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Abstract

Morphology is a key property of materials. Owing to their precise structure and morphology,
crystals and nanocrystals provide excellent model systems for joint experimental and theoretical
investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals
expose well-defined crystallographic planes depending on the synthesis method, which allow for
thoughtful investigations into structure—reactivity relationships under practical conditions. This
feature article introduces recent work, based on the combined use of experimental findings and
first-principles calculations, to provide deeper knowledge of the electronic, structural, and
energetic properties controlling the morphology and the transformation mechanisms of different
metals and metal oxides: Ag, anatase TiO,, BaZrOs, and a-Agr,WO,. According to the Wulff
theorem, the equilibrium shapes of these systems are obtained from the values of their respective
surface energies. These investigations are useful to gain further understanding of how to achieve
morphological control of complex three-dimensional crystals by tuning the ratio of the surface

energy values of the different facets. This strategy allows the prediction of possible
morphologies for a crystal and/or nanocrystal by controlling the relative values of surface

energies.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The ability to prepare nano- and microstructures with a well-
defined morphology and excellent monodispersity at the
nano- and bulk scale is an essential requirement for materials
applications [1, 2]. It is generally accepted that the mor-
phology, dimensionality, and crystal structure of the materials
all play important roles in the electronic, optical, magnetic,
catalytic, chemical, and other physical properties [3, 4].
Crystal morphology is governed by anisotropic surface
properties, i.e., the presence of face-specific molecular

0957-4484/15/405703+11$33.00

arrangements, and is a critical determinant of the physical and
chemical properties of crystalline materials. These molecular
arrangements stem from the crystal structure and possess a
symmetry that allows a group of faces, known as a family, to
share identical arrangements. The anisotropic surface prop-
erties control the surface energies, growth rates, dissolution
rates, wettability, cohesion, adhesion, etc. Because of the
presence of surface energy anisotropy, unstable surfaces try to
stabilize through the creation of low-energy surfaces; this is
commonly called faceting [5]. The control of crystal mor-
phology is a complex and difficult process, which depends

© 2015 I0OP Publishing Ltd  Printed in the UK
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both on the crystal internal structures and external growth
conditions such as the synthesis process, the solvents used,
and the process additives. In this context, Xue et al have
developed a chemical bonding theory of single crystal growth
[6, 7]. Very recently [8], these authors have reported the
morphology engineering of electrode materials that can
increase the performance of electrochemical energy storage
devices such as Cu,O- and MnO,-based systems.

The relative growth rate of crystal faces, which depends
on environmental conditions, evokes transformations in
crystal morphology because of the appearance and/or dis-
appearance of faces. These transformations are due to the
geometric constraints imposed by the crystal structure and are
associated with the relative surface energy values of each
face. The observed crystal shapes are often interpreted in
terms of Wulff construction [9, 10] offers a simple method to
determine the equilibrium crystal shape, and different
numerical implementations of this procedure are available in
the literature [11-13]. Such a description is appropriate at the
thermodynamic equilibrium.

This study reports results from theoretical and compu-
tational chemistry, in particular, the combination of first-
principles calculations with an algorithm based on the Wulff
construction, to find suitable morphological structure candi-
dates. This perspective presents a comprehensive framework
to rationalize crystal morphology and morphology evolution
in crystalline materials, and summarizes our research efforts,
which target the determination of the morphology in a set of
materials ranging from metals to both simple and complex
metal oxides: Ag, anatase TiO,, BaZrOs, and a-Ag,WOy,.
The following discussion is divided into three sections. The
first section focuses on the state-of-the-art developments in
this research field. The theoretical procedure and computa-
tional method are presented in section two. The third section
presents the results and a process of how to create a mapping
of all shape crystal possibilities to evaluate the methods to
simulate suitable morphological structural candidates in order
to obtain the experimental morphology of the as-synthesized
samples.

1.1. State-of-the-art developments

For a crystalline material, different surfaces may have dif-
ferent geometric and electronic structures, and exhibit dif-
ferent physical and chemical properties. Accordingly, their
morphology is dependent on the surface energies of the dif-
ferent exposed surfaces, and one may expect to tune the
properties of materials by simply controlling the morphology
of the crystalline materials. At the nanoscale, the ability to
control the size and shape of nanocrystals (NCs) in order to
tune functional properties is an important goal. The precise
fabrication of NCs with specific shapes at the nanoscale level
is crucial for enhancing performance in many applications
[14-16]. The techniques for nanomaterial synthesis are the
pillars of nanoscience and nanotechnology [17, 18]. Nano-
material syntheses can be fine-tuned to tailor the shape of the
nanomaterials, which enables the application of nanomaterials
in various fields, such as catalysis [19-21] electronics [22],

optics [23], and magnetism [24] etc. Hence, developing a
methodology for shape-controlled NC growth is a major
current research direction.

It is well established that structural changes at surfaces,
including atomic relaxation and reconstruction, are a mani-
festation of the driving force to minimize the surface energy
[25, 26]. Such shape effects result inherently from the atomic
arrangement of different exposed crystal facets, and the
growth mode of an NC is determined by the ratio between the
growth rates of different facets [27]. Recent studies have
shown that the use of capping agents is a typical and efficient
strategy to control morphology and size. The functional
groups on these capping agents can preferentially adsorb onto
the crystal facet and modulate the kinetics of crystal growth
[28-30]. Maneuvering the surface energies and growth rates
of different facets determines the shape of a NC [19, 31].
Shape control of crystal growth has been reported for various
types of oxide materials by modulating the reactive conditions
in the liquid phase [32, 33]. In particular, surface charges and
polarization have been discussed in previous reports on the
synthesis of nanomaterials with some novel morphologies
[34, 35]. However, the synthesis of crystals with the desired
morphologies requires an understanding of the thermo-
dynamic and kinetic mechanisms of the formation of NCs and
a framework to guide the selection of environmental
conditions.

Even at the nanoscale, fine control over nanoparticle
(NP) morphology (surface structure) has also been shown to
induce superior catalytic reactivity and selectivity [36, 37]. It
is also possible to discover new and potentially useful com-
positions of matter on the nanoscale, because mixtures of
elements that are thermodynamically unstable in the bulk may
actually become stable (or metastable) as a result of quantum
size-confinement effects [38, 39]. As Pauli said ‘God made
the bulk; surfaces were invented by the devil’.

Identifying the mechanism of the morphological trans-
formation of both nano- and micro-crystals is crucial to gain
better control of the growth of materials because the surface
structure can strongly affect the crystal quality and properties.
The conventional understanding of the surface atomic struc-
ture of a crystal is that facets with a higher percentage of
under-coordinated atoms are usually more reactive. Modula-
tion of morphology is a commonly employed strategy to
optimize the performance of various crystalline catalysts from
noble metals to semiconductors [40—42]. The synthesis of
highly active facets has been considered as an important
procedure to significantly promote the catalytic activity of
noble metals, metal oxides, and semiconductors [43—46]. In
particular, the peculiar particle morphological structures of
metals and their oxides, such as cube, flower-like, octahedron,
and rod, have attracted wide attention in the field of electro-
chemical device applications [47-49]. The basis of this
strategy is that the surface atomic configuration and coordi-
nation control the reactivity and can be finely tuned by
morphological control [50, 51]. The chemistry of diverse
energy facets and the differences in the binding properties of
the intermediates and/or products with such facets are addi-
tional determining factors in deciding the overall catalytic
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activity of the materials under operating conditions. However,
many questions still remain because of the lack of conclusive
evidence about the mechanisms that govern crystal facet
modulation at the atomic level; as such, there is considerable
scope for research. In this strategy, insights from theoretical
calculations and experimental evidence can be integrated with
each other to develop a simple model that can be used to
better understand crystal facet modulation mechanisms at the
atomic level.

First-principles investigations have been recognized as
effective for studying the morphology and surface properties
of a wide variety of crystals and NCs [52—54]. Our group has
developed a working methodology, which has been applied to
the study of different morphologies in different metal oxides
such as SnO, [55-57], PbMoO, [58], and CaWOQ, [59]. The
relative growth rates of crystal faces, which depend on
environmental conditions, cause transformations in crystal
morphology because of the appearance and/or disappearance
of faces. These transformations are due to the geometric
constraints imposed by the crystal structure and are associated
with the relative values of the surface energy of each face. In
this context, Roca ef al published some results about our
simple way to use the theoretical morphology modulation in
TiO, and a-Agr,WO, [60, 61] nanocrystals in order to explain
the surface energy changes observed in experimental
conditions.

The main practical challenges of the present work can be
summarized as follows: (i) prediction of different morpholo-
gies possible for a crystalline material, (ii) screening of rela-

tive values of surface energies to obtain desired
morphologies, and (iii) target and control of crystal
morphologies.

2. Theoretical procedures and computational
methods

The task of predicting the morphology of crystals can be
partially tackled if interest is limited to general knowledge
about trends regarding bulk and surface energies (values and
variations). The energetic interplay between surface energy
and morphology can be identified. This section briefly pre-
sents the definition of surface energy and the Wulff con-
struction, which are the most basic parameters and methods
for predicting the equilibrium morphology of a crystal.

From the thermodynamic point of view, the equilibrium
shape of a crystal is determined by the free energies of various
facets, and can be calculated by the classic Wulff construction
that minimizes the total surface free energy at a fixed volume
[9]. The Wulff theorem provides a simple relationship
between the surface energy, Eg,s, of the (hkl) plane and its
distance, rhkl, in the normal direction from the center of the
crystallite. Later, the thermodynamic stability of the faceted
and rounded shapes was revisited by Herring [10]. In the case
when the morphology of a NC is known from microscopic
observations, Eg,¢ can be assessed iteratively by using the
Wulff construction in the inverse fashion until the resulting
shape matches the observed shape [11].

First-principles calculations were carried out using the
density functional theory and implemented in the Vienna
ab initio simulation package in order to find an ideal structure
in vacuum [62, 63]. The Kohn—Sham equations were solved
by means of the Perdew—Burke—Ernzerhof exchange-corre-
lation functional [64] and the electron—ion interaction was
described by the projector-augmented-wave pseudo potentials
[62, 65]. The plane-wave expansion was truncated at a cut-off
energy of 520eV, and the Brillouin zones were sampled
through the Monkhorst-Pack special k-points grids. The cal-
culations were done by considering slabs with thickness of up
to ~20 A. They are sufficient to reproduce bulk-like proper-
ties at the center of the slabs, to obtain a careful description of
the surfaces and to reach convergence on the corresponding
energy surface values. A vacuum spacing of 15 A is intro-
duced in the z-direction so that the surfaces will not interact
with each other. The positions of all atoms of the slab were
allowed to relax, and the conjugated gradient energy mini-
mization method was used to obtain relaxed systems,
accomplished by requiring the forces experienced by each
atom to be smaller than 0.01 eV AL, E, is defined as the
total energy per repeating cell of the slab (Egy,,) minus the
total energy of the perfect crystal per molecular unit (Epyp)
multiplied by the number of molecular units of the surface
(n), divided by the surface area per repeating cell of the two
sides of the slab, as following:

Eqa — nEpux

Egt = A

The total-energy calculations are strictly valid only at
zero temperature, and the entropic contribution can be taken
into account by adding the computed full phonon density of
states [66] or alternatively, in a simplified treatment, by
inclusion of the most relevant vibration modes [67]. The
crystal habits are principally determined by relative energies
of the exposed planes, and entropy terms normally do not
affect this ordering [68]. The entropic and pV contributions to
the free energies change slightly throughout the condensed-
phase species and in this type of calculation the entropic term
is neglected [68—73]. Therefore, the difference between the
Gibbs free energies can be approximated by the difference
between the total energies from first-principles calculations
[74-76].

Crystallite shape of any kind of materials can, in turn, be
determined using the Wulff theorem and construction [9, 77]
taking into accounts the surface energy values, implemented
in the SOWOS program [13]. In this paper, this methodology
was used for the morphology mapping of Ag, anatase TiO,,
BaZrOs, and a-Agr,WO, systems.

Several insightful review papers have reported experi-
mental and theoretical calculations on the important aspects
that govern crystal shape modulation in semiconductor and
metal NPs [78-80]. In addition to the thermodynamic driving
forces, kinetics also plays an important role in the determi-
nation of the morphology under real growth conditions. In
such a case, the approach developed by Chernov can be
applied to predict the steady-state shapes of NCs [81], and
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Figure 1. TEM image of Ag NC formed under electron beam
irradiation.

different authors have developed strategies to calculate the
velocity of facet growth [82, 83]. It was necessary, therefore,
to develop a novel strategy to construct polyhedral structures
and to especially address such structural issues.

3. Results and discussion

3.1. Ag

Noble metal NPs with defined structures and novel compo-
sitions are of great interest because of their potential appli-
cations in a broad range of industrially important processes
[14, 84, 85]. Over the past decade, Ag NCs with a myriad of
shapes (e.g., spheres, cubes, octahedrons, right bipyramids,
bars, plates, rods, and wires) have been synthesized using
various methods [86—88].

Recently, our research group reported the unprecedented
real-time in situ observation of the growth process of silver
metallic Ag filaments from an unstable a-Ag,WO, crystal
matrix when the crystal was subjected to electron irradiation
from a transmission electron microscope (TEM) [89]. This is
a striking result and the mechanism associated with the early
events of the nucleation process of Ag has been studied in
detail [90]. The crystal growth mechanism under electron
beam irradiation observed in our work is completely free of
additional agents, and the in situ TEM enables the visuali-
zation of growth of Ag NPs with planar resolution. However,
an investigation of the reactions and crystal growth mechan-
ism under electron beam irradiation can be very complicated
and demands new studies [91].

An expanded image of the region around the electron
driven Ag filament is illustrated in figure 1, where it is pos-
sible to identify the morphology of the Ag NC formed during
the experiments. In addition, the observed NCs tend to
aggregate into clusters that interact in close proximity, which
implies the possible existence of an attractive force among the
NCs [92, 93].

Thermodynamic calculations predict that single crystals
of face-centered cubic materials such as Pt or Ag will form

Figure 2. Surface models of (100), (110), and (111) for Ag.

truncated octahedral shapes, with the ratio of their (111) [49],
and (100) type surfaces predicted through consideration of the
ratio of their two respective surface energies [94]. This ratio
can be significantly and controllably modified through the use
of surfactants, and it has been demonstrated to have a sub-
stantial effect on catalytic selectivity [36]. Particle morphol-
ogy also dictates the nearest-neighbor coordinations of the
exposed surface atoms, broadly affecting the catalytic activ-
ity [95].

The morphological characterization of Ag NPs has
shown strong correlations between properties such as average
particle size, shape, and dispersity with observed and inher-
ently tunable physiochemical behavior [96, 97]. In this con-
text, Barnard et al [98] have presented detailed structure/
property maps, showing that faceted near-spherical shapes
and spheres are the predominant morphologies in Ag NPs
colloidal samples at low and high temperatures. The pro-
duction of well-defined NPs with reproducible size and shape
distributions remains challenging [99], although different
studies report clarification of stability, probability, and
population in NP ensembles [100]. The (100), (110), and
(111) surfaces were modeled by unreconstructed (truncated
bulk) slab models by using a calculated equilibrium geometry
and using a (6 x 6 x 1) Monkhorst-Pack special k-points
grid to ensure geometrical and energetic convergence for the
Ag structures considered. Slab models containing 15 Ag
atoms placed in 3 five-atomic layers were selected, with areas
of 8.77 A%, 12.4 A%, and 7.59 A? for the (100), (110), and
(111) surfaces, respectively. Figure 2 depicts the slab repre-
sentation for Ag.

An analysis of figure 3 shows that the calculated energy
surface values (center of figure 3) generate a morphology very
similar to that of synthesized Ag NCs, generated by matching
the corresponding TEM image (see figure 1). When the dif-
ference in the stability of the facets is reduced, more than one
type of facet will appear, and the resulting polyhedron should
gradually appear rounder, with truncated edges and corners.
When the ratio of the energy surface is varied by increasing
the value of the (111) surface more than 22% because of some
perturbation, the resulting morphology is a double truncated
octahedron. The same morphology is obtained by decreasing
the value of the (110) and (011) surfaces more than 24% with
respect to the computed initial value. On the other hand, a
truncated cube or a truncated octahedron can be achieved
when the value of the (100) and (001) surfaces is decreased
by around 42% or is increased by around 20%, respectively.
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Figure 3. Crystallographic structure and map of morphologies of Ag
NC with (100), (001), (111), (110), and (011) crystal planes. Surface
energy is in joules per square meter. Theoretical (experimental)
[102] lattice parameter, a = 4.188 A (4.086 A).

In addition, using the different morphologies displayed in
figure 3, we can rationalize some experimental results
reported very recently by Wang et al [101] such as the for-
mation of Ag nanocubes and octahedra.

3.2. Anatase TiO»

The morphology as well as the crystal-facet-controlled
synthesis of titanium dioxide (TiO,) has attracted interest
because of its scientific and technological applications,
including in photocatalysts and self-cleaning agents [103].

TiO, is a common multifunctional material, which has
been used in a wide variety of applications in many fields,
such as in ceramics, cosmetics, medicine, food, and catalysts
[104]. For TiO,, three polymorphs are stable at atmospheric
pressure: the thermodynamically favored rutile phase that can
be grown in bulk, and the less common anatase and brookite
phases. The polymorphs have significantly different chemical
reactivities with anatase and brookite typically being believed
to be the most reactive. Hence, many researchers have pur-
sued polymorph-specific syntheses of high-reactivity NCs
[105]. Anatase TiO, was proven to be more active than the
other two main TiO, crystal polymorphs, i.e., rutile and
brookite, especially when TiO, is employed as a catalyst and
photocatalyst [50, 106].

Under equilibrium conditions, natural and synthetic
anatase TiO, single crystals mainly exist in an octahedral
bipyramidal morphology in which a majority of the surface is
normally enclosed by energetically favorable (101) facets
rather than the more reactive (001) facets [107—109]. Thus, it
has long been a great challenge to synthesize anatase TiO,
with a large fraction of exposed (001) facets. However,
recently, many studies have reported the synthesis of high-
energy anatase surfaces [42, 110, 111].

Despite intense investigations into the preparation of
specific facets, the inherent photoactivities of TiO, facets are
still ambiguous. The (001) facet was initially expected to be
the most active because of its high surface energy [42, 112—
115], whereas later research suggested that the clean (010)
facet with 100% five-coordinate Ti was more active in photo-
oxidation and photoreduction reactions [116]. In particular,
Liu et al reported that the photoreactivity of (010) facets of
TiO, is higher than that of the (101) facets, while the (001)
facets showed the lowest photoreactivity [116]. However,
more recent research has suggested that different facets may
play different roles in photoreaction [117, 118].

Based on first-principles calculations, the E,r values for
(101), (001), (110), and (100) facets of anatase TiO, were
determined, using a (4 x 4 x 1) Monkhorst-Pack special
k-points grid. Slab models containing 12, 14, 24, and 16
molecular units with areas of 14.5 10\2, 194 AZ, 359 Az, and
25.4 A? for the (001), (101), (100), and (110) surfaces,
respectively. It is worth noting that the (001) and (101) sur-
faces are O-terminated, while the (100) and (110) surfaces are
Ti and O-terminated. Figure 4 depicts the slab representation
for anatase TiO,. Each surface has been modeled using
stoichiometric systems [119].

The E . values and the Wulff construction of the ideal
structure for anatase TiO, in vacuum are shown in figure 5. It
is possible to determine which structure should be present in
anatase TiO, by calculating the mathematical relationships
with the Eg,¢ values if a few facets are more stable than
others. The Wulff constructions of those structures are also
shown in figure 5.

Figure 5 can be used as a tool to verify the relative value
of Eg,¢ that is necessary to obtain a particular morphology.
Many research groups have studied anatase TiO, with various
shapes, such as single particle, nanosheet, cube, film, and
flowerlike shapes [112-114].

Theoretical results reported by Barnard ez al [121] point
out the effect of water on the morphology of anatase and rutile
TiO,. For anatase TiO,, the presence of water resulted in a
variation in the size of the (001) facets. In another paper,
Barnard and Curtiss [107] show the influence of acidic and
alkaline conditions on the morphology of TiO,. The mor-
phology shows a high occurrence of (100)/(010) facets that
predominantly occur in hydrogen-poor and oxygenated con-
ditions. We obtained the surface energies of these shape-
decreasing (100)/(010) facets.

Some experimental results reported recently by Pan et al
show an elongated, truncated tetragonal bipyramid anatase
with highly exposed (010) facets that was also synthesized by
tuning the Ti/F ratio [116]. This morphology was obtained by
decreasing the (100)/(010) surface energy of the initial Wulff
construction on the map.

The cube shape is obtained by decreasing the (001) and
(100)/(010) surface energy and was synthetized solvother-
mally by Zhao et al [111]. A scanning electron microscopy
(SEM) image of anatase TiO, particle synthesized by
microwave-assisted hydrothermal method and its respective
Wulff crystal is shown in figure 6.
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Figure 4. Surface models of (001), (101), (100), and (110) for anatase TiO,. The red and gray atoms represent O and Ti atoms, respectively.
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Even that the TiO, particles showed in figure 6 have the
same surfaces of the cubic morphology, they present a more
elongated shape. This represents lower values of (100)/
(010) in relation of (001) surface. According to the Wulff
theorem, the larger the difference is, the higher is this
elongation.

Decreasing the (101)/(011) and (001) surface energy, we
obtained the morphology synthesized by Yang et al that

shows a breakthrough in synthesizing a truncated tetragonal

Figure 6. SEM image of cubic anatase TiO, particle and its Wulff
crystal representation. Surface energy is in joules per square meter.

bipyramid anatase TiO, by fluorine capping, resulting in
highly exposed (001) facets [42].
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The octahedral structure was obtained by Amano et al
using the hydrothermal reaction to synthetize a morphology
with (101) facet [122]. The morphology with (001), (101),
and (110) facets, as seen in the map, was obtained by Liu
et al, which was synthesized using a modified hydrothermal
technique in the presence of hydrogen peroxide and hydro-
fluoric acid solution [123].

3.3. BaZrO;

Barium zirconate (BaZrO;) is a cubic perovskite at normal
conditions, exhibiting a unique set of properties such as a
high melting point, a small thermal expansion coefficient,
small thermal conductivity, and excellent thermal and che-
mical stability [124]. These properties lead to the use of
BaZrO5 in structural applications such as crucibles [125],
thermal barrier coatings [126], components in wireless com-
munication systems, the supersonic aircraft industry, and field
emission displays, and it is also used as a green photo-
catalyst [127].

E.s of a plane is highly sensitive to the surface com-
position, impurities, and distortions/defects of a crystal.
When an atom or foreign species becomes adsorbed on one
surface or plane, it can decrease/increase the surface energy
of that plane and may even stabilize/destabilize it with
respect to other planes. Because of this adsorption, anisotropy
is created in the surface energies, and this may be responsible
for a change in the overall shape of the crystal with the ori-
ginal surface energy plane appearing/disappearing at the
surface of the crystal. Traditionally, KOH (as a mineralizer)
has often been used to provide an OH ™ environment in the
hydrothermal crystallization process of ABOj; perovskite
[128]. Morphology changes can also be accomplished by
adding impurities /dopants to the system. The dopants act in a
different way with respect to the changes in the energy order
of the facets, according to the impurity species and their
quantity [129].

Calculations for BaZrO3; bulk and surfaces were per-
formed using Monkhorst-Pack special k-points grids
(3 x 3 x 1) to ensure geometrical and energetic convergence
for the BaZrO; structures considered in this work. The (001),
(011), and (111) facets are modeled using stoichiometric
systems. Slab models containing 6, 8, and 9 molecular units
for (001), (011), and (111) surfaces, respectively, were con-
sidered, with areas of 18.1 Az, 25.5 10\2, and 31.3 10%2, respec-
tively. It is worth noting that the stoichiometric (001), (011),
and (111) surfaces are BaO and ZrO, terminated, O, and
BaZrO-terminated, and BaO; and Zr-terminated, respectively,
as illustrated in figure 7.

Figure 8 presents the Wulff’s crystal of the obtained
BaZrO; results. Figure 8 also shows all the possible
morphologies that can be obtained by varying the ratio
between the Egs, taking into account the (001), (011), and
(111) surfaces.

The variation in surface energy using the Wulff con-
struction can be used as a powerful tool to evaluate the
morphology of particles because of the difficulty in simulat-
ing all the details in a reaction system that interacts with the
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(001) (011)

Figure 7. Surface models of (001), (011), and (111) surfaces for
BaZrO;. The Ba, Zr, and O atoms are shown in yellow, blue, and
red, respectively.

surface. A SEM image of a BaZrOj; particle synthesized by
microwave-assisted hydrothermal method and its respective
Waulff crystal is shown in figure 9.

Based on this result, it is possible to determine the rela-
tive energy values of each surface in order to obtain the
experimental results. Besides the deca-octahedral morphol-
ogy, Nakashime et al [131] reported cubic particles of
BaZrO; synthesized by a composite-hydroxide-mediated
approach at low temperature. Moreira et al [132] also showed
a coexistence of cubic and deca-octahedral BaZrO; particles
obtained by the microwave assisted hydrothermal method.
These cases of cubic particles are in agreement with the ideal
state (see figure 8).

3.4. a-Ag2 WO4

Transition metal tungstates are important inorganic materials
that are studied and applied widely in many fields [133].
Among these, Ag,WO, has attracted considerable attention
because of their potential applications in fields as ionic con-
ductivity [134], photocatalysis [135], sensors [136], microbial
agents [137], photoluminescence properties [137, 138].

Agr,WO, has three different crystallographic forms, a-,
(G-, and 7-AgoWO,, among which a-Ag,WQ, is the ther-
modynamically stable phase that has been investigated [138].
To date, various methods of synthesis such as controlled
precipitation [139], hydrothermal [140], and microwave-
assisted method [89] have been reported in literature to obtain
different Ag, WO, nanostructures.

The (100), (010), (001), (110), (101), and (011) surfaces
of a-Ag,WO, were modeled by unreconstructed slab models
using a calculated equilibrium geometry and using a
(3 x 3 x 1) Monkhorst-Pack special k-points grid. Slab
models containing 8, 8, 16, 10, 9, and 16 molecular units for
(100), (010), (001), (110), (101), and (011) surfaces, respec-
tively, were considered, with areas of 68.6 Az, 64.1 Az,
132.5 A%, 93.9 A%, 149.2 A2, and 147.2 A?, respectively. It is
worth noting that the (010), (100), (101), and (011) surfaces
are O and Ag-terminated, while the (001) and (110) surfaces
are O, W, and Ag-terminated. The slab representations are
shown in figure 10.

Figure 11 presents the Wulff’s crystal of the optimized a-
Ago,WO, and the different morphologies that would be
obtained assuming different surface energy ratios. An analysis
of figure 11 shows that the calculated energy surface values
(ideal) generate a prism shape. The ratio of the energy surface
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Figure 8. Crystallographic structure and map of morphologies of BaZrO; with (001), (011), and (111) crystal planes. Surface energy is in
joules per square meter. Theoretical (experimental) [130] lattice parameter, a = 4.251 A (4.18 A).
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Figure 9. SEM image of deca-octahedral BaZrOj; crystals and its
‘Wulff crystal representation. Surface energy is in joule per-square
meter.

has been varied by increasing the value of the more stable
surfaces (left in figure 11) and by decreasing the value of the
less stable surfaces (right in figure 11).

(011)

Figure 10. Surface models of (010), (100), (001), (110), (101), and
(011) for a-Ag,WO,. The Ag, W, and O atoms appear in gray, blue,
and red, respectively.
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Figure 12. SEM image of a-Ag,WOQ, crystals and its Wulff crystal
representation. Surface energy is in joules per square meter.

A SEM image of a-Ag,WO, particle synthesized by
microwave-assisted hydrothermal method and its respective
Wulff crystal is shown in figure 12. Besides this image,
experimental results reported recently by Roca et al [60]
show the same hexagonal rod-like shape under certain con-
dition. Assuming the ideal structure as a starting-point, this
morphology can be theoretically obtained increasing (101)
and (100) surface energys to 0.5Jm > and 0.7Jm 2
respectively.

In summary, the mechanism of the morphology trans-
formation of «a-Ag,WO, crystals controlled by surface
chemistry has been investigated experimentally and theoreti-
cally. The selection of surfaces to investigate was limited to
low-index surfaces and surfaces with experimental observa-
tions were preferred.

4. Conclusions

The surface is a key component of a solid-state material, as
many physical and chemical processes take place on surfaces.
A series of materials that includes metal (Ag), simple (anatase
TiO,), and complex (BaZrO5; and a-Ag,WO,) metal oxides
with fascinating polyhedral morphologies such as octahedral,
cuboctahedral, and truncated cubic structures were obtained.
A controlled structural transformation between polyhedra is
an essential goal of crystal engineering strategies. This fra-
mework is envisaged to provide guidelines for the synthesis
of crystals of desired morphologies. The main conclusions
can be summarized as follows: (i) We successfully demon-
strate the morphological modulation of three-dimensional
NCs. (ii) Based on the reverse Wulff theorem, we demon-
strated that the structural transformations among different
morphologies were easily controlled by the relative values of
surface energies. (iii) By a proper adjustment of the ratio of
the values for the surface energy of different facets, we are
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capable of finding a given morphology. This strategy will
contribute to a better understanding of the control of mor-
phological characteristics in nano- and micro-crystals. (iv) In
the case of Ag and BaZrO3;, it was applied a combination of
experimental data, obtained from images taken by high-
resolution TEM and SEM, respectively, and the calculated
surface energies for the three-dimensional Wulff construction.
(v) This research will lay the foundations of not only
unequivocal shape determination, but also an in-depth
understanding of the observed features during the synthesis at
the atomic level to help facilitate further breakthroughs in the
control of crystal morphology.

Results presented here are an illustration of how first-
principles calculations are capable of rationalizing the
mechanisms stabilizing the morphology of micro- and nano-
particles at the atomic level. Using the present method, a 3D
platform for the morphology modulation of materials with a
complete array of accessible morphologies is obtained. We
believe that our work has both predictive and explanatory
capabilities, and it can be of help in the refinement of both
research and technological developments to gain further
understanding of how to achieve morphological control of
complex three-dimensional crystals from metals to metal
oxides.
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