr, 0.275 =C Crep bt icap bt, , =C 10o m bt& , ($/year)

DG = −C P325.39( )icap dg dgr, 0.0051 =C Crep dg icap dg, , =C 0.25o m dg& , ($/h)

Table 4
Emission factors used in the life cycle emissions analysis.

Component Indirect emission factora Direct emission factorb

PV 0.059 kgCO2-eq/kWh –
WT 0.02 kgCO2-eq/kWh –
CONV 42.835 kgCO2-eq /kW –
BT 59.42 kgCO2-eq/kWh –
DG 454.293 kgCO2-eq/kW 2.64 kgCO2-eq/L
Diesel fuel 0.530 kgCO2-eq/L –

a Emissions generated during the manufacturing, transportation and disposal
stages.

b Emissions generated during the operation stage.

Table 5
Parameters of the NSGA-II algorithm used in the HPS optimization problem.

Operator Method Parameter

Population size – popSize = 100
Restriction handle method Dominance based method niching=yes
Selection method Binary tournament Tournament size= 2
Reinsertion strategy “Nbest” individuals Nbest = popSize
Stopping criteria Maximum number of

generations
maxGen =200

Recombination operator BLX-α 0.5
Recombination probability – 0.9
Mutation operator Non-uniform 5
Mutation probability – 1/n
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supplied (LPS=0%). To attain this level of reliability in the presence of
uncertainties is necessary to add more generation capacity, as observed
in the last two columns of Table 8. The probabilistic Solution 3 in-
creases 30% the diesel generation (from 48 kW to 64 kW) and 19.3%
the PV generation (from 150 kW to 178.92 kW) with respect to the
deterministic Solution 3. The battery bank capacity remains the same.

To illustrate how the uncertainties affect the operation of the HPS
configurations it is presented the hourly simulation of the system op-
eration over a period of 10 days. Fig. 11 corresponds to the simulation
of Solution 3 obtained by the deterministic algorithm, and Fig. 12
corresponds to Solution 3 obtained by the probabilistic algorithm (see
Table 8).

The time period presented in the figures has a sequence of 6 days of
low solar radiation and, therefore, the PV system power generation
(Ppv) is low. The battery bank reaches its minimum state of charge of
30% (SOC) failing to supply the load demand (Pload). Thus, it is ne-
cessary to start the backup diesel generation (Pdg) to supply the energy
deficit. When the solar radiation increases in the next 4 days, the PV
system generates enough energy to supply the load and charge the
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Table 6
Characteristics of 3 solutions of interest obtained with the deterministic multi-objective optimization algorithm.

Sol 1 Sol 2 Sol 3

WT (kW) 0.00 0.00 0.00
PV (kW) 131.64 (1097×0.12 kW) 139.44 (1162×0.12 kW) 150.00 (1250×0.12 kW)
DG (kW) 16.00 (1× 16 kW) 20.00 (2×10 kW) 48.00 (3× 16 kW)
BT (kWh) 855.60

(1× 120 bat., 3565 Ah, 2 V)
855.60
(1× 120 bat., 3565 Ah, 2 V)

855.60
(1× 120 bat., 3565 Ah, 2 V)

CONV (kW) 35.00 (7× 5 kW) 35.00 (7×5 kW) 35.00 (7× 5 kW)
Dispatch strategy LF LF LF
Load consumption (kWh/year) 178253.48 178253.48 178253.48
LPSP (%) 4.99 1.84 0.00
DIC (h/year) 1481.00 831.00 0.00
FIC (int/year) 188.00 204.00 0.00
EXE (%) 0.64 1.88 4.48
RF (%) 83.75 84.61 86.42
PR (PV performance ratio) 0.76 0.76 0.76
BT life (years) 11.90 11.25 10.53
DG hours of operation (h/year) 2450.00 2139.00 1781.00
Fuel consumption (L/year) 11283.56 11100.42 11142.73
Emissions (tCO2-eq/year) 29.80 29.32 29.44
Initial capital cost ($) 486001.34 502120.52 525408.80
Cost of operation ($/year) 18013.89 19036.02 20197.81
LCOE ($/kWh) 0.332 0.334 0.345
NPVC ($) 715096.44 744214.71 782278.25

Table 7
Parameters of the sampling method used to generate probabilistic scenarios.

Value Unit Reference

Standard deviation of annual mean
wind speed

0.15 m/s [57]

Standard deviation of annual mean
solar insolation

1.15 kWh/m2/
day

[58]

Standard deviation of annual mean
ambient temperature

5.00 °C [59]

Standard deviation of annual load
consumption

48.84 kWh/day Assumed by
author

MTBF WT 1920 h [60]
MTTR WT 80 h
MTBF PV panel 2190 h
MTTR PV panel 80 h
MTBF DG 950 h
MTTR DG 50 h
MTBF CONV 87,600 h
MTTR CONV 80 h

MTBF: Mean time between failures; MTTR: Mean time to repair.
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batteries to its maximum state of charge. In Fig. 11, the energy balance
between the demand and the generation is completely deterministic for
each hour of operation of the HPS. On the other hand, in Fig. 12, the
power for each hour is represented by a mean value and a band of
variation due to the uncertainties introduced. Dimensioning the HPS
based on the mean values leads to under-dimensioned systems that
would not be able to satisfy the demand properly, thus the necessity of
considering the uncertainties within the optimization process.

When the computational resources or the time are limited, is re-
commended to apply the probabilistic simulation technique to the de-
terministic Pareto solutions as a prior analysis. This approach, which
represents only 10% of the computational time spent by the probabil-
istic optimization, can assess the influence of the uncertainties in the
deterministic solutions. If the mean of the deterministic solutions as-
sessed under uncertainty exceeds the constraints imposed by the user, it
is possible to run the probabilistic optimization algorithm ensuring that
the solutions are robust and within the feasible region of the search
space.

5. Conclusions

In this work, we tackle the problem of dimensioning a renewable
based Hybrid Power System for the supply of electricity to isolated rural
communities. Previous research in the field has almost exclusively
made use of deterministic optimization algorithms for sizing the

system. When uncertainties are considered, this is done through post-
optimization sensitivity analysis. The sources of uncertainty studied
include the renewable resources availability, the load demand and to a
lesser extent the components’ failure rate. However, no previously work
has considered all of these uncertainties simultaneously. We argue that
it is necessary to design robust generation systems to guarantee the
reliable electricity supply of rural communities. For this, all un-
certainties related to the input variables must be considered in the
optimization process.

To solve this problem, it is proposed a probabilistic simulation-
based optimization approach for the optimal design an autonomous
Hybrid Power System taking into account the uncertainties in the re-
newable resources availability, the load demand and the unavailability
of the components subjected to failure.

The proposed method was implemented as a Matlab® toolbox. It
integrates three modules that interact in the search of the best solution.
The Optimization Module implements a multi-objective Genetic
Algorithm, modified to incorporate the uncertainties in the optimiza-
tion process. The Uncertainty Module generates the uncertainty sce-
narios through the use of probability distribution functions. The
Simulation Module simulates the system operation under the real op-
erating conditions defined by the uncertainty scenarios. The outputs of
the Simulation Module are the objective functions and a series of per-
formance indices used to guide the search process.

The method was applied for dimensioning a solar-wind-diesel-
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Table 8
Characteristics of three solutions of interest obtained with the deterministic (det.) and the probabilistic (prob.) multi-objective optimization algorithms.

Sol 1
Min. NPVC and Max. LPS

Sol 2
Trade-off

Sol 3
Max. NPVC and Min. LPS

(det.) (prob.) (det.) (prob.) (det.) (prob.)

WT (kW) 0.00 0.00 0.00 0.00 0.00 0.00
PV (kW) 131.64 (1097×0.12 kW) 51.00

(425×0.12 kW)
138.12
(1151×0.12 kW)

52.08
(434×0.12 kW)

150.00 (1250×0.12 kW) 178.92 (1491×0.12 kW)

DG
(kW)

16.00
(1× 16 kW)

32.00
(2× 16 kW)

32.00
(2×16 kW)

32.00
(2× 16 kW)

48.00
(3× 16 kW)

64.00
(4× 16 kW)

BT
(kWh)

855.60
(1× 120 bt.,
3565 Ah, 2 V)

0.00 855.60
(1×120 bt.,
3565 Ah, 2 V)

0.00 855.,60
(1× 120 bt.,
3565 Ah, 2 V)

855.60
(1× 120 bt.,
3565 Ah, 2 V)

CONV (kW) 35.00
(7× 5 kW)

20.00
(4× 5 kW)

35.00
(7×5 kW)

25.00
(5× 5 kW)

35.00
(7× 5 kW)

35.00
(7× 5 kW)

Dispatch strategy LF LF LF LF LF LF
LPSP

(%)
4.99 4.07 0.04 1.30 0.00 0.00

NPVC (US$) 715096.44 779774.00 758525.67 813906.00 782278.25 903571.00
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Fig. 11. Hourly simulation of the HPS configuration obtained with the deterministic algorithm (Solution 3 (det.) in Table 8.
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battery Hybrid Power System to supply a typical isolated community in
the Amazonian region of Brazil consuming 474.9 kWh/day. First, the
system was dimensioned considering two objectives, the Net Present
Value of costs and the Loss of Power Supply Probability, and the un-
certainties were disregarded. This resulted in a deterministic Pareto
front where all the solutions obtained include photovoltaic generation,
a battery bank and at least one diesel generator. None of the config-
urations include wind turbines due to the low wind potential present in
the region. Despite the high Performance Ratio of PV system, above
76%, there is a need for backup generation to meet the reliability re-
striction of 5% maximum energy not supplied.

In a second stage, we studied the influence of the uncertainties in
the deterministic configurations obtained before. Three solutions of the
deterministic Pareto front were simulated probabilistically introducing
uncertainties in the input variables wind speed, solar irradiance, tem-
perature, load demand and components’ failure rate. The probability
density curve of the Loss of Power Supply shows that the configurations
containing a backup generator are more robust in the presence of un-
certainties. However, the cost of the system depends on the amount of
fuel consumed by the generator, thus the Net Present Value probability
curve presents higher dispersion. The average of the deterministic so-
lutions simulated probabilistically move away from the deterministic
Pareto front, leading some solutions to violate the reliability constraint.
This indicates the need of incorporating the uncertainties within the
optimization process.

Finally, the probabilistic approach was used to incorporate the un-
certainties within the power system optimization process. Result show
that the probabilistic algorithm assigns preference to diesel generation
over energy storage, given the generator can be dispatched at request of
the system needs. It is observed that a system configuration with the
same level of reliability as in the deterministic scenario implies a higher
Net Present Value. However, the configurations obtained probabil-
istically represent feasible robust solutions and guarantee a reliable
source of generation.

It is concluded that the probabilistic simulation-based optimization
approach allows dimensioning Hybrid Power Systems requiring both
optimality and robustness. The method constitutes a useful tool for the
decision maker to choose a robust power system configuration obtained
in more realistic operating conditions.
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