Molecular cloning and biochemical characterization of a myotoxin inhibitor from *Bothrops alternatus* snake plasma

Norival A. Santos-Filhoa,b,*, Carlos A.H. Fernandesc, Danilo L. Menaldob, Angelo J. Magroc, Consuelo L. Fortes-Diasd, Maria Inácia Estevão-Costad, Marcos R.M. Fontesc, Camila R. Santose, Mário T. Murakamie, Andreimar M. Soaresa,b,*

aDepartamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, FMRF-USP, Ribeirão Preto-SP, Brazil
bDepartamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto-SP, Brazil
cDepartamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu-SP, Brazil
dDepartamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, FMRF-USP, Ribeirão Preto-SP, Brazil
eLaboratório Nacional de Biociências, Centro Nacional de Pesquisas em Energia e Materiais, Campinas, São Paulo, Brazil

Abstract

Phospholipases A\textsubscript{2} (PLA\textsubscript{2}s) are important components of *Bothrops* snake venoms, that can induce several effects on envenomations such as myotoxicity, inhibition or induction of platelet aggregation and edema. It is known that venomous and non-venomous snakes present PLA\textsubscript{2} inhibitory proteins (PLIs) in their blood plasma. An inhibitory protein that neutralizes the enzymatic and toxic activities of several PLA\textsubscript{2}s from *Bothrops* venoms was isolated from *Bothrops alternatus* snake plasma by affinity chromatography using the immobilized myotoxin BthTX-I on CNBr-activated Sepharose. Biochemical characterization of this inhibitory protein, denominated BzBaltMIP, showed it to be a glycoprotein with Mr of ~24,000 for the monomeric subunit. CD spectra of the PLA\textsubscript{2}/inhibitor complexes are considerably different from those corresponding to the individual proteins and data deconvolution suggests that the complexes had a relative gain of helical structure elements in comparison to the individual protomers, which may indicate a more compact structure upon complexation. Theoretical and experimental structural studies performed in order to obtain insights into the structural features of BzBaltMIP indicated that this molecule may potentially trimerize in solution, thus strengthening the hypothesis previously raised by other authors about snake PLIs oligomerization.

Article info

Article history:
Received 20 July 2010
Accepted 26 November 2010
Available online 7 December 2010

Keywords:
Phospholipase A\textsubscript{2}
Myotoxin inhibitor
cDNA
Protein modeling
Molecular dynamics
Bothrops alternatus
Snake plasma

1. Introduction

Accidents caused by venomous snakes represent a significant public health problem especially in tropical countries, considering the frequency of occurrence and the mortality they induce [1].

The constitution of snake venoms is complex, containing more than 20 different components and with more than 90% of their dry weight corresponding to proteins. Among the protein content of these venoms, there is a wide variety of enzymes, and the non-protein part is composed by carbohydrates, lipids, metals, amino acids, nucleotides, among other constituents [2].

Phospholipases A\textsubscript{2} (PLA\textsubscript{2}s, E.C. 3.1.1.4) are enzymes that catalyze the hydrolysis of 2-acyl ester bonds of 3-sn-phospholipids, releasing free fatty acids and lysophosphatides [3]. These enzymes are widely distributed in nature and are found in the interior and exterior of cells [4], pancreatic secretions [5], inflammatory exudates [6] and arthropod and snake venoms [7].

Independently of their primary catalytic function, the PLA\textsubscript{2}s can induce several pharmacological and/or toxic effects, such as myonecrosis, anticoagulation, inhibition of platelet aggregation, neurotoxicity, cardiotoxicity, arterial hypotension, increase of the microvascular permeability and edema formation [8–13]. Besides, PLA\textsubscript{2}s are also associated with muscular necrosis, an important local effect induced by some snake venoms, which may lead to permanent loss of tissue and function that may result in the amputation of the affected limb [14].

Considering these factors, several studies have been carried out in search of natural inhibitors of snake venom PLA\textsubscript{2}s. Some authors already described the presence of these inhibitors in the plasma of...
mammals as *Didelphis albiventris* [15,16] and *Didelphis marsupialis* [17], in plants as *Withania somnifera* [18], Cordia verbenacea [19], Piper *umbellatum* and *Piper peltatum* [20], Bauhinia *forficata* [21], and also in the plasma of snakes [22–25].

Plasma of venomous and non-venomous snakes possesses PLA₂ inhibitory proteins, denominated PLIs [25]. According to several studies, these PLIs are responsible for the natural resistance of snakes against the toxic components of their own venoms, or to those of other species [23,26–29].

The PLA₂ inhibitors can be classified into three types (α, β and γ), according to structural aspects [30]. Nevertheless, their mechanisms of action remain unknown, which incites new structural and functional studies. α-type inhibitors (αPLIs) isolated from the plasma of Crotalinae snakes are acidic glycoproteins constituted of more than two subunits and possess sequential similarity to the carbohydrate recognition domain (CRD) of C-type lectins [31]. At the moment, it is believed that the mechanism by which αPLIs neutralize the toxic effects of snake venom PLA₂S involves the CRD region, particularly CRD4, which recognizes and binds to these enzymes, preventing their enzymatic activity on the cell membrane [32].

The present study reports the isolation of a phospholipase A₂ inhibitory protein from *Bothrops alternatus* snake plasma (zBaltMIP) and also highlights interesting biochemical, structural and functional features related to this molecule.

2. Materials and methods

2.1. Materials

A specimen of *B. alternatus* snake was supplied by the serpentarium of Fundação Ezequiel Dias, Belo Horizonte, MG. At the time of sampling, the snake was euthanized with CO₂ before dissection. Liver samples were collected, quickly frozen in liquid nitrogen and stored at −80 °C until RNA extraction. Animal care was in accordance with the guidelines of the Brazilian College for Animal Experimentation (COBEA) and was approved by the Committee for Ethics in Animal Utilization of Universidade de São Paulo (No. 09.1.329.53.3) and IBAMA (No. 11781-1). Activated Sepharose 4B-CNBr and Sephacryl S-200 were purchased from Amersham Pharmacia Biotech (GE-Healthcare) and the oligonucleotides from Gibco BRL. All other reagents used for chemical and biological characterization were acquired from Sigma Chem. Co., BioLab, Gibco BRL or Mediatech.

2.2. Phospholipases A₂ and synthetic peptides

BthA-I-PLA₂, bothrotoxins I and II (BthTX-I and -II) from *Bothrops jararacussu*, piratoxins I and III (PtTX-I and -III) from *Bothrops pirajai* and crotoxin B (CB) from *Crotalus durissus terrificus* were isolated by ion-exchange chromatography on CM-Sepharose using 0.05 M ammonium bicarbonate (AMBIC) buffer, pH 8.0, as previously described [33,34]. Peptides were synthesized by Fmoc chemistry, with native endings by a commercial provider (Chiron Mimotopes, Victoria, Australia or PepMetic Technologies Inc., Vancouver, Canada). Their estimated molecular masses were in agreement with corresponding calculated values, with final purity levels of at least 95% by RP-HPLC analysis. Peptides were kept dry at −20 °C, and dissolved in 0.12 M NaCl, 40 mM sodium phosphate (PBS), pH 7.2, immediately before being tested for their activities. Peptides were derived from the C-terminal region 115–129 of the Lys49 PLA₂ —like BthTX-I (pepBthTX-I = 115KKRYHLKPFCKK [29]).

2.3. Purification of the inhibitor

zBaltMIP was isolated from *B. alternatus* blood plasma as follows. *B. jararacussu* BthTX-I (40 μg) was coupled to 10 ml of CNBr-activated Sepharose 4B as described by the manufacturer. It was then settled in a 1.0 × 8.0 cm column and equilibrated with 0.1 M phosphate buffer, pH 7.2. *B. alternatus* plasma (10 ml) was diluted with the same buffer (50 ml, buffer 1) and applied on the column at a flow rate of 2.0 ml/min. Absorbance was recorded at 280 nm and sample was refluxed for 2 h followed by an extensive washing with the same buffer. The PLA₂-bound inhibitor was then eluted with 0.1 M glycine–HCl buffer, pH 2.8 (buffer 2), and the pH of the eluted sample was immediately adjusted to pH 7.0 with 0.5 M Tris–HCl buffer, pH 8.0. The zBaltMIP was desalted and concentrated using a YM-10,000 Amicon membrane by successive washings with 0.05 M AMBIC, pH 8.0, aliquoted in 1.0 ml portions, lyophilized and stored at −20 °C [25,35].

2.4. Biochemical characterization

Polyacrylamide gel electrophoresis was performed in the presence of sodium dodecyl sulfate (SDS–PAGE), following a previously described method [36]. A PPSQ-33A (Shimadzu) automatic sequencer was used for the N-terminal sequencing. The phenylthiohydantoin (PTH) amino acids were identified by comparing their retention times with the 20 PTH-amino acid of the standard mixture. The peptides obtained were compared with the sequences of other related proteins in the SWISS-PROT/TREMBL databases using the FASTA and BLAST programs. To confirm the purity degree, reverse-phase HPLC was performed using a C18 column of 4.6 × 100 mm (GE-Healthcare). C18 column was equilibrated with solvent A (0.1% trifluoroacetic acid), and eluted with a concentration gradient of solvent B (70% acetonitrile, 0.1% trifluoroacetic acid) from 0 to 100%, at a flow rate of 1 ml/min during approximately 90 min. The peaks were monitored by absorbance at 280 nm.

2.5. Inhibitory effect of zBaltMIP on biological activities of snake venom PLAs

2.5.1. Inhibition of anticoagulant and PLA₂ activities

The ability of zBaltMIP to inhibit the enzymatic activity of the basic Asp49 PLA₂ BthTX-II, Btha-I-PLA₂, PrTX-III and CB was evaluated by previous incubation of these toxins (25 μg) with the inhibitor at different molar ratios. Anticoagulant activity was assayed on platelet poor plasma and the PLA₂ assay on agarose gel containing red blood cells and egg yolk phospholipids [25,33,37].

2.5.2. Inhibition of cytotoxic activity

Cytotoxicity induced by PLAs {20 μg} in the presence or absence of zBaltMIP was assayed on endothelial cells (tEnd) according to Angulo et al. [38]. In order to establish the 100% cytotoxic level for tEnd cells, 150 μl of 0.1% triton X-100 in culture medium were incubated with the cells. For the 0% reference, the culture medium was used alone. After 3 h of incubation at 37 °C, aliquots of 100 μl of the supernatants were assayed for lactate dehydrogenase (LDH) activity according to the Sigma 500 colorimetric method. Results were expressed as the percentage of cytotoxicity relative to LDH released by the detergent alone. In order to measure the cytotoxicity upon muscular cells, mouse myoblast cell lines (C2C12) were grown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, as described by Mosmann [39]. Cells were disposed in 96-well plates at a density of 1 × 10⁵ cells per well. After 24 h of
culture, the medium was removed and fresh medium, with or without different concentrations of indicated compounds, as pepBthTX-I (100 μg), pepBthTX-I/zBaltMIP (1:1, molar ratio) and zBaltMIP (100 μg), was added to the wells and incubated for 24 h.

2.5.3. Inhibition of myotoxicity

In vivo myotoxic activity was assayed measuring the creatine kinase (CK) levels in mice plasma (n = 6, 20–25 g) after i.m. injection of 50 μl of PBS (phosphate buffered saline) alone or PBS containing 50 μg of Asp49 or Lys49 myotoxin, previously incubated with zBaltMIP, into the right gastrocnemius muscle. CK activity was assayed by the CK–UV kinetic kit (Bioclin, Brazil) as instructed by the manufacturer. The activity was expressed in U/l, one unit corresponding to the production of 1 nmol of NADH per minute [40].

2.6. Circular dichroism spectroscopy

CD measurements were carried out in a JASCO model J-810 CD spectropolarimeter equipped with a pelter thermo-controller within a spectral range of 190–260 nm. The experiments were performed at 20 °C using an optical path-length of 1 mm with a 20 nm/min scanning speed and response time of 2 s. Twenty spectra were accumulated, averaged and corrected from the baseline for buffer solution contribution and the resultant spectra were normalized to residual molar ellipticity [9]. Samples (protein individually and complexes) were analyzed in 5 mM phosphate buffer (pH 7.4) at molar concentration of 10 μM. The enzyme/inhibitor complex was prepared by mixing 1:1 M ratio, followed by incubation for 2 h at 4 °C. All solutions prior to experimentation were centrifuged at 20,000 × g for 10 min to remove any aggregates and insoluble particles. Data analysis and deconvolution were conducted using algorithms implemented on the Dychroweb server [41].

2.7. Dynamic light scattering

The dynamic light scattering (DLS) measurements were performed with native zBaltMIP at 4 °C (277 K) and 10 °C (283 K) at the concentration of 1.0 mg ml⁻¹ using a DynaPro TITAN equipment (Wyatt Technology). The results were analyzed with the Dynamics v.6.10 software. The data were measured one hundred times in triplicate.

2.8. RNA extraction and cDNA synthesis

Approximately 120 mg of frozen liver of B. alternatus was ground to a fine powder with a mortar and pestle in the presence of liquid nitrogen and used for total RNA isolation, following the guanidine thiocyanate-Trizol® method (Invitrogen, USA). RNA integrity was analyzed by electrophoresis of 0.5–2 mg on a 1% agarose gel. Electrophoresis was run at 100 V/cm using TBE (89 mM Tris base, 89 mM boric acid, 2 mM EDTA, pH 8.0) as the running buffer. The gel was examined under UV light, in the presence of ethidium bromide, for the presence of 18S and 28S bands corresponding to the ribosomal RNA. cDNA was synthesized from 2 to 5 mg of total RNA using a commercial kit (Bioclin, Brazil) as instructed by the manufacturer. The activity was expressed in U/l, one unit corresponding to the production of 1 nmol of NADH per minute [40].

2.9. Cloning and cDNA sequence of zBaltMIP

Fresh PCR products were cloned in TA pCR 2.1 plasmid according to manufacturer’s instructions (TA Cloning kit, Invitrogen, USA). After transformation of Escherichia coli strain INVαF® competent cells, putative positive colonies were confirmed by PCR with zPLIs primers [42]. Two positive clones were randomly selected for growth in liquid culture and the recombinant DNA was purified using a commercial kit (Wizard Plus MiniPreps, Promega, USA). DNAs were completely sequenced by the dyeoxy chain termination method (Sanger et al., 1977) on an automated ABI Prism 310 Genetic Analyser (Perkin Elmer Applied Biosystem, USA), using M13 forward and M13 reverse oligonucleotides as primers in the Big Dye Terminator Cycle sequencing Ready Reaction (Perkin Elmer Applied Biosystems, CA, USA). The complete cDNA sequences were deposited in the NCBI GenBank (EU421901 to EU421905).

2.10. Selection and alignment of homologous sequences

The sequences homologous to zBaltMIP were obtained from NCBI database (http://www.ncbi.nlm.nih.gov) using the algorithm BLASTP and a BLOSUM45 matrix. The multiple alignment between zBaltMIP sequence and the selected homologue sequences was executed by the program AMAP v.2.2 using default parameters [43].

2.11. Protein modeling

The crystallographic model of lung surfactant protein D (SP-D) from Homo sapiens (PDB code 1pw6, chain A) was selected as the best template for the building of the initial theoretical zBaltMIP structural model, according to data obtained from the based-threading method program HHpred [44] (score = 203.9; e-value = 1e–32), available at the Max-Planck Institute for Developmental Biology server (http://toolkit.tuebingen.mpg.de/hhpred). The initial theoretical zBaltMIP structural model was generated by the program MODELLER 8v2 [45] using the selected template.

2.12. Molecular dynamics simulation

The zBaltMIP model from program MODELLER 8v2 was submitted to a molecular dynamics (MD) simulation executed by the program GROMACS (Groningen Machine for Chemical Simulation) v.4.0.2 [46,47] in presence of explicit water molecules [48], using an Intel Core 2 Quad x4 840S equipped with an Ubuntu v.10.04 Linux operational system. Protonation states of charged groups were set according to pH 7.0. Counter ions were added to neutralize the system and the GROMOS 96 53a6 force field [49] was chosen to perform the MD simulation. The minimum distance between any atom of the protein and the box wall was 1.0 nm. An energy minimization (EM) using a steepest descent algorithm was performed to generate the starting configuration of the system. After this step, 200 ps of MD simulation with position restraints applied to the protein (PRMD) was executed in order to relax the system gently. Then, 10 ns of unrestrained MD simulation were calculated to evaluate the stability of the structures. All the MD simulations were carried out in a periodic truncated dodecahedron box under constant temperature (298 K) and pressure (1.0 bar) maintained by the coupling to an external heat and an isotropic.

2.13. Evaluation of the theoretical zBaltMIP structural models and assembling of the hypothetical oligomeric structure

Overall quality of all the theoretical zBaltMIP models obtained after modeling, MD simulation, and simulated annealing refinement were checked with the programs RAMPAGE [50] and ProSA-web.
was purification using BthTX-I, a basic Lys49 PLA2, coupled on CNBr-activated Sepharose chromatographic column, using a concentration gradient of solvent B (0-100% of 70% acetonitrile plus 0.1% trifluoroacetic acid). The radii of gyration presented by the BaltMIP structure was performed with the program O v.11.0.5 [52].

Average RMSF values of the backbone atoms from the final monomeric and trimeric BaltMIP model were calculated and converted to B-factor values using the program GROMACS v.4.0.2 [46,47]. The assembling of the theoretical trimeric BaltMIP structure was performed with the program O v.11.0.5 [52] by means of Cα atom alignments between the final BaltMIP MD model and each one of the monomers of the trimeric human lung surfactant protein D (SP-D). A simulated annealing refinement using the program CNS v.1.2 [53] was performed in order to check the feasibility of the theoretical BaltMIP trimer assembled with the program O v.11.0.5.

2.14. Statistical analysis

Results are presented as mean ± S.D. obtained with the indicated number of animals. The statistical significance of differences between groups was evaluated using Student’s unpaired t-test and analysis of variance (ANOVA). A P value < 0.05 was considered to indicate significance.

3. Results and discussion

In the present work, an α-type phospholipase A2 inhibitor (αPLI) was purified from B. alternatus snake plasma by an affinity chromatography using BthTX-I, a basic Lys49 PLA2, coupled on CNBr-activated Sepharose 4B (Fig. 1A). In order to confirm its purity degree, the isolated αPLI, named BaltMIP, was analyzed by reverse-phase HPLC column and electrophoresis in presence of the reducing agent β-mercaptoethanol (Fig. 1B). The inhibitor appeared as a single polypeptide chain, showing a relative molecular weight of 24,000 under reducing conditions (Fig. 1B). Some other αPLIs were purified from a variety of snakes, as T. flavoviridis [54], Agkistrodon blomhoffii [55], Atropoides nummifer [23], Protobothrops flavoviridis [24], Bothrops asper [32], Bothrops moojeni [35] and B. jararacussu [25]. The ability of BaltMIP to inhibit phospholipase A2 and anticoagulant activity was tested (Fig. 2A and B). The specific activity for each PLA2 alone was considered as 100%. BaltMIP was more effective in inhibiting the PLA2 and anticoagulant activity of BthTX-II and PrTX-III, showing to be less active against the activities induced by crotoxin B and BthA-I-PLA2.

BaltMIP inhibited between 38 and 41% of the enzymatic activity of BthTX-II and PrTX-III, respectively, showing maximum inhibition in the proportion of 1:1 PLA2/PLI (mol/mol) (Fig. 2A). It has been reported that αPLIs isolated from American crotaline snakes are more selective towards basic PLA2s [22,56], while those of Asian species preferentially interact with acidic PLA2s [31]. Nevertheless, no evident differences in the amino acid sequences of αPLIs could be ascribed to justify this variation in the inhibitory profiles [56]. Quirós and co-workers [23] proposed that an intra-specific specialization of the inhibitor towards particular PLA2s coevolving in its own venom would seem a more reasonable explanation than an early subdivision of the specificity of these inhibitors in Asian and American crotalines.

As previously mentioned, BaltMIP presented higher anticoagulant inhibition against BthTX-II and PrTX-III (Fig. 2B). A large number of PLA2s from snake venoms display anticoagulant activity [57,58]. Some authors suggest that the capacity of PLA2s to bind and cleave membrane phospholipids indicates that snake venom PLA2s inhibit blood coagulation through the destruction of pro-coagulating phospholipids, being the catalytic activity of PLA2s directly responsible for its anticoagulant effects [59,60]. Our results corroborate with this hypothesis, since anticoagulant and catalytic activity showed to be similar.

BaltMIP was also tested for its capacity in inhibiting PLA2 cytotoxicity, presenting high inhibition of the cytotoxicity (about 80%) induced by Lys49 PLA2s (BthTX-I and PrTX-I) (Fig. 2C). Some studies involving Lys49 PLA2s have demonstrated that the C-terminal region is related to the cytotoxic and bactericidal effects of these proteins [61]. The myotoxicity induced by Bothrops Asp49 (BthTX-II and PrTX-III) and Lys49 (BthTX-I and PrTX-I) PLA2s at an inhibitor:toxin molar ratio of 0.4:1 showed that BaltMIP presented a strong inhibition of...
about 80% upon Lys49 PLA2s, and about 40% of inhibition upon Asp49 PLA2s (Fig. 2D).

According to some authors, the main responsible for the toxic effect in Lys49 PLA2s is the C-terminal region. This hypothesis could be confirmed by using synthetic peptides belonging to the C-terminal region (amino acids 115–129), which was responsible for the toxic activities of some myotoxic Lys49 PLA2s [62,63]. This region combines cationic and hydrophobic amino acid residues responsible for the damage mechanism of cellular membranes. The cationic residues can interact with anionic groups of an acceptor site, probably negatively loaded membrane phospholipids [63], while the hydrophobic residues, especially the aromatic ones, can interact with and possibly penetrate the phospholipid bilayer, resulting in its destabilization [62]. However, the fact that a single peptide plays all the main toxic activities of the origin molecule does not prevent the existence of other motifs that can participate or complement the action of the toxic effector site [63].

In contrast, C-terminal peptides of some myotoxic Asp49 PLA2s showed no membrane direct damage activity, suggesting that the toxic mechanism exercised by these proteins probably involves its catalytic activity as an important step, differently from that used by myotoxic Lys49 PLA2s [62]. According to this hypothesis, some studies have suggested that myotoxic Asp49 PLA2s may induce muscle cell damage by affecting the integrity of plasmatic membranes, thereby leading to hyper contraction and other intracellular effects [13,64]. These membranes are formed by different types of phospholipids, mainly phosphatidylcholine, which can be hydrolyzed by Asp49 PLA2s producing free fatty acids and lysophospholipids, causing cellular damage [13].

In order to bring some light to this discussion, the cytotoxic activity was assayed upon mouse myoblast cell line (C2C12 cells), testing BthTX-I (a Lys49 myotoxin), pepBthTX-I (a synthetic peptide derived from the C-terminal of BthTX-I) and aBaltMIP. The native BthTX-I presented a high cytotoxicity on C2C12 cells, which was
considered as 100%. The synthetic peptide pepBthTX-I also showed cytotoxic activity against the evaluated cell line, even though this activity was less significant (about 76%). When αBaltMIP was previously incubated with BthTX-I and pepBthTX-I, a remarkable reduction on their cytotoxic activity was observed (about 40% of activity to BthTX-I/αBaltMIP and 25% to pepBthTX-I/αBaltMIP, both in the molar ratio of 1:1).

The C-terminal region of Lys49 PLA2s is possibly responsible for the cytotoxic effect of these enzymes [61–63], and this hypothesis was confirmed by the present work. However, the participation of other regions of the protein in the toxic mechanism cannot be excluded. The interaction between inhibitor and protein (e.g. αBaltMIP/BthTX-I) seems to occur in several ways and not only in the C-terminal region, given that the toxic activity was not abolished using C-terminal synthetic peptides.

As previously mentioned, αBaltMIP was able to inhibit both Lys49 and Asp49 PLA2 myotoxic/cytotoxic activities, suggesting there might be several ways of inhibition. Soares and co-workers [35] suggested at least two mechanisms through which αPLIs could neutralize PLA2s: (1) αPLIs could bind to PLA2 domains via its CRD region and block, through steric hindrance, interaction between the cytotoxic domain and the cell membrane or (2) αPLIs could directly bind to other domains of myotoxins, avoiding direct contact with the membrane.

Furthermore, the secondary structure contents of the Lys49 (BthTX-I) and Asp49 PLA2s (BthTX-II and CB), the inhibitor αBaltMIP and their respective complexes were analyzed by CD spectroscopy. All three PLA2s showed characteristic curves of helical proteins featuring well-defined peaks at 208 and 222 nm as expected for a snake venom PLA2 structure (Fig. 3A). Analogously, the inhibitor CD spectrum indicates a high content of helical structure elements (Table 1), which may indicate a more compact structure upon complexation.

The N-terminal sequence of αBaltMIP, comprising the first 31 amino acid residues, was determined by automatic sequencing using the Edman degradation method, showing the sequence HEQDPDGKLLNSLIDALMHLQREFAKLRGAF. The comparison of the N-terminal sequence of αBaltMIP and an amino acid sequence deduced from cDNA of an αPLI from B. alternatus (EU421904.1) showed 100% of identity. The deduced mature sequence shows 147 residues, presenting the conserved cysteine residues at positions 64, 119, 133 and 141, and the putative glycosylation site at N103, characteristic of αPLIs (Fig. 4).

Additionally, in an attempt to obtain insights into the structural features of αBaltMIP, a theoretical three-dimensional structure of αBaltMIP was constructed using a threading modeling technique and improved by a 10 ns molecular dynamics (MD) simulation [44–47]. The initial theoretical αBaltMIP structural model calculated by the program MODELLER 8v2 showed a good stereochemical configuration, with 99.3% of its amino acid residues in the favoured and allowed regions of Ramachandran plot [50]. Furthermore, the residues of the initial theoretical αBaltMIP structural model have also presented an adequate overall quality (Z-score = −4.43) in comparison with experimentally-determined native proteins of similar size deposited in the Protein Data Bank (PDB) [51]. The structural characteristics of the initial model are kept in the theoretical αBaltMIP model obtained after a 10 ns molecular dynamics simulation, which presents 97.9% of its residues distributed in the favoured and allowed regions of Ramachandran plot [50] and also an overall good quality (Z-score = −4.99) [51]. The analysis of the overall αBaltMIP structure calculated after the MD simulation showed the two main structural features of αPLIs were conserved at the final model: the α-helical neck and the carbohydrate recognition domain (CRD), whose main secondary structural elements are two α-helices and five β-strains (Fig. 5A).

The comparison of the deduced amino acid sequence of αBaltMIP with other snake αPLIs – including the theoretical model of GbPLIα (an αPLI from Gloydius brevicaudus) [65] – and SP-D proteins from H. sapiens and Rattus norvegicus shows the mammal amino acid

| Table 1 Data deconvolution of CB, BthTX-I, BthTX-II and their complexes with αBaltMIP, using the CDSSTR method. |
|-------------|--------|--------|----------|---------|
| Helix | Strand | Turn | Unordered | Total |
| CB | 0.39 | 0.14 | 0.19 | 0.27 | 0.99 |
| BthTX-I | 0.44 | 0.17 | 0.13 | 0.16 | 1.00 |
| BthTX-II | 0.54 | 0.12 | 0.14 | 0.20 | 1.00 |
| αBaltMIP | 0.50 | 0.13 | 0.16 | 0.22 | 1.01 |
| Complex1 | 0.48 | 0.13 | 0.16 | 0.24 | 1.01 |
| Complex2 | 0.60 | 0.15 | 0.11 | 0.14 | 1.00 |
| Complex3 | 0.55 | 0.11 | 0.14 | 0.20 | 1.00 |

Fig. 3. Far-UV-CD spectra for αBaltMIP, PLA2s and association of PLI/PLA2. Spectra for CB, BthTX-I, BthTX-II and αBaltMIP alone (A) and for the complexes of these enzymes with αBaltMIP (B); for more details graph (C) presents only BthTX-I and αBaltMIP at a 1:1 M ratio.
sequences present an insertion in the 97–109 region (corresponding to 294–306 region according to the human sequence numbering) (Fig. 6). Interestingly, a structural comparison between the final zBaltMIP MD model and the SP-D crystallographic structure from H. sapiens indicates this insertion that corresponds to a loop where the residues Asp297 and Glu301 are placed, which are involved in the coordination of two Ca\(^{2+}\) ions (Fig. 6). One of these Ca\(^{2+}\) ions is also responsible for coordination of important structural elements (a loop and another Ca\(^{2+}\) ion) involved in carbohydrate binding [66]. Therefore, the absence of this “Ca\(^{2+}\) -binding” loop in the zBaltMIP theoretical model seems to strengthen the hypothesis that snake zPLIs do not bind to carbohydrates and present a Ca\(^{2+}\) independent inhibitory activity, as previously observed by Okumura et al. [65]. In this same work, it was also stated that the \(\alpha\)-helical neck regions of snake zPLIs lead to trimerization of these proteins, resulting in the formation of a central pore responsible for binding and inhibition of PLA\(_2\)S. Indeed, the dynamic light scattering (DLS) experiments carried out with the purified zBaltMIP strengthen the possible importance of oligomerization for this protein and, possibly, for other snake zPLIs. The DLS data showed zBaltMIP presents a narrow unimodal size distribution at 4°C (277 K) and 10°C (283 K), with, respectively, polydispersity values of 3.3% and 13.4% and mean hydrodynamic radii (RH) of 3.4 nm and 3.6 nm. Remarkably, the RH values of the scattering centers formed in the tested conditions are considerably distinct from the radius of gyration values (~2.0–2.5 nm) presented by the zBaltMIP model.

Fig. 4. cDNA and amino acid sequence of a phospholipase A\(_2\) inhibitor from Bothrops alternatus snake plasma (EU421904.1). The underlined amino acids correspond to the N-terminal peptide, which was determined by chemical sequencing of the purified zBaltMIP. The mature polypeptide chain presents 147 amino acid residues.

Fig. 5. (A) Cartoon representation of the final theoretical zBaltMIP model obtained after a 10 ns molecular dynamics (MD) simulation [46,47]. The residues 11–37 and 49–143 correspond, respectively, to the \(\alpha\)-helical neck region and carbohydrate recognition domain (CRD); the residue Asn103 (stick representation) corresponds to a glycosylation site and it is preserved in all snake zPLI sequences. Illustration generated by the program PyMOL v.1.0 [67]. (B) Average backbone atom RMSF values of the final monomeric zBaltMIP MD model calculated by the program GROMACS v.4.0.2 [46,47]. The vertical line separates the \(\alpha\)-helical neck region from the carbohydrate recognition domain (CRD) to emphasize the high flexibility presented by the first segment in comparison to the second during the MD simulation.
Fig. 6. Multiple alignment between the amino acid sequences of øBaltMIP and other snake øPLI sequences and mammalian lung surfactant proteins D (SP-D) generated with the program AMAP v.2.2 [43]. All the sequences were obtained in the NCBI protein database. øPLIs: Bothrops alternatus (gi:215275473); Bothrops erythromelas (gi:215275474); Bothrops neuwiedi (gi:215275475); Bothrops jararaca (gi:215275476); Bothrops moojeni (gi:215275477); Gloydius blomhoffii sinticus (gi:6467183); Lachesis muta (gi:218546736); Trimeresurus flavoviridis (gi:160357889); Elaphe quadrivirgata (gi:82133672). Mammalian lung surfactant proteins D (SP-D): Rattus norvegicus (gi:39654792); Homo sapiens (gi:34810883).

Fig. 7. Hypothetical øBaltMIP trimeric assembling obtained after a simulated annealing refinement [52,53]. The three øBaltMIP monomers fitted well in a trimeric spherical arrangement whose maximum dimensions (about 7.5 nm) indicate that the approximate radius of the oligomer is quite close to the broader Rg value (3.6 nm) calculated in the DLS experiments at 10 °C. It is also possible to observe a slightly twist between the ø-helical neck regions, suggesting the probable importance of these regions for the oligomeric assembling. Illustration generated by the program PyMOL v.1.0 [67].
feature becomes more evident when the RMSF of each simulation indicates these regions are highly flexible. A similar finding indicates that the PLA2 binding region could present the additional benefit of avoiding potential unfavorable contacts of these segments with unoccupied PL2A sites in a complex whose molar ratio was 1:1. Otherwise, the circular dichroism (CD) trials have shown that the zBaltMIP/PLA2 complex is probably more stable in relation to the separated protomers due to the relative increase of helical segments in relation to the separated protomers. This finding indicates that the PLA2 binding could even induce structural modifications in zBaltMIP and other zPLI protomers to optimize and accelerate the formation of intricate inhibitory complexes as that suggested here (formed by one trimeric zPLI oligomer and one PLA2 molecule). Such hypothesis seems reasonably probable when it is taken into account that the concentration of zPLIs in the snake tissues must be far lower in comparison to the conditions of the experimental procedures performed with the purified zBaltMIP.

Acknowledgements

The authors express their gratitude to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Instituto de Ciência e Tecnologia em Toxinas (INCTTox) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support, and also to Prof. Dr. Auro Nomizo and Isabelo Gobbo Ferreira (FCFRP-USP) for their technical support on the cytotoxic activity upon C2C12 cells.

Appendix. Supplementary material

Supplementary materials related to this article can be found online at doi:10.1016/j.bioch.2010.11.016.

References
