A study approach on ferroelectric domains in BaTiO₃

L.S.R. Rocha a, C.S. Cavalcanti a, R.A.C. Amoresi b,⁎, B.D. Stojanovic c, E. Borsari a, M.A. Zagheb a, A. Z. Simões a

a Faculty of Engineering of Guaratinguetá, São Paulo State University - UNESP, Guaratinguetá, SP, Brazil
b Interdisciplinary Laboratory of Electrochemistry and Ceramics, LIEC – Department of Chemistry Technology, Chemistry Institute, São Paulo State University - UNESP, Araraquara, SP, Brazil
c Institute for Multidisciplinary Research, University of Belgrade, Kneza Viševića 1, 11000 Belgrade, Serbia

A R T I C L E I N F O

Article history:
Received 6 April 2016
Received in revised form 5 September 2016
Accepted 10 September 2016
Available online 12 September 2016

Keywords:
Ceramics
Crystal growth
Piezoelectricity

A B S T R A C T

Atomic Force Acoustic Microscopy (AFAM) and Piezoresponse Force Microscopy (PFM) were used to study local elastic and electromechanical response in BaTiO₃ ceramics. A commercial multi-mode Scanning Probe Microscopy (SPM) and AFAM mode to image contact stiffness were employed to accomplish the aforementioned purposes. Stiffness parameters along with Young's modulus and piezo coefficients were quantitatively determined. PFM studies were based on electrostatic and electromechanical response from localized tip-surface contact. Comparison was made regarding the Young's moduli obtained by AFAM and PFM. In addition, phase and amplitude images were analyzed based on coupling behavior, obtained via the application of −10 V to +10 V local voltage.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Barium titanate (BaTiO₃) has been extensively employed in several industrial applications, including dynamic random access memory (DRAM) capacitor, microwave filters, infrared detectors, and dielectric phase shifters, owing largely to their excellent dielectric, ferroelectric, piezoelectric and pyroelectric properties [1–8]. Barium titanate perovskite, different A-site and B-site dopants (where A = Ca, Sr, Pb; B = Nb, Ta, Zr) are used aiming at modifying the electrical properties of BaTiO₃ based compositions [1–9].

As widely acknowledged, lead and manganese-based piezo materials are used in electronic devices and applications including MEMS, FeRAMs and other ferroelectric heterostructures [10–11]. An understanding of local ferroelectric properties is essential to understand the nanoscale level and will undoubtedly enhance the functionality of materials. Scanning probe techniques are, by far, the most popular way of gaining understanding of the local ferroelectric behavior on sub-nanometer scales. Atomic Force Acoustic Microscopy (AFAM) and Piezoresponse Force Microscopy (PFM) are among the relevant Scanning Probe Microscope (SPM)-based techniques which are capable of evaluating ferroelectric properties on nanoscale [12–18]. These techniques allow the imaging of ferroelectric domains architecture at ~10 nm level while providing direct information on localized electromechanical activity. Chen et al. have studied the research progress on ferroelectric domains of lead-free films with relatively good ferroelectric and piezoelectric response which have been attributed to the films well-defined domain structure [19]. In a further work, the authors were able to improve the magnetic coupling of BiFeO₃/Bi₄Ti₃O₁₂ composite obtained by a chemical solution deposition with desirable ferroelectric, piezoelectric and dielectric responses as well as low leakage current, paving the way towards its future application in sensors and spin devices. These results are essentially associated with a strong coupling between ferroelectric and ferromagnetic orders as a result of the coexistence of different domain structures of this composite [20].

Based on these facts, we will conduct a systematic study approach of a lead-free bulk system composed of BaTiO₃ (BT), which is a ferroelectric material found to exhibit excellent piezoelectric behavior, resulting in wide applications in electronic control systems. BT possesses high dielectric constant and, generally, good ferroelectric properties. The study of ferroelectric domain behavior is seen to be of vital significance in view of the current upsurge of interest in multiferroic materials [3–8]. To achieve the desired properties, BT primarily needs to be free of intermediate crystalline phases, with a defined stoichiometry and a homogeneous microstructure. It is noteworthy that a wide range of preparation methods for BT have been investigated. The solid state reaction, starting from BaCO₃, BaO, and TiO₂, has been shown to be suitable for the preparation of BT ceramics with high performance application as the resulting material exhibits large particle size and grain growth [21]. The main constraint of the solid state reaction lies in the fact that it requires repeated heat treatments besides grinding and contamination often becomes a problem [22]. This paper presents the results of the studies conducted using Atomic Force Acoustic Microscopy (AFAM) and Piezo Force Microscopy (PFM) to monitor the organization of local ferroelectric domains in BaTiO₃ ceramic pellets prepared by solid state reaction with careful control of impurities. In addition, electromechanical coupling related to elastic and piezo properties of the material were also thoroughly assessed. Elastic constant and piezo coefficient were
calculated. AFAM and PFM responses were investigated at various zones of the barium titanate pellets. Furthermore, a point-by-point mapping of piezospectroscopic behavior was carried out [23,24].

2. Experimental Procedure

BaTiO₃ (BTO) samples were synthesized by solid state reaction. The barium titanate was prepared starting from barium oxide (BaO) and titanium oxide (TiO₂), in a rutile crystal form (Fluka, 99.8% purity). BaO was obtained from BaCO₃ (E. Merck, 99.0% purity) according to the following reaction: BaCO₃ → BaO + CO₂ in air at 900 °C/4 h. After polishing, AFM studies using different modes were carried out through SPM with Nanoscope IV controller equipped with standard silicon nitride tips coated with gold-cadmium. The typical force constant of these tips was 0.09 N/m and the apex radius was 20–40 nm. The AFM methodology, which is useful for obtaining local elasticity images, has been previously discussed in the literature [9,25,26]. This principle was optimized so as to evaluate local mechanical properties of the BaTiO₃ pellet. AFM measurements were carried out in contact mode. A conducting AFM tip was used to apply an AC voltage superimposed with a DC bias for computing piezo activity. The variation in the direction of domain orientation is achieved by controlling the magnitude of impressed voltage [9–11,27,28]. AFM spectroscopy was carried out for the bias voltage within the range of −5 V to +5 V aiming at studying piezoresponse and poling action exhibited in different regions. The piezoresponse from ferroelectric materials was investigated by PFM with a resolution of 10 nm. The applied voltage was a combination of a DC bias and an alternating voltage that resulted in cantilever deflection. The PFM image was obtained at a frequency of ~790 kHz. The acoustic excitation of the specimen was maintained at 2.25 MHz. In order to cover the complete range of the flexural vibrations of the cantilever, the employed frequency was changed from 10 kHz to 2 MHz. Amplitude and frequency shifts resulting from coupled oscillations were recorded following mapping. Similarly, stiffness constants were derived from force-distance curves. Contact resonance frequency curves in AFAM studies on BaTiO₃ pellet were recorded. This method
has been described earlier [3–9]. For the sake of clarity, the following mathematical expression was used:

\[k_{\text{BaTiO}_3} = k_{\text{Si}} \left[\frac{f^2_{\text{BaTiO}_3} - f^2_{\text{Si}}}{f^2_{\text{Si}} - f^2_{0}} \right] \]

(1)

where

- \(k_{\text{BaTiO}_3} \): contact stiffness of the sample pellet,
- \(k_{\text{Si}} \): contact stiffness of the Silicon wafer (used as reference),
- \(f_{\text{BaTiO}_3} \): Contact resonance frequency of the sample pellet,
- \(f_{\text{Si}} \): contact resonance frequency of the Si wafer and,
- \(f_0 \): free resonance frequency of the cantilever.

These calculations were made after recording resonance spectra.

3. Results and Discussion

Fig. 1 shows the XRD patterns for the BaTiO\(_3\) pellet prepared via solid state reaction. The Bragg peaks indicate the crystallization of BT perovskite phase with P4mm space in the crystalline tetragonal structure (JCPDS card no. 05-0626). It is worth noting that no secondary or intermediate carbonate phases were observed. The absence of BaCO\(_3\) can be attributed to complete reaction. Perovskite BaTiO\(_3\) phase was seen to be well-crystallized implying the occurrence of the solid state reaction while the nucleation and subsequent growth of perovskite crystallites were found to be favored at 900 °C/4 h.

Fig. 2a–b illustrates the topography and acoustic mode in resonance frequency acquired simultaneously. Topography image (Fig. 2a) was mapped in AFM contact mode, where large grains in the form of columns are observed devoid of pores. In Fig. 2b, the acoustic image enables the visualization of the grains substructures. The selected value of the excitation frequency was 2.25 MHz which is above the contact resonance (10 kHz–2 MHz). Thus, stiffer regions appear as brighter. The acoustic images are formed by a columns pattern with white stripes parallel along the dark stripes, typical of poling in 180°. The axis of the crystal [29,30]. Fig. 2c is an enlarged view of the dark stripes, the grain boundaries and white stripes for ease of visualization of the structural subunits. These substructures are stiffer structures formed by nanograins with discontinuities and ferroelectric domains along them. Quantitative analysis of the stiffness in those zones was carried out using reference samples such as Si and PZT. Furthermore, the AFM image depicts regular and irregular “fingerprint-like” domain pattern in various zones on the pellet surface. The large zones with small subgrains in the image are actually consisted of smaller domains below 50 nm. Guided by the aim of studying the behavior of these domains in electric field, PFM studies were performed observing the domain switching and are described in the next section.

Fig. 3a shows the microstructure of the pellet in different regions showing the dependence of the deflection with distance. The obtained curves clearly show distinct inclinations, as the pink curve deflection decreases continuously even after the detachment from the center (zero), while the green curve remains constant during extension and retraction of the tip. Such behavior is a reflection of heterogeneity in several regions caused by different surface rigidity. Using reference samples, stiffness constants for several coupled systems were quantitatively determined, and are given in Table 1. Contact resonance spectra from few representative points on BaTiO\(_3\) surface are shown in Fig. 3b. The mechanical spectrum is influenced by the elastic and viscous behavior of the sample once the tip stiffness is constant. Significant changes in frequency and magnitude of the contact resonance ranging from 1290 kHz to 1337 kHz between the various locations can be clearly noted. The larger vibrational frequency of the spectra implies a decrease in its vibrational wavelength of interaction caused by stiffer region of the sample. The amplitude, which is related to the energy dissipation of the interaction, must be evaluated by the full width at half maximum (FWHM) of the peaks, where softer regions exhibit broader peaks followed by a reduction in amplitude. The shape of the peak in doublet can be represented by two springs in series representing elastic behavior among the cantilever-sample interactions [31]. Stiffness constants as well as resonance peak shifts are used in the evaluation of Young’s module (E) [6–9] according to Eqs. (2) and (3):

\[E_{\text{BaTiO}_3} = E_{\text{Si}} \left(\frac{k_{\text{BaTiO}_3}}{k_{\text{Si}}} \right)^{1/2} \]

(2)

\[E^* = \frac{1}{E_{\text{tip}}} + \frac{1}{E_{\text{BaTiO}_3}} \]

(3)

Estimated moduli evaluated using these formulations, are given in Table 2.

<table>
<thead>
<tr>
<th>Coupled system</th>
<th>(F) (nN)</th>
<th>(K^*) (N/m) ± 10%</th>
<th>(E^*) (×10(^{10}) N/m(^2)) ± 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-W(_2)C</td>
<td>250</td>
<td>11.3</td>
<td>5.6</td>
</tr>
<tr>
<td>PZT-W(_2)C</td>
<td>300</td>
<td>10.5</td>
<td>4.2</td>
</tr>
<tr>
<td>BTO-W(_2)C</td>
<td>300</td>
<td>22.3</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Table 2: Values of effective stiffness and elastic constants for sample and reference materials.
To improve contrast in the AFAM image, and to enable investigation of finer features, the image was mapped at two different frequencies, below (Fig. 4a) and above (Fig. 4b) the resonance frequency. In Fig. 4a, the mapping below resonance frequency clearly shows bright and dark regions, where bright regions indicate soft zones while dark ones correspond to hard zones. Similarly, AFAM image was mapped at a frequency above resonance value, which is shown in Fig. 4b, where the hard and soft zones found here point to contrast inversion, through which the axis of orientation measured in the unit cell is dependent on the tip probe. Through the dotted arrows, in Fig. 4a and Fig. 4b, one can clearly observe the presence of substructures, having different contrasts according to the applied resonance contrast indicating variation in contact stiffness [7–9]. Domains with average size of ~50 nm bearing different values of stiffness are clearly visible. Fig. 4c shows topography while poling. The corresponding piezoresponse image (using magnitude signal mapping, in the PFM mode), obtained by adjusting various DC bias voltages, ranging from −10 V to +10 V for different times, is given in Fig. 4d. The image indicates that the perpendicular component of polarization can be switched between two stable states: bright and dark. The piezoresponse component in the out of plane direction is represented by a line profile during poling, as shown in Fig. 4e, which is a reference of the lines depicted in Fig. 4c–d. Such behavior, in effect, corresponds to the different orientations of polarization domains. Dark regions with higher current correspond to domains oriented in the same direction of the polarization axis (soft domains), while bright regions are related to domains perpendicular to the polarization axis, which explains their reason of having lower current (hard domains).

For a much thorough comprehension of the system, the piezoelectric vibrations were monitored through of the observation of the amplitude, which is connected to the piezoelectric coefficient of the material. Similarly, the phase of the signal is capable of revealing the polarization direction. Fig. 5a shows PFM images along with topography, with area ~10 × 10 μm², for different regimes present in the area. The amplitude of the piezoelectric vibration is shown in Fig. 5b, the bright area illustrates the piezoelectrically active region parallel to the applied electric field while dark regions are associated with piezoelectrical activities oriented in the opposite direction of the applied field on the pellet surface. Phase image (Fig. 5c) clearly shows the polarization direction in different zones at various voltage levels, and topmost and bottommost areas in the image have the same value. The observed piezo domains are attributed to the inverse piezoelectric effect on the material surface. Applied voltage is known to cause electromechanical realignment of the domains. This behavior was monitored by locally applying voltages between 0–10 V and +10 V [13–14]. Corresponding to these voltages, changes in the value of approximately 40% were observed in the phase- and amplitude-contrast images. In these images, various domains, piezoresponse spectroscopy was carried out.

In order to have quantitative analysis of the PFM data, the electroelastic field distribution was obtained. By meticulous observation, it was found that a hysteresis loop could be obtained using a stiff tip at various points on the surface. Fig. 6 shows the piezo response using amplitude and phase signals as a function of bias voltage at a typical point. Fig. 6a shows the typical piezoresponse amplitude of the pellet immediately while applying −10 V to +10 V DC biases over the scanned region by the AFM tip, along the direction perpendicular to the bottom plate. The maximum piezoresponse signal seen in the butterfly loop is shifted left by 0.3 V. This may be associated with different work functions existing between the two electrodes, i.e. the tip and the bottom plate. Above 6 V, the value of piezoresponse is found to be almost flat. Apart from the magnitude, the sign of the piezo response, which is related to the polarization direction of a zone point on the surface, is seen to undergo a change. Fig. 6b shows the piezoresponse phase

![Fig. 4. AFAM images below (a) and above (b) the resonance frequency. AFAM image while/during poling (c). Piezoresponse (magnitude signal mapping) image (d) while poling using various DC bias voltages ranging from –10 V to +10 V at different durations and line profile during poling (e).](image-url)
as a function of the applied DC voltage. It reveals the phase difference of the detected signal existing between positive and negative voltages. By combining the amplitude loop (i.e., butterfly loop and phase loop), one can obtain the hysteresis loop. Fig. 6c illustrates the piezoelectric hysteresis loop response of the BaTiO₃. Characteristic loop is known to be dependent mainly on the properties of the pellet. The comparative inferences and observations of AFAM and PFM are discussed below.

Based on the AFAM studies at various resonance frequencies, the images are clearly noted to be very informative regarding the grains, grain boundaries and domain architecture. A wide range of domains shapes and sizes are clearly seen. Stiffness variation over the surface is about ~12%, which may be attributed to the grain, grain boundaries and domains. In addition, microscopically, this variation of stiffness can arise from pellet parameters such as surface roughness. A further observation worth mentioning is that the BTO pellet surface is found to be harder from pellet parameters such as surface roughness. A further observation was observed during poling. Comparison was made between E values obtained by AFM and PFM. Further improvements in these studies ought to be done through the enhancement of pellet density, morphology and electrical contacts.

For further studies, our intention is to have a metallic electrode enhancement of pellet and/or a film to reduce the working function as well as contact problems.

4. Conclusions

To aid our understanding of the nanoscale behavior of piezodomains in BaTiO₃ ferroelectric materials, AFAM and PFM studies were successfully executed. In AFM, height images give us a hint regarding the roughness variation along with topography for the test and reference samples. Topography and AFAM images clearly indicate the stiffness variation on nanoscale in substructures within the grains. Below 50 nm, ferroelectric domains with different values of stiffness were clearly observed in the AFAM image of the pellet. Quantifications of stiffness and elastic constants were carried out using standard reference samples such as Silicon and PZT. The spatial inhomogeneity of ferroelectric domain structure reveals that the random internal field observed is attributed to the nanoscale structural irregularities on the material. Under PFM mode, piezoresponse of domains with respect to the applied electric field was investigated. Electromechanical realignment of the domains was observed during poling.

Acknowledgements

The authors would like to express their warm gratitude to Dr. Ramesh for his useful discussions on AFAM and PFM at various stages of the research. The authors do acknowledge the sustained encouragement and financial support provided by CNPq (573636/2008-7), INCTMN (2008/57872-1) and FAPESP (2013/07296-2) research funding agencies. Our thanks also go to Brian Newmann – the English language content editor for his painstaking editing and proofreading of the manuscript.

References
