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a b s t r a c t 

Despite the consistent advances in visual features and other Multimedia Information Retrieval (MIR) tech- 

niques, measuring the similarity among multimedia objects is still a challenging task for an effective re- 

trieval. In this scenario, similarity learning approaches capable of improving the effectiveness of retrieval 

in an unsupervised way are indispensable. A novel method, called Cartesian Product of Ranking Refer- 

ences (CPRR), is proposed with this objective in this paper. The proposed method uses Cartesian product 

operations based on rank information for exploiting the underlying structure of datasets. Only subsets 

of ranked lists are required, demanding low computational efforts. An extensive experimental evaluation 

was conducted considering various aspects, seven public multimedia datasets (images and videos) and 

several different features. Besides effectiveness, experiments were also conducted to assess the efficiency 

of the method, considering parallel and heterogeneous computing on CPU and GPU devices. The proposed 

method achieved significant effectiveness gains, including competitive state-of-the-art results on popular 

benchmarks. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the last years, the availabilty of multimedia data has ex-

onentially increased due to the rapid evolution of technologies for

cquisition and sharing multimedia content. As a consequence, sig-

ificant amounts of multimedia material from a wide variety of

ources are being accumulated daily [1] , enabling the creation of

uge multimedia collections. In this scenario, multimedia informa-

ion retrieval (MIR) systems have emerged as a promising solution

or searching and indexing multimedia data by their content. 

MIR systems are currently an essential tool for supporting many

pplications. In general, these systems rely on the use of sev-

ral features for encoding multimedia content into feature vectors

nd a proper distance measure for assessing the similarity among

ultimedia objects based on their corresponding feature vectors.

n spite of all the advances in the development of multimedia

etrieval approaches, effectively measuring the similarity among

ultimedia objects remains a challenging task. This has motivated

any research efforts on other stages of the retrieval process not

irectly related to feature extraction procedures [2] . 
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Many post-processing methods have been proposed to improve

he effectiveness of multimedia retrieval tasks in an unsupervised

ashion [3–5] . In general, such methods aims to replace pairwise

istances by more global affinity measures capable of considering

he dataset structure [4] . Although effective, approaches based on

iffusion processes [3] and graphs [6] often require high computa-

ional efforts, thus they are not suitable for several applications. 

As a promising alternative, rank-based approaches have at-

racted a lot of attention due to their capacity to take into account

oth effectiveness and efficiency aspects. The analysis of rankings

an provide a rich and reliable source of information for context-

ased measures, as demonstrated in several recent studies [7–9] .

ifferent models can be exploited to analyze the rank information,

uch as similarity of ranked lists [7] or sets [8] , rank-based recom-

endations [9] , and rank consistency verifications [10] . In general,

ank-based approaches are computationally efficient, since the re-

uired computational efforts can be substantially reduced by con-

idering only the most relevant information, which is located at

op positions of the ranked lists. In addition, they model the simi-

arity information using an uniform representation, which does not

epend on the distance measures used for comparing multimedia

bjects. 

In this paper, we present a novel unsupervised similarity learn-

ng method for improving the effectiveness of multimedia retrieval

asks, named as Cartesian product of ranking references (CPRR).

https://doi.org/10.1016/j.patrec.2017.10.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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The underlying idea of the proposed method is to maximize the

similarity information encoded in rankings through Cartesian prod-

uct operations. While the CPRR algorithm only considers a sub-

set of ranked lists for reducing computational costs, the Cartesian

product is used for expanding the similarity relationships. For that,

k NN and reverse k NN queries are used for computing sets of multi-

media objects, which are used for Cartesian product operations. To

the best of our knowledge, this is the first unsupervised similarity

learning approach which models the rank information in terms of

Cartesian product of neighborhood and reverse neighborhood sets.

In addition, the proposed method can be used in rank aggregation

tasks and can be efficiently computed through parallel computing. 

An extensive experimental evaluation was conducted, consider-

ing various aspects and several different retrieval scenarios. The

experiments were conducted on seven multimedia datasets, in-

cluding both images and videos. Several descriptors were also

considered, from traditional global to deep-learning based fea-

tures. Experimental results confirm the effectiveness of the pro-

posed method, consistently improving the retrieval precision and

achieving relative gains up to +32.57%. Besides the effectiveness,

the efficiency and scalability of the proposed method were also

evaluated. Experiments conducted in parallel and heterogeneous

environments (CPUs and GPUs) demonstrated that the algorithm

presents very small run times for multimedia collections of dif-

ferent sizes. The CPRR algorithm also compares favorably with re-

cent retrieval methods and state-of-the-art approaches, considering

both effectiveness and efficiency aspects. The algorithm achieves a

N-S score of 3.94 on the popular UKBench [11] dataset. 

This work differs from a previously published conference pa-

per [12] in several aspects, including novel contributions and a

substantive extension of the experimental evaluation. A significant

contribution consists in the proposal of an approximate version

of the CPRR algorithm. In this way, the algorithm can be used

in situations where the multimedia objects used as queries are

not part of the dataset. Other relevant contribution consists in

the estimation of an appropriate neighborhood size. Most of the

post-processing methods require a k -neighborhood size definition,

which is commonly determined empirically. In this paper, an esti-

mation of k is proposed based on the variation of reciprocal rank

references. Additionally, a novel exponential function is proposed

for assigning weights to top ranking references on Cartesian prod-

uct operations. 

The remainder of this paper is organized as follows.

Section 2 describes the multimedia retrieval model considered.

Section 3 presents the proposed algorithm. Section 4 discusses the

experimental evaluation. Finally, Section 5 draws our conclusions

and presents future work. 

2. Problem formulation 

The retrieval notation used along the paper is formally defined

in this section. Let C = { o 1 , o 2 , . . . , o n } be an multimedia collec-

tion, where n denotes the size of the collection. Let ρ: C × C → R

be a similarity function, such that ρ( o i , o j ) denotes the similarity

between two multimedia objects o i , o j ∈ C. For simplicity and read-

ability purposes, the notation ρ( i , j ) is used in the remainder of the

paper. 

The similarity among all multimedia objects o i , o j ∈ C defined

by the function ρ( i , j ) can be applied for computing an affinity

matrix W . The matrix W , in turn, is commonly used as an adja-

cency matrix by various graph and diffusion-based methods. How-

ever, this approach often leads to storage and time complexity of

at least O ( n 2 ), so that scalability and efficiency requirements are

not met for large collections. 

A rank-based modeling of similarity information represents an

effective and efficient solution in this scenario. Different from sim-
larity functions which establish relationships only between pairs

f objects, the ranked lists encode similarity information among

 query and all other collection objects. In addition, although a

anked list can encode information from the entire collection, the

ost similar objects are expected to be located at top positions.

herefore, a constant L � n can be used such that only a subset

omposed of top- L positions of the ranked list is considered, re-

ucing the computational efforts required. 

Formally, the ranked list τq = (o 1 , o 2 , . . . , o L ) can be defined

s a permutation of the collection C L ⊂ C, which contains the most

imilar objects to the query o q , such that and |C L | = L . A permuta-

ion τ q is a bijection from the set C L onto the set [ L ] = { 1 , 2 , . . . , L } .
he notation τ q ( i ) can be interpreted as the position (or rank) of

bject o i in the ranked list τ q . If o i is ranked before o j in the ranked

ist of o q , that is, τ q ( i ) < τ q ( j ), then ρ( q , i ) ≥ ρ( q , j ). 

Every multimedia object in the collection can be taken as a

uery object o q and a respective ranked list can be computed. In

his way, the set of ranked lists { τ 1 , τ 2 , . . . , τ n } provides a com-

act and effective rank-based modeling of similarity information.

n this work, an unsupervised method is proposed aiming at ex-

loiting the information encoded in the set of ranked lists for com-

uting new and more effective retrieval results. 

. Cartesian Product of Ranking References (CPRR) 

The rank analysis has been established as a rich and reliable

ource of information for context-based measures. The main objec-

ive of the proposed Cartesian product of ranking references (CPRR)

s to maximize the available rank information through the use of

artesian product operations. The Cartesian product over neighbor-

ood sets establishes new pairwise relationships, which are used

o discover underlying similarity information. The proposed ap-

roach can be broadly divided in two main steps: 
• Rank normalization: the reciprocal rank references are an-

lyzed aiming at improving the symmetry of neighborhoods and,

onsequently, the effectiveness of the ranked lists; 
• Cartesian product of ranking references: the Cartesian prod-

ct is computed considering the top- k neighborhood and the re-

erse neighborhood sets. The obtained results are used to define

n iterative similarity measure. 

Each step of the proposed approach is discussed in the follow-

ng subsections. 

.1. Rank similarity score 

This section defines a rank similarity score, which is used for

oth rank normalization and Cartesian product procedures. Since

he most relevant information about similarity is encoded at top

ositions of ranked lists, neighborhood sets can be defined at dif-

erent depths. When considering a given depth d , only the simi-

arity information of top- d ranked objects is considered, avoiding

oisy information contained in the remainder of ranked lists. 

Aiming at considering only the top- d most similar multimedia

bjects, a neighborhood set N is defined. Let d denote the depth of

anked lists considered, and therefore the size of the neighborhood

et. Let N (i, d) be the neighborhood set, which is formally defined

s follows: 

 (q, d) = {R ⊆ C, |R| = d ∧ ∀ x ∈ R , y ∈ C − R : 
(q, x ) ≥ ρ(q, y ) } . (1)

Taking into account the neighborhood set, a similarity score is

efined based on rank information. The rank similarity score r d ( q ,

 ) represents the similarity between multimedia objects o q and o i 
ased on the ranked list of o q analyzed until a given depth d . In

his work, two different depths are considered: L , which defines

 broader neighborhood used by the rank normalization step; and
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 , which defines a local neighborhood used by Cartesian product

perations. Once both k and L values are much smaller than n , a

parse matrix structure [9] can be used for storage of similarity

cores. 

The rank similarity score r d ( q , i ) can assume different forms, ac-

ording to the weight assigned to the position of o i in the ranked

ist τ q . Two different functions are presented: linear and exponen-

ial, discussed in the following. 

.1.1. Linear 

The weight assigned is proportional to the position of o i in the

anked list τ q considering a depth d . The score ranges linearly from

 (assigned to the first position) to 1 (assigned to the d th position).

he linear score is defined as: 

 d (q, i ) = 

{
d − τq (i ) + 1 , if o i ∈ N (q, d) 
0 , otherwise . 

(2)

.1.2. Exponential 

In order to make the method more flexible to different retrieval

cenarios (with more or less relevant items at top positions), other

unctions can be used for adjusting the weight of rank positions in

he similarity score. With this purpose, a exponential function is

roposed, as follows: 

 d (q, i ) = 

{
(1 + c) (d−τq (i )+1) , if o i ∈ N (q, d) 
0 , otherwise . 

(3)

here c > 0 is a constant which adjusts the weight of top positions.

he higher the value of c , the higher the weight assigned to the top

ositions. In this work, the value of c is set to 0.1. 

.2. Reciprocal Rank Normalization 

Different from most of distance or similarity measures, the k -

eighborhood relationships and rank measures are not symmet-

ic. However, the benefits of improving the symmetry of the k -

eighborhood relationship are remarkable in multimedia retrieval

pplications [13] . In this way, various approaches have been pro-

osed for exploiting the reciprocal neighborhood [14] . 

In this work, a simple rank normalization based on the recip-

ocal neighborhood is employed as a pre-processing step for the

artesian product operations. A normalized similarity function ρr ( i ,

 ) is defined as the sum of reciprocal rank similarity score at a

epth L : 

r (i, j) = r L (i, j) + r L ( j, i ) . (4)

The linear weight function is used for the rank normalization.

n the following, all the ranked lists are updated according to the

imilarity function, using a stable sorting algorithm. The update

ives rise to a new set of ranked lists, which is used as input for

he Cartesian product operations. Notice that a low computational

ost algorithm can be derived for computing the rank normaliza-

ion procedure, once only the top- L positions of ranked lists are

onsidered. 

.3. Cartesian product of neighborhood sets 

The ranked lists and the neighborhood sets represent a rele-

ant source of information for context-based similarity functions.

hile a pairwise measure defines a similarity relation between

nly two objects, a ranked list establishes a broader relationship

mong a query and its most similar multimedia objects. Addition-

lly, the neighborhood and rank analysis can be exploited for dis-

overing underlying similarity information among neighbors of a

ame query object. 
In this way, Cartesian product operations of neighborhood sets

nd rank information are employed for computing a new and more

ffective similarity measure. The objective is to consider the pair-

ise relations computed by the Cartesian product weighted by

ank information. 

The Cartesian product can be defined as the set of all possible

airs of elements whose components are members of two sets. Let

 (i, k ) and N ( j, k ) be k -neighborhood sets of multimedia objects

 i and o j , respectively. The Cartesian product of N (i, k ) and N ( j, k )

s defined as: 

 (i, k ) × N ( j, k ) = { (n i , n j ) | n i ∈ N (i, k ) , n j ∈ N ( j, k ) } . (5)

Given a query object o q and its respective neighborhood set

 (q, k ) , we denote N (q, k ) × N (q, k ) = N (q, k ) 2 . The pairs of ob-

ects contained in N (q, k ) 2 define all possible similarity relation-

hips among the neighbors of o q . This information is exploited for

omputing a new similarity score wc(i, j) , between o i and o j , with

 i , o j ∈ N (q, k ) . 

The similarity score wc(i, j) is computed considering every

uery object o q ∈ C that has o i and o j as neighbors. In addition, the

core is weighted according to their rank score, by the term r k ( q ,

 ) × r k ( q , j ). Formally, the score wc(i, j) can be defined as: 

c(i, j) = 

∑ 

q ∈C∧ (i, j) ∈N (q,k ) 2 

r k (q, i ) × r k (q, j) . (6)

Algorithmically, the similarity score can be computed with

omplexity of only O ( n ), once k is a constant. Algorithm 1 outlines

ur proposed approach. The main idea consists in performing only

op- k rank analysis for computing the Cartesian product for each

eighborhood set. 

lgorithm 1 Cartesian product of neighborhood sets. 

equire: Set of ranked lists R 

nsure: Similarity score wc(·, ·) 
1: wc(·, ·) ← 0 

2: for all o q ∈ C do 

3: for all o i ∈ N (q, k ) do 

4: for all o j ∈ N (q, k ) do 

5: wc(i, j) ← wc(i, j) + r k (q, i ) × r k (q, j) 

6: wc( j, i ) ← wc( j, i ) + r k (q, i ) × r k (q, j) 

7: end for 

8: end for 

9: end for 

.4. Cartesian product of reverse neighborhood sets 

The Cartesian product of ranked lists defines similarity relation-

hips among neighbors of the same query object. On the other

and, information from different queries with a common neighbor

s ignored. In other words, the set of multimedia objects that have

n item among its neighbors also encodes a relevant similarity in-

ormation, which can be exploited for improving the effectiveness

f retrieval. 

With this objective, the Cartesian product of reverse neighbor-

ood sets is considered. Let N r (x ) be a reverse neighborhood set

omputed for an object o x , which is compose by all objects whose

eighborhood set contains o x . Formally, the set N r (x ) can be de-

ned as follows: 

 r (x ) = {R ⊆ C, ∀ q ∈ R : o x ∈ N (q, k ) } . (7) 

The Cartesian product of the reverse neighborhood set N r (i ) 2 is

sed for analysing underlying similarity information. In this way, a
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(11) 
similarity score wr(i, j) is defined for increasing the similarity be-

tween any given objects o i and o j contained in the reverse neigh-

borhood sets. Formally, the score is defined as follows: 

wr(i, j) = 

∑ 

x ∈C∧ (i, j) ∈N r (x ) 2 

r k (i, x ) × r k ( j, x ) . (8)

An algorithmic solution for computing the similarity score

based on reverse neighborhood is presented by the Algorithm 2 .

The reverse neighborhood sets are computed on lines 1-5, while

the Cartesian product is computed on lines 6-13. 

Algorithm 2 Cartesian product of reverse neighborhood sets. 

Require: Set of ranked lists R 

Ensure: Similarity score wr(·, ·) 
1: wr(·, ·) ← 0 

2: for all o q ∈ C do 

3: for all o x ∈ N (q, k ) do 

4: N r (x ) ← N r (x ) ∪ o q 
5: end for 

6: end for 

7: for all o x ∈ C do 

8: for all o i ∈ N r (x ) do 

9: for all o j ∈ N r (x ) do 

10: wr(i, j) ← wr(i, j) + r k (i, x ) × r k ( j, x ) 

11: wr( j, i ) ← wr( j, i ) + r k (i, x ) × r k ( j, x ) 

12: end for 

13: end for 

14: end for 

3.5. Iterative similarity measure 

The similarity scores based on the Cartesian product of neigh-

borhood and reverse neighborhood sets are used for computing a

new and iterative similarity measure. Let the superscript ( t ) denote

the current iteration, the similarity measure ρ(t+1) can be defined

as: 

ρ(t+1) = wc(i, j) + wr(i, j) . (9)

The similarity measure ρ(t+1) is used as input for a sorting step,

which gives rise to a new set of ranked lists. Once the input of the

algorithm is also a set of ranked lists, it can be iteratively executed

until a certain number of T iterations. 

Only the Cartesian product operations are considered for the it-

erative measure, e.g., the rank normalization is executed only be-

fore the first iteration. The method also requires a very small num-

ber of iterations for reaching high effectiveness results (as dis-

cussed in Section 4 ). 

3.6. Rank aggregation 

Different f eatures often provide distinct information about im-

ages, videos, and other multimedia objects. In this scenario, differ-

ent rankings computed for each feature also encode distinct and

complementary information. In fact, most of recent retrieval ap-

proaches commonly consider various features [15] . Our goal is to

use the proposed CPRR algorithm for rank aggregation tasks, aim-

ing at combining rank information computed for different features.

Since the most significant effectiveness gains are obtained at

the first iteration, the CPRR algorithm is computed independently

for each descriptor considering one iteration. Let ρ(1) 
a be the sim-

ilarity measure computed at the first iteration for a given feature

a . Let a be defined in the interval [1, m ], where m denotes the

number of features considered. The combined similarity measure
s computed as follows: 

(1) (i, j) = 

m ∑ 

a =1 

ρ(1) 
a (i, j) . (10)

Based on the similarity score, a new set of ranked lists is gener-

ted. Subsequently, the Cartesian product procedures are executed

or the combined similarity measures along T iterations. Once all

he steps are finished, a final sorting is performed. 

.7. Automatic neighborhood size estimation 

Although completely unsupervised, the CPRR algorithm requires

he definition of parameters k , which denotes the local neighbor-

ood size, and T , which defines the number of iterations. The al-

orithm converges very quickly, reaching the best effectiveness re-

ults for only two iterations ( T = 2 ), as discussed in the experi-

ental evaluation ( Section 4 ). The method is also robust regarding

he neighborhood size k , admitting a fixed parameter for most of

atasets with high effectiveness results. 

However, the neighborhood size can be optimized for

ach dataset. In fact, several different post-processing ap-

roaches [3,7,16] require a similar parameter, which is empirically

etermined and can assume different values for each dataset [16] .

n the other hand, once unsupervised scenarios imply indepen-

ence of labeled data, human intervention should be avoided.

ith this purpose, an automatic neighborhood size estimation is

roposed. 

The essence of the proposed approach consists in analyzing the

ariation of occurrence of reciprocal neighbors at top positions of

anked lists. The conjecture is that abrupt decreases in the number

f reciprocal neighbors indicate that the number of relevant ob-

ects is declining fast. Therefore, such variations can represent an

ffective estimation of the neighborhood size. 

Algorithm 3 outlines the proposed method, which searches for

n estimation inside an interval [ k min , k max ] . First, the algorithm

anges k from 1 to a given k max (lines 3-6), verifying if the ob-

ect at the k th position is a reciprocal neighbor (line 5). Next, the

lgorithm computes the variation obtained in the interval (lines 8-

0) and selects the estimated k e through the maximum variation

line 11). 

lgorithm 3 Automatic neighborhood size estimation 

equire: Set of ranked lists R , k min , k max 

nsure: Estimated k e 
1: v [ k min ..k max ] = 0 

2: for all o q ∈ C do 

3: for all o i ∈ N (q, k max ) do 

4: k = τq (i ) 

5: v [ k ] = v [ k ] + f r (q, i, k max ) 

6: end for 

7: end for 

8: for k ∈ { k min , ..., k max − 1 } do 

9: d[ k ] = v [ k + 1] − v [ k ] 
10: end for 

11: k e = argmax (d[ k min ..k max − 1]) 

The function f r (line 5), which verifies if two objects are recip-

ocal neighbors, also assigns a weight according to the position, as

ollows: 

f r (q, i, k ) = 

|N (q, k ) ∩ N (i, k ) ∩ { o q , o i }| 
2 

× log( k − τi ( q ) + 1) . 
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1 https://github.com/BVLC/caffe/blob/master/examples/feature_extraction/imagenet_val.protot
.8. Approximate algorithm 

The traditional scenario, commonly considered by post-

rocessing methods [6,17] , assumes full computed datasets and off-

ine processing [6] . However, in many situations it is desired to run

uch methods with on-line response. For example, when the user

eeds to perform retrieval tasks based on a query object outside of

he dataset. 

In order to use the CPRR method for an out-of-dataset object,

ne possible solution is to consider the new multimedia object as

art of the dataset. Firstly, a ranked list should be computed for

he new object. Next, it is necessary to update the other ranked

ists in order to include the new object and, finally, the CPRR algo-

ithm can be performed. In fact, the CPRR algorithm is very ef-

cient and can be fully executed even for on-line response (as

howed by conducted experiments detailed in Section 4 ). 

However, despite of the efficiency of the CPRR method, the al-

orithm still depends on the collection size (asymptotically O ( n )).

herefore, it is desired to reduce the computational cost for out-

f-dataset objects, especially for very large datasets. With this pur-

ose, an approximate version of the algorithm is proposed. While

he full algorithm considers the Cartesian product of all ranked

ists, the proposed approximation selects only a small subset of

anked lists to be processed. Given a query object out-of-dataset,

he most relevant items are at the top positions of τ o . Therefore,

nly the ranked lists of objects at top- L positions are processed. 

Algorithm 4 outlines the proposed approximate algorithm. No-

ice the similarity to Algorithm 1 , except by line 1, which limits the

artesian product computations to the top- L positions. 

lgorithm 4 Approximate Cartesian product of neighborhood sets.

equire: Set of Ranked Lists for top- L of τo 

nsure: Similarity score wc(·, ·) 
1: wc(·, ·) ← 0 

2: for all o q ∈ N (o, L ) do 

3: for all o i ∈ N (q, k ) do 

4: for all o j ∈ N (q, k ) do 

5: wc(i, j) ← wc(i, j) + r k (q, i ) × r k (q, j) 

6: wc( j, i ) ← wc( j, i ) + r k (q, i ) × r k (q, j) 

7: end for 

8: end for 

9: end for 

An analogous approach can be applied to the reverse neighbor-

ood sets. Algorithm 5 presents the approximate version of the

lgorithm 5 Approximate Cartesian product of reverse neighbor-

ood sets. 

equire: Set of ranked lists for top- L of τo 

nsure: Similarity score wr(·, ·) 
1: wr(·, ·) ← 0 

2: for all o q ∈ N (o, L ) do 

3: for all o x ∈ N (q, k ) do 

4: N r (x ) ← N r (x ) ∪ o q 
5: end for 

6: end for 

7: for all o x ∈ N (o, L ) do 

8: for all o i ∈ N r (x ) do 

9: for all o j ∈ N r (x ) do 

10: wr(i, j) ← wr(i, j) + r k (i, x ) × r k ( j, x ) 

11: wr( j, i ) ← wr( j, i ) + r k (i, x ) × r k ( j, x ) 

12: end for 

13: end for 

14: end for 
(

artesian product of reverse neighborhood sets. Lines 1 and 6 re-

uce the loops from the full dataset for only top- L positions of τ o . 

.9. Parallel design 

The CPRR algorithm can be widely parallelized, specially regard-

ng its Cartesian product operations. This section discusses the par-

llel design of the CPRR algorithm, using the OpenCL standard. The

penCL is a low-level API for task-parallel and data-parallel hetero-

eneous computing. A kernel is the name given for pieces of code

hat can be executed in parallel. Each kernel is executed in parallel

y a given number of work-items . 

The parallel design of the CPRR algorithm is illustrated in Fig. 1 .

ach main step of the algorithm defines a different kernel, which

uns in an OpenCL device (CPU or GPU). Each kernel, in turn,

s parallelized in n work-items. Two transfer models were used:

riter Buffer , which requires the transfer of the data to the device

emory; and Map Buffer , which requires only the transfer of data

ointers. 

Since the Cartesian product operations are processed in parallel

nd the similarity measure is stored using a global memory, con-

urrent accesses can cause loss of updates. However, the overhead

ssociated to atomic operations in OpenCL is high. Therefore, di-

ect updates of similarity score are allowed due to the very low

mpact on the effectiveness of the algorithm (as discussed in the

xperimental section). 

In the end of each iteration, a sorting procedure is executed to

pdate the top positions of ranked lists according to the new sim-

larity measure. The insertion sort algorithm is used, once it tends

o be linear when input is almost sorted. 

. Experimental evaluation 

Several aspects are considered to assess the effectiveness

nd efficiency of the proposed method. Section 4.1 describes

he experimental setup. Section 4.2 discusses the algorithm

ettings. Section 4.3 presents the results of the effectiveness

valuation, while Section 4.4 presents the efficiency evalua-

ion. Section 4.5 discusses the evaluation of algorithm variances.

ection 4.6 presents a comparison of the proposed method with

ther state-of-the-art unsupervised learning methods and recent

etrieval approaches. 

.1. Experimental setup 

Seven distinct and public datasets are considered in the experi-

ents, including both image and video collections with size rang-

ng from 280 to 87,648 multimedia objects. In order to exploit the

ifferent dataset characteristics, several global descriptors are used,

onsidering shape, color, and texture properties. Convolution Neu-

al Network features are extracted using the Caffe framework [33] .

affeNet was trained to recognize 10 0 0 object categories of Ima-

eNet [52] and is very similar to the AlexNet [53] , except that no

ata-augmentation was used during training and the order of pool-

ng and normalization is switched. From CaffeNet, we used the net-

ork definitions provided by Caffe framework [33] for feature ex-

raction, 1 considering the features from the fully connected layers

FC6, FC7, FC8). The input images were resized to 256 × 256 pix-

ls and the feature vectors have 4096 dimensions. Features were

onsidered in the Euclidean space (L2 distance function). Regarding

ocal descriptors, SIFT [38] features are used considering a variant

f vocabulary tree based retrieval (VOC) [39] . The datasets and de-

criptors are briefly described in Table 1 . 
As of August, 2017) 
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Fig. 1. Design of the parallel CPRR algorithm. 

Table 1 

Datasets and images descriptors used in the experimental evaluation. 

Dataset Size Type General Descriptors Effectiv. Measure 

Soccer [18] 280 Images: color scenes Dataset composed of images 

from 7 soccer teams, 

containing 40 images per 

class. 

Border/Interior Auto Color Correlograms (ACC) [19] , 

Pixel Classification (BIC) [20] , and Global Color 

Histogram (GCH) [21] 

MAP 

MPEG-7 [22] 1,400 Images: shape Composed of 1400 shapes 

divided in 70 classes. 

Commonly used for 

evaluation of post-processing 

methods. 

Articulation-Invariant Representation (AIR) [23] , 

Aspect Shape Context (ASC) [24] , Beam Angle 

Statistics (BAS) [25] , Contour Features Descriptor 

(CFD) [26] , Shape Context (IDSC) [27] , and 

Segment Saliences (SS) [28] 

MAP, Recall@40 

Brodatz [29] 1,776 Images: texture A popular dataset composed of 

111 different textures 

divided into 16 blocks. 

Color Co-Occurrence Matrix (CCOM) [30] , Local 

Activity Spectrum (LAS) [31] , and Local Binary 

Patterns (LBP) [32] 

MAP 

UKBench [11] 10,200 Images: objects/ scenes Composed of 2,550 objects or 

scenes. Each object/scene is 

captured 4 times from 

different viewpoints, 

distances, and illumination 

conditions. 

ACC [19] , BIC [20] , Convolutional Neural Network 

by Caffe [33] framework (CNN-Caffe) Color and 

Edge Directivity Descriptor (CEED) [34] , Fuzzy 

Color and Texture Histogram (FCTH) [35] , FCTH 

Spatial Pyramid (FCTH-SPy) [35,36] , Joint 

Composite Descriptor (JCD) [37] , Scale-Invariant 

Feature Transform (SIFT) [38] , and Vocabulary 

Tree (VOC) [39] 

MAP, N-S Score 

ALOI [40] 72,0 0 0 Images: objects Images from 1,0 0 0 classes of 

objects, with different 

viewpoint and illumination. 

ACC [19] , BIC [20] , GCH [21] , Color Coherence 

Vectors (CCV) [41] , Local Color Histograms 

(LCH) [42] 

MAP 

MediaEval [43] 14,838 Videos A total of 3,288 hours of video 

collected from blip.tv for the 

Video Genre Tagging Task at 

the MedialEval 2012. These 

videos are distributed 

among 26 genre categories. 

Bag-of-Scenes (BoS) [44] , Histogram of Motion 

Patterns (HMP) [45] , Pooling over 

Pooling (PoP) [46] 

MAP 

FCVID [47] 87,648 Videos A total of 4,232 hours of video 

collected from YouTube and 

annotated manually 

according to 233 categories. 

Convolutional Neural Network (CNN) [48] , 

Improved Dense Trajectories (IDT) [49] , 

Mel-Frequency Cepstral Coefficients (MFCC) [50] , 

Scale-Invariant Feature Transform (SIFT) [38] . 

Four descriptors were computed for each 

trajectory obtained by IDT: Histogram of 

Oriented Gradients (IDT-HOG), Histogram of 

Optical Flow (IDT-HOF), Motion Boundary 

Histogram (IDT-MBH), and Trajectory Shape 

Descriptor (IDT-TRAJ). The SIFT, IDT and MFCC 

features were quantized using a Bag-of-Words 

(BoW) representation. 

MAP 
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The effectiveness evaluation considers all multimedia objects of

each dataset as query objects. As effectiveness measure, the Mean

Average Precision (MAP) is used for most of the datasets, except for

the UKBench [11] dataset which uses the N-S Score. For the MPEG-

7 [22] dataset, the Recall@40 is also considered in addition to MAP.

Most of the experiments also report the effectiveness gains: let S b 
and S a be the effectiveness scores before and after the algorithm

execution, the gain is defined as (S a − S b ) /S b . 

For the efficiency evaluation experiments, the average run time

of 10 executions and 95% confidence intervals are considered. The

hardware environment is composed of an Intel Xeon E3-1240 CPU

and an AMD Radeon HD 7900 GPU. The software environment is

given by the operating system Linux 3.11.0-15 - Ubuntu 12.04 and

OpenCL 1.2 AMD-APP. The code was compiled using g++ 4.6.3 with

the flag -O3. The full algorithm with fixed neighborhood size and

the linear function is considered for the experiments, except for

the Section 4.5 , which discusses the other variances. 
u  

m  
.2. Impact of parameters 

Two parameters are considered in the proposed algorithm: (i)

 : the number of nearest neighbors; and (ii) T : the number of it-

rations. Additionally, the constant L defines a trade-off between

ffectiveness and efficiency. A set of experiments were conducted

or evaluating the impact of different parameter settings on the re-

rieval scores. 

The first experiment aims at analyzing the impact of different

ombination of parameters k and T . The MAP scores are computed

anging the parameter k in the interval [0, 30] and the parame-

er T from 1 to 5, considering the MPEG-7 [22] dataset and the

FD [26] shape descriptor. Fig. 2 shows the variation of MAP ac-

ording to k and T . The joined growth of k and MAP scores can

e observed until a stabilization, with values of k near 20. For the

arameter T , the most significant effectiveness gains are obtained

or the first iteration. Considering these results, the parameter val-

es of k = 20 and T = 2 were used for all of the remaining experi-

ents, except only for the UKBench [11] dataset, which used k = 4
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Fig. 2. Impact of k and T on effectiveness. 

Fig. 3. k estimation for the MPEG-7 dataset. 
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Fig. 4. Impact of L on effectiveness. 
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ue to very small number of images per class. Fig. 3 presents an

nalysis of the proposed approach for the automatic k estimation.

he estimation is based on abrupt changes in reciprocal references

 y axis) according to the variations of k ( x axis). The size and color

f markers are proportional to the effectiveness scores (MAP) ob-

ained to the respective k . Notice that the estimated value ( k = 20 )

chieves very high effectiveness scores. 

Since the CPRR algorithm does not require the use of the entire

anked list, another experiment analyzed the impact of the size of

anked lists on the effectiveness results. The higher the L value, the

reater the effectiveness but also the greater the run time required.

he experiment conducted on the MPEG-7 [22] dataset analyzed

AP scores according to different values of L ranging in the inter-

al [50, 1400]. The results for four different descriptors are shown

n Fig. 4 . As it can be observed, the most significant gains are ob-

ained for small values of L . In addition, for higher values of L , the
AP scores reach an asymptote. In this way, the value of L = 400

as used for most of the experiments. The value of L used for the

occer [18] dataset is limited by the dataset size ( L = 280 ). For the

KBench [11] dataset, we used L = 200 due to very small number

f relevant images for each query. For larger datasets (ALOI, Medi-

Eval, FCVID), we used L = 10 0 0 . 

.3. Effectiveness evaluation 

Various experiments were conducted aiming at evaluating the

ffectiveness of the proposed CPRR algorithm. Diverse public

atasets, several descriptors and various baselines were considered.

irstly, the proposed algorithm is evaluated in generic image re-

rieval tasks, considering three datasets and different global fea-

ures (shape, color, and texture). The MAP results are shown in

able 2 , considering both serial and parallel implementations of

PRR algorithm. As it can be observed, the effectiveness results for
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Table 2 

Effectiveness evaluation of the CPRR algorithm considering various datasets, descriptors, and baselines 

(MAP as effectiveness measure). 

Dataset Descriptor Original Pairwise RL- CPRR CPRR Gain 

MAP Rec. [51] Rec. [9] Serial Parallel 

MPEG-7 SS 37.67% 39.90% 4 8.6 8% 49.94% 49.947 % ± 0.009 + 32.57% 

BAS 71.52% 77.65% 79.58% 80.60% 80.611 % ± 0.006 + 12.70% 

IDSC 81.70% 86.83% 88.80% 89.42% 89.432 % ± 0.004 + 9.45% 

CFD 80.71% 91.38% 91.39% 92.15% 92.157 % ± 0.005 + 14.17% 

ASC 85.28% 91.80% 91.34% 92.32% 92.323 % ± 0.005 + 8.26% 

AIR 89.39% 95.50% 96.12% 97.80% 97.796 % ± 0.007 + 9.41% 

Soccer GCH 32.24% 32.35% 34.38% 35.47% 35.307 % ± 0.054 + 10.02% 

ACC 37.23% 40.31% 41.23% 47.14% 46.965 % ± 0.072 + 26.62% 

BIC 39.26% 42.64% 45.15% 47.29% 47.172 % ± 0.095 + 20.45% 

Brodatz LBP 48.40% 51.92% 51.26% 49.07% 49.073 % ± 0.006 + 1.38% 

CCOM 57.57% 66.46% 64.34% 64.81% 64.816 % ± 0.007 + 12.58% 

LAS 75.15% 80.73% 79.71% 79.34% 79.346 % ± 0.004 + 5.58% 

Table 3 

Effectiveness evaluation of the CPRR algorithm on the UKBench [11] 

dataset, considering the N-S score. 

Descriptor Type Original RL- CPRR Gain 

Score Rec. [9] 

SIFT Local 2.54 2.88 2.99 + 17.72% 

CEED Color/text. 2.61 2.72 2.83 + 8.43% 

FCTH Color/text. 2.73 2.80 2.90 + 6.23% 

JCD Color/text. 2.79 2.88 3.00 + 7.53% 

FCTH-Spy Color/text. 2.91 3.05 3.21 + 10.31% 

BIC Color 3.04 3.15 3.28 + 7.89% 

Caffe-FC6 CNN 3.05 3.30 3.40 + 11.48% 

Caffe-FC8 CNN 3.18 3.30 3.47 + 9.12% 

Caffe-FC7 CNN 3.31 3.46 3.61 + 9.06% 

ACC Color 3.36 3.53 3.62 + 7.74% 

VOC BoW 3.54 3.65 3.72 + 5.08% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Impact of the CPRR on the UKBench [11] dataset. 

Table 4 

Effectiveness evaluation on the ALOI [40] dataset. 

Descriptor Type Original RL- CPRR Gain 

MAP Sim [54] 

ACC Color 43.77% 46.12% 47.45% + 8.41% 

CCV Color 47.49% 50.96% 50.57% + 6.48% 

GCH Color 50.56% 53.14% 53.33% + 5.48% 

LCH Color 58.55% 66.03% 66.59% + 13.73% 

BIC Color 71.75% 78.84% 76.90% + 7.19% 

Table 5 

Effectiveness evaluation on video datasets. 

Descriptor Dataset Original CPRR Gain 

MAP 

BoS hard,max 100 MediaEval 1.76% 2.04% + 15.63% 

BoS soft,max 100 MediaEval 2.23% 2.47% + 10.70% 

PoP MediaEval 2.53% 2.95% + 16.47% 

HMP MediaEval 3.85% 4.03% + 4.81% 

MFCC FCVID 1.77% 1.87% + 5.69% 

SIFT FCVID 2.24% 2.60% + 16.28% 

IDT-TRAJ FCVID 2.73% 3.03% + 10.70% 

IDT-HOF FCVID 3.65% 4.02% + 10.24% 

IDT-HOG FCVID 3.80% 4.54% + 19.45% 

IDT-MBH FCVID 4.61% 5.31% + 15.10% 

CNN FCVID 8.42% 10.54% + 25.21% 

p  

s  

t  
serial and parallel implementations are very similar. The relative

effectiveness gains, com puted based on serial execution, achieve

very high values up to +32.57%. The results of recent unsupervised

learning approaches [9,51] are reported as baselines. We can ob-

serve that the proposed CPRR algorithm yields the best scores for

most of descriptors. 

An experiment considering natural image retrieval tasks and

a very distinct set of descriptors was conducted on the UK-

Bench [11] dataset. Table 3 presents the effectiveness results given

by the N-S score. The N-S score corresponds to the number of rel-

evant images among the first four images returned, defined in the

interval [1,4] (the highest achievable score is 4). The small number

of images per class (only 4) makes this dataset a very challeng-

ing one for unsupervised learning algorithms. Despite this fact, the

CPRR achieved high gains ranging from +5.08% to +17.72% and su-

perior to a recent baseline [9] . 

Fig. 5 illustrates four visual examples of the impact of

the CPRR algorithm on retrieval results obtained for the UK-

Bench [11] dataset and the ACC [19] descriptor. The query images

are presented in green borders and wrong results in red borders.

The first line represents the original retrieval results and the sec-

ond line, the results after the algorithm execution. 

A large-scale experiment was conducted on the

ALOI [40] dataset, considering color descriptors. The MAP scores

for the ALOI [40] dataset are presented in Table 4 . The gains

obtained by the CPRR are also very significant for this dataset,

ranging from +5.48% to +13.73%. 

Table 5 displays the results for the video datasets. Despite the

low original MAP scores, our approach presents considerable gains

ranging from +4.81% to +25.21%. 

The proposed algorithm was also evaluated in rank aggregation

tasks, considering the best descriptors for each dataset. Table 6
resents the effectiveness scores for various datasets. We can ob-

erve that aggregated results are superior to isolated descriptors in

he majority of the cases, reaching very high scores for all datasets.
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Table 6 

Effectiveness evaluation of rank aggregation tasks. 

Dataset Descriptors Score Metric 

MPEG-7 CFD + AIR 99.95% MAP 

MPEG-7 CFD + ASC 98.73% MAP 

Brodatz CCOM + LAS 83.20% MAP 

Soccer ACC + BIC 48.25% MAP 

UKBench VOC + CNN-FC7 3.90 N-S score 

UKBench ACC + CNN-FC7 3.88 N-S score 

UKBench ACC + CNN-FC7+VOC 3.94 N-S score 

ALOI BIC + LCH 76.54% MAP 

MediaEval HMP + PoP 4.37% MAP 

FCVID CNN + IDT-HOG 10.54% MAP 

Fig. 6. Run time comparison on MPEG-7 [22] dataset: CPRR and baselines. 
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Fig. 7. Effectiveness and efficiency analysis: CPRR and baselines. 

Fig. 8. Scalability analysis on ALOI [40] dataset (time per query). 
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.4. Efficiency evaluation 

Experiments were conducted for evaluating the efficiency of

he proposed method, considering several aspects, as: different

atasets, serial and parallel implementations, different devices

CPU, GPU), and memory transfer models. Table 7 presents the av-

rage run time and confidence intervals for the CPRR algorithm

onsidering different criteria. For comparison purposes, the run

imes of two recent baselines [9,51] are reported. The best perfor-

ance for each dataset is highlighted in bold. As we can observe,

he CPRR algorithm requires very low run times for all datasets,

maller than baselines even for the serial implementation. The

penCL build and environment time are not considered in the re-

orted results, since the build can be executed once off-line and

he environment time is constant independently of dataset sizes. 

A general comparison of the CPRR (both serial and parallel) is

resented in Fig. 6 . The run times of RL-Sim [7,55] (serial and

arallel), RL-Recommendation [9] (serial and parallel) and pair-

ise recommendation [51] (serial), are reported as baselines. The

PEG-7 [22] dataset is considered for the experiment. Notice that,

ven using a logarithmic scale, the run time of the proposed CPRR

in red) algorithm is significant smaller than other considered ap-

roaches. The good performance of the algorithm on CPU can be

xplained mainly by two factors. First, the operations involved in

he CPRR algorithm are very simple, requiring low computational

osts. In this scenario, the overhead associated with the data trans-

er to the GPU memory has a severe impact, contributing favorably

o CPU in the comparison. Second, the CPRR algorithm uses itera-

ive sorting steps for ranked lists almost sorted, what constitutes

asks which do not take advantage of all parallel potential of GPUs.
An experiment analyzing both effectiveness and efficiency as-

ects was conducted on the MPEG-7 [22] dataset. Fig. 7 presents

he results of CPRR and recent baselines (pairwise recommenda-

ion [51] , RL-Sim [7,55] and RL-Recommendation [9] ). The MAP

core and the run time determines the position of the algorithms

n the graph. Therefore, an ideal algorithm, with high effectiveness

nd low run time, is positioned at the top-left corner of the graph.

otice that the best positions are occupied by the CPRR algorithm

serial and parallel). 

In order to evaluate the scalability of the proposed CPRR al-

orithm, an experiment varying the size of ranked lists was con-

ucted on the ALOI [40] dataset, considering the LCH [42] descrip-

or. The size of ranked lists, given by the constant L , establishes an

mportant relationship between effectiveness and efficiency. The L

ize was varied from 70 to 70 0 0. Aiming at performing a fair com-

arison of run times, we considered k = 40 for this experiment,

hich is the default value of the baselines. The average time of the

nsupervised distance learning per ranked list is reported for each

 value. The results are shown in Fig. 8 . Results obtained for the

L-Sim [54] and RL-Recommendation [9] algorithms are reported

s baselines. Very small average times for growing values of L can

e observed for the CPRR algorithm, enabling the use of the algo-

ithm in different scenarios and increasing datasets. 
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Table 7 

Efficiency evaluation: run time (in seconds) of the CPRR for different devices and datasets. 

Algorithm Exec. Device Soccer MPEG-7 Brodatz UKBench 

Pairwise Rec. [51] Serial CPU 0.1149 ± 0.0 0 018 0.3663 ± 0.0 0 094 0.6672 ± 0.00140 14.802 ± 0.11059 

RL-Rec. [9] Serial CPU 0.0607 ± 0.0 0 0 0 0 0.1462 ± 0.0 0 021 0.1108 ± 0.00102 0.1868 ± 0.0 0 018 

CPRR Serial CPU 0.0058 ± 0.00021 0.0381 ± 0.0 0 041 0.0501 ± 0.0 0 077 0.1767 ± 0.00102 

CPRR Parallel GPU a 0.0711 ± 0.00463 0.1640 ± 0.00781 0.1560 ± 0.00570 0.2038 ± 0.00874 

CPRR Parallel CPU a 0.0032 ± 0.00015 0.0164 ± 0.0 0 031 0.0214 ± 0.0 0 054 0.1834 ± 0.0 0 052 

CPRR Parallel CPU b 0.0027 ± 0.00000 0.0131 ± 0.0 0 018 0.0143 ± 0.0 0 075 0.1082 ± 0.0 0 051 

a Memory transfer model: Write buffer 
b Map buffer. 

Fig. 9. Effectiveness analysis for neighborhood sizes: fixed, estimated, and best k 

values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Effectiveness comparison between linear and exponential functions. 

Fig. 11. Effectiveness evaluation of the approximate algorithm. 
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4.5. Discussion about algorithm variances 

The variances of the algorithm were also experimentally evalu-

ated on different datasets. For each dataset, the most effective de-

scriptor is selected. Fig. 9 presents the evaluation of the neighbor-

hood size estimation. The evaluation compared the effectiveness

results obtained by: the original descriptor, the fixed size ( k = 20 ),

the automatic k estimation, and the best k value empirically de-

termined. The estimation was computed considering the interval

[4,50] for all datasets, except for FCVID, which used [12,50]. The

labels above the bars show the values of k . As it can be observed,

the automatic k estimation outperformed the fixed k for most of

datasets. 

The linear and exponential functions for assigning weights for

rank positions were also evaluated. Fig. 10 presents a comparison

between both functions and the original descriptor. The results are

very similar for all datasets, indicating an equivalence between the

functions. Fig. 11 shows the experimental analysis of the approxi-

mate algorithm. As it can be observed, the approximate algorithm

achieved effectiveness results very similar to the full algorithm on

various datasets (Soccer, Brodatz, UKBench, MediaEval). 

4.6. Comparison with other approaches 

Finally, the CPRR algorithm was also evaluated in comparison

with other state-of-the-art unsupervised learning methods and re-

cently proposed retrieval approaches. Experiments were conducted

on two image datasets: UKBench [11] and MPEG-7 [22] , which are

popular datasets commonly used as benchmark for image retrieval

and post-processing methods. 
Table 8 presents the effectiveness results of CPRR algorithm

n comparison with recent retrieval approaches on the UK-

ench [11] dataset. We can observe that the results achieved by

he CPRR algorithm are among the the best results, reaching a N-S

core of 3.94 for the aggregation of VOC+ACC+CNN-FC7 features. 

A comparison of the proposed method with other state-of-the-

rt unsupervised methods on the MPEG-7 [22] dataset is shown in

able 9 . The effectiveness results obtained by the CPRR algorithm

re also comparable or superior to various other approaches. 
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Table 8 

Effectiveness com parison among recent retrieval methods on the UKBench [11] dataset. 

N-S scores for recent retrieval methods 

Zheng et al. Zhang et al. Zheng et al. Xie et al. Bai et al. Bai et al. 

[56] [15] [57] [58] [59] [60] 

3.57 3.83 3.84 3.89 3.94 3.98 

N-S scores for the CPRR method 

VOC + CNN-FC7 ACC + CNN-FC7 ACC + CNN-FC7 + VOC 

3.90 3.88 3.94 

Table 9 

Comparison of post-processing methods on the MPEG-7 [22] 

dataset - Bull’s Eye Score (Recall@40). 

Shape descriptors 

CFD – 84.43% 

IDSC – 85.40% 

SC – 86.80% 

ASC – 88.39% 

AIR – 93.67% 

Post-processing methods 

Algorithm Descriptor(s) Score 

Graph transduction [17] IDSC 91.00% 

Shortest path propagation [6] IDSC 93.35% 

Smooth neighborhood [60] IDSC 93.52% 

RDP [59] IDSC 93.78% 

RL-Sim [7] CFD 94.13% 

CPRR CFD 94.77% 

Locally C. diffusion process [3] ASC 95.96% 

RL-recommendation [9] ASC 94.40% 

CPRR ASC 95.07% 

Tensor product graph [4] ASC 96.47% 

Self-smoothing operator [5] SC + IDSC 97.64% 

Self-smoothing operator [5] SC + IDSC+DDGM 99.20% 

CPRR CFD + ASC 99.40% 

Pairwise recommendation [51] CFD + IDSC 99.52% 

RL-recommendation [9] AIR 99.78% 

CPRR AIR 99.93% 

Tensor product graph [4] AIR 99.99% 

Neighbor set similarity [8] AIR 100% 

Smooth neighborhood [60] AIR 100% 

CPRR CFD + AIR 100% 
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. Conclusions 

In this paper, we presented a novel unsupervised similarity

earning algorithm for multimedia retrieval tasks. The proposed ap-

roach employs Cartesian product operations for analyzing rank in-

ormation and exploiting the underlying structure of the datasets.

he method is capable of estimating an effective size for the neigh-

orhood set and compute the results when the query image is not

art of the dataset. The source code is public available, 2 as part of

n open-source framework for unsupervised distance learning. 

Extensive experiments were conducted considering public

atasets (images and videos) and several descriptors. The exper-

mental results and comparisons with other recent state-of-the-

rt approaches demonstrate the effectiveness and efficiency of the

roposed method. As future work, we intend to investigate the use

f the proposed method in semi-supervised learning tasks, consid-

ring interactive image retrieval scenarios. 
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