Dielectric and non-ohmic properties of Ca$_2$Cu$_2$Ti$_{4-x}$Sn$_x$O$_{12}$ (0.0 ≤ x ≤ 4.0) multiphasic ceramic composites


Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratimanguá, Av. Ariberto Pereira da Cunha, 333, CEP: 12516-410, Guaratinguetá, SP, Brazil

A R T I C L E   I N F O

Article history:
Received 16 April 2017
Received in revised form 30 October 2017
Accepted 7 November 2017
Available online 8 November 2017

Keywords:
CCTO/CTO
(micro)structural characterization
Dielectric and non-linear behavior

A B S T R A C T

Multiphasic Sn$^{4+}$ substituted Ca$_2$Cu$_2$Ti$_{4-x}$Sn$_x$O$_{12}$ (0.0 ≤ x ≤ 4.0) ceramic composites were prepared by solid-state reaction. Their crystalline structure, microstructure, dielectric and non-ohmic properties were investigated. The electric properties and the densification and grain growth mechanisms were strongly influenced by a mixture of multiple phases, as evidenced by X-ray diffraction (XRD). The materials with low Sn$^{4+}$ contents (x = 0.1 and 0.2) presented giant dielectric permittivity values, 166381 and 140845 respectively. This should be associated to insulating grain boundaries with activation energies of 0.58 eV and 0.30 eV respectively, as well as conductive grains with activation energies of 0.04 eV and 0.08 eV. On the other hand, samples with higher ionic substitution (x = 3.8, 3.9 and 4.0) revealed a new type of tin-based ceramic composites, which exhibit non-linear coefficients (z) of 3.0, 4.0 and 4.0, respectively. A new multiphase ceramic composites with high dielectric performance and non-ohmic properties are summarized.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, the miniaturization of electronic devices has led to an increased demand for materials with enhanced properties in micro-scale level. In this context, giant dielectric materials have been in evidence due to their potential application in microelectronic devices, such as actuators, capacitors and sensors [1–3]. Nowadays, the pseudo-perovskite CaCu$_3$Ti$_4$O$_{12}$ (CCTO) which exhibits non-ohmic behavior and dielectric constant values of about 10$^4$ - 10$^6$ in a considerable range of frequencies (1 Hz - 1 MHz) and temperatures (from −238 °C to 1000 °C), has been extensively investigated [4–7]. The high dielectric loss (tanδ) of CCTO is undesirable for many practical applications, therefore much work is being conducted to minimize such losses [5–10]. Doping or substitution of metallic ions in the CCTO lattice are effective strategies to decrease the dielectric loss [11–13]. Ribeiro et al. have reported that the substitution of Sn$^{4+}$ into Ti$^{4+}$ sites decreased tanδ and the dielectric permittivity, but improved the non-ohmic behavior [14]. In addition, reduced values of dielectric loss have also been observed by the substitution of Sr$^{2+}$ into Ca$^{2+}$ [15,16] or Zn$^{2+}$ into Cu$^{2+}$ sites in single phase CCTO [17,18]. Guoping Du et al. shown that the Y$^{3+}$ in the A-site and the Al$^{3+}$ in the B-site produce a considerable decay in the dielectric loss [19]. Chung et al. have shown that CaCu$_3$Ti$_4$O$_{12}$ has an outstanding nonlinear I-V characteristic, which is greater than the one associated to the traditional ZnO-based varistors [20,21]. A different approach focused on the synthesis of CaCu$_3$Ti$_4$O$_{12}$/CaTiO$_3$ (CCTO/CTO) ceramic composites, with nominal chemical formula of Ca$_2$Cu$_2$Ti$_4$O$_{12}$, have shown high values of dielectric permittivity with low dielectric loss when compared to single phase CCTO [17]. This system has been also investigated due to the huge improvement in the non-ohmic behavior [22]. Thongbay et al. have shown that the ionic substitution of Zr$^{4+}$ into Ti$^{4+}$ sites in CCTO/CTO ceramic composites decreased the dielectric loss [23]. ZnO-based polycrystalline materials have already been studied by Ramirez et al., showing good non-ohmic response [24,25]. These results could indicate that the ionic substitution may be an effective strategy to obtain multiphasic ceramics with interesting non-ohmic properties.

The novelty of this research concerns the investigation of the impact of Sn substitution for Ti on the microstructural, dielectric and non-ohmic properties of CCTO-based ceramics. A systematic study was carried out using chemical compositions described as Ca$_2$Cu$_2$Ti$_{4-x}$Sn$_x$O$_{12}$ (0.0 ≤ x ≤ 4.0) prepared by the solid-state reaction method. The relationships between composition, dielectric...
and non-ohmic behavior, and the mechanisms responsible for the unusual electrical properties in this multiphase system were established.

2. Experimental procedure

2.1. Synthesis

Polycrystalline ceramic composites, with nominal chemical formula Ca$_2$Cu$_2$Ti$_{4-x}$Sn$_x$O$_{12}$ with $x = 0.0, 0.1, 0.2, 2.0, 3.8, 3.9$ and $4.0$ were prepared by the solid-state reaction method. Analytical grade CaCO$_3$ (Aldrich, 99.99%), CuO (Aldrich, 99.99%), TiO$_2$ (Aldrich, 99.99%) and SnO$_2$ (Aldrich, 99.99%) powders were used to prepare all the samples. The raw materials were mixed and milled in isopropanol suspension for 24 h with yttrium-stabilized zirconia balls inside a polyethylene bottle. The product was dried at 100 °C for 12 h and annealed at 950 °C for 12 h in air using a heating rate of 5 °C/min. The calcination temperature was determined by thermogravimetric analysis (TG) and differential thermal analysis (DTA) (Netzsch, Model STA 409). After the heat treatment, the resulting powder was milled once again using the same conditions for 12 h. The powders were uniaxially pressed into disks 12 mm diameter and 1.2 mm thick, using a pressure of 140 MPa and polyvinyl alcohol (PVA) as a binder. The samples were annealed at 500 °C for 1 h to remove the PVA with a heating rate of 1 °C/min; then, the temperature was increased for sintering the pellets. The sintering temperatures were determined by optical dilatometry (OD) (Hesse Instruments, Model EM-201). Two different sintering temperatures were studied in order to reach similar densities: 1150 °C for 2 h, for Sn$^{4+}$ substitutions of $x = 0.0, 0.1, 0.2$ and $2.0$, and 1400 °C for 2 h, for Sn$^{4+}$ substitutions of $x = 3.8, 3.9$ and $4.0$. Heating and cooling rates of 5 °C/min were used for all the heat treatments.

2.2. Characterization

Phase analysis of the powders and pellets were performed by X-ray diffraction (XRD) (RIGAKU, model RINT2000), operating in the reflection mode with a CuK$\alpha$ source and over the 20 range of 20°–80°, with a step size of 0.02°. The crystalline structure of the phases was identified based on the Joint Committee on Powder Diffraction Standards files (JCPDS) and compared with the respective simulations, which were made with the software Powder-cell 2.4$^\text{®}$. In order to reveal the microstructure, field emission scanning electron microscope (FE-SEM) (JEOL, Model 7500F) was employed. The samples were prepared according to the following procedure: The disks were immersed in cold acrylic resin, then ground using a set of sandpapers with gradual finer abrasives. Alumina suspension with particle size of 1 μm was until a mirrored surface was obtained. Later, the pellets were thermally treated at a 100 °C below the sintering temperature, for 30 min. The average grain sizes were determined by the linear intercept method. The specific mass and pore size distributions of the samples were estimated using the Archimedes method and mercury porosimetry (Micromeritics, Model Auto Pore IV), respectively. Dielectric and non-ohmic properties were studied using an Au/Ca$_2$Cu$_2$Ti$_{4-x}$Sn$_x$O$_{12}$/Au capacitor structure. Gold electrodes were deposited on the flat surfaces of the pellets by DC sputtering at room temperature. Dielectric permittivity ($\varepsilon'$) and dielectric loss (tan$\delta$) were obtained by impedance spectroscopy measurements in a frequency response analyzer (Metrohm Autolab B.V., model PGSTAT128N), in a range from 1 Hz to 1 MHz (voltage amplitude of 100 mV). The activation energy ($E_a$) was obtained of the slope of the conductivity graph as a function of temperature [26,27]. The AC conductivity was obtained by the following equation.

$$\sigma_{AC} = \omega \varepsilon_0 \varepsilon' \tan \delta = \omega \varepsilon_0 \tan \delta$$

where $\omega$ is the angular frequency, $\varepsilon_0$ the vacuum permittivity, $\varepsilon'$ corresponds to the permittivity of the material and $\tan \delta$ the dielectric loss. The $E_a$ for the grain boundaries and for the grains were calculated using the following equations.

$$\sigma_{gb} = \frac{d}{R_{gb} A}$$

$$\sigma_b = \frac{d}{R_b A}$$

where $d$ is the thickness, $A$ the area of the electrode, $R_{gb}$ is the grain boundary resistance and $R_b$, the grain resistance.

Finally, current-voltage measurements were performed using a stabilized high voltage source-measure unit (Keithley, Model 237), with a 0.5 s delay between the measurements. The non-linearity coefficient ($\alpha$), leakage current (I) and breakdown electric field ($E_b$) were measured according to the procedures described in the literature [28,29].

3. Results and discussion

Fig. 1a–b illustrate the TG/DTA curves for all investigated samples. As can be seen, the first stage (from room temperature to
250 °C) corresponds to a small weight loss which can be related to adsorbed water, while the second stage evidenced by an exothermic peak in the DTA curve at around 800 °C, can be associated to the CO2 release, due to the carbonate decomposition followed by the phase crystallization [30]. After carbonate decomposition, around 850 °C, no weight loss can be observed, evidencing the formation of stable phases.

Fig. 2a-g shows the evolution of the XRD patterns of calcinated Ca2Cu2Ti4-xSnxO12 powders. For the sample with x = 0.0 (Fig. 2a), the diffraction peaks were indexed to the CaCu3Ti4O12 (JCPDS #75-1149) and CaTiO3 (JCPDS #65-3287) perovskite phases while for the low ionic substitutions x = 0.1 (Fig. 2b) and x = 0.2 (Fig. 2c), peaks related to the SnO2 rutile phase (JCPDS #72-1147) are evident. For high Sn4+ substituted samples (x = 3.8, 3.9 and 4.0) (Fig. 1e–g), SnO2 (JCPDS #72-1147), CaSnO3 (JCPDS #75-179) and CuO (JCPDS #65-2309) phases could be detected. We can expect that the crystalline CaSnO3 phase is a consequence of the reaction between CaCO3 and SnO2. Whose similar results were found for the BaSnO3 system, as shown by Huang et al. [31]. In the intermediate tin substituted range with x = 2.0 (Fig. 2d), the coexistence of all the previously mentioned phases was observed.

Optical dilatometry analysis was an important tool to monitor the influence of the Sn4+ substitution on the shrinkage behavior during sintering, as shown in Fig. 3. As can be seen, the initial sintering stage is similar for all the samples, starting around 900 °C, while for the intermediate and final sintering stages differ, according to the ionic substitution. For samples with x = 0.0 and low Sn4+ substitutions (x = 0.1 and x = 0.2), the changes in dimensions due to the sintering process are similar. One can also notice that the maximum shrinkage is reached at around 1150 °C, followed by the onset of liquid phase formation. On the other hand, for high Sn4+ substituted samples (x = 3.8, 3.9 and 4.0) a noticeable increase in the final densification stage temperature (approximately 200 °C) was observed and no liquid phase formation could be detected up to 1400 °C. Based on these results and on literature data [31–33], two different sintering temperatures were chosen: 1150 °C for Sn4+ substitutions up to x = 2.0, and 1400 °C for Sn4+ substitutions higher than x = 2.0. As a consequence, similar shrinkage rates and porosities were observed.

Fig. 4a-g shows the evolution of the XRD patterns of Ca2Cu2Ti4-xSnxO12 pellets for the x = 0.0 sample (Fig. 3) has shown the presence of peaks related to the TiO2 phase for the sintered pellets. The x = 0.0 sample (Fig. 3) has shown the presence of peaks related to the TiO2 phase (JCPDS #84-1283). This can be attributed to the sintering temperature, which was 50 °C above the typical sintering temperature used for these
ceramic composites. This result is in agreement with data reported in the literature [34,35] showing that CCTO decomposes into TiO₂, Cu₂O, and CaTiO₃ phases when sintered at temperatures above 1100 °C. For low Sn⁴⁺ substitutions (x = 0.1 and x = 0.2), (Fig. 3), no peaks related to the SnO₂ phase were evident, indicating that the sintering process allows to diffuse Sn⁴⁺ ions into the CCTO lattice. On the other hand, for high Sn⁴⁺ substituted samples (Fig. 4D–g) the same phases found in the calcinated powders were noted, indicating that the sintering process mainly leads to densification (see Table 1), without any significant phase changes. These results corroborate with those from the structure simulation shown in Table S1, where the lattice parameters of the CCTO phase increased, (see Table 1), without any significant change. On the other hand, for high Sn⁴⁺ substituted samples (x = 3.8, 3.9 and 4.0), the presence of CuO and SnO₂ phases are affecting the shrinkage behavior of the samples [41]. For the sample with the Sn⁴⁺ substitution of x = 2.0, mainly composed by SnO₂ and CuO, the final densification stage reached around 950 °C (Fig. 2), which is near to the eutectic temperature of SnO₂/CuO compounds [42]. The largest grain size was related to the high isothermal sintering temperature (1150 °C) and the fastest shrinkage rate, respectively. On the other hand, the samples with Sn⁴⁺ substitution above x = 2.0 were mainly composed by SnO₂, CaSnO₃ and CuO phases. In these samples, the densification process occurs slowly and at high temperatures, due to the competition between the grain growth of the SnO₂ and CaSnO₃ phases. Also, the liquid phase formed of CuO reduces the porosity and, mainly, the grain growth of both phases [38].

Fig. 6 shows the frequency dependence of the dielectric permittivity and the dielectric loss factor of the ceramic composites between 10⁵ and 10⁹ Hz, at room temperature. The x = 0.0 sample presents a stable plateau in a broad frequency range (10⁵–10⁹ Hz), with values similar to the ones in the published literature [42,43]. A huge improvement in the dielectric permittivity with a decrease in the dielectric loss were observed for the ceramic composites with low Sn⁴⁺ substituted samples (x = 0.1 and x = 0.2) in a frequency range from 10⁵ to just below 10⁷ Hz. The losses measured for these two samples are lower than the values for sample x = 0.00. This can be explained by a hopping polarization mechanism, taking place at frequency values around 1 kHz, associated with the charge interaction between electrons and oxygen vacancies inside the grains [44,45]. For the high Sn⁴⁺ substituted samples (x = 3.8, 3.9 and 4.0), there was a large decrease in the dielectric permittivity and an increase in the dielectric loss. However, as shown in Table 2, all samples had an increase in the dielectric loss when compared to the sample with x = 0.0 at 10 kHz. This could be ascribed to the dipolar polarization mechanism, which is commonly found in this frequency range. The permittivity values for samples with x = 0.1 and x = 0.2 (Table 2) were large when compared to the ones already reported in the literature for CCTO and CTO/CTO phases [46,47]. The main changes in dielectric permittivity of the Sn⁴⁺ substituted CCTO/CTO composites have been explained by different researchers. The dielectric permittivity of CCTO is related its grain size, and larger grains result in higher dielectric permittivity [48]. The huge grains contain more defects, which will lead to more carriers; and the chemical and physical properties would be no uniform in contrast to the small grains, which eventually result in more internal barrier layer capacitor (IBLC) in CCTO improving the dielectric permittivity [49,50]. As previously shown in the XRD patterns, lower Sn⁴⁺ substituted samples (x = 0.1 and x = 0.2) moves into the solid solution within the grains of CCTO/CTO composite, rather than locating at the grain boundaries, which will change the physical and chemical properties of the grains, changing the dielectric permittivity. As the amount of Sn⁴⁺ is increased, the appearances of other phases as well as the increase of the average grain size produce a decrease in the dielectric permittivity. The frequency dependence of dielectric loss factor (tan δ) of the samples is shown in Fig. 6b. Such behavior observed for low Sn⁴⁺ substituted samples (x = 0.1 and x = 0.2) reveals different polarization mechanisms with frequency changes which is a reflex of mixture of phases with different electrical conductivities [51]. For high Sn⁴⁺ substituted samples (x = 3.8, 3.9 and 4.0) a strong decay indicates of a conductive behavior. The sample with x = 2.0 shows relaxation behavior up to 10⁴ Hz due the coexistence of multiple phases.

Fig. 7a illustrates AC conductivity plots in the frequency function. Having in mind that AC conductivity is proportional to the

<table>
<thead>
<tr>
<th>Samples Sn⁴⁺ substitution</th>
<th>Average specific mass (g/cm³)</th>
<th>Average grain size (µm)</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0.0</td>
<td>4.23</td>
<td>0.75</td>
<td>5.40</td>
</tr>
<tr>
<td>x = 0.1</td>
<td>4.35</td>
<td>1.88</td>
<td>3.50</td>
</tr>
<tr>
<td>x = 0.2</td>
<td>4.41</td>
<td>1.14</td>
<td>3.80</td>
</tr>
<tr>
<td>x = 2.0</td>
<td>5.22</td>
<td>4.17</td>
<td>3.70</td>
</tr>
<tr>
<td>x = 3.8</td>
<td>5.81</td>
<td>3.60</td>
<td>1.50</td>
</tr>
<tr>
<td>x = 3.9</td>
<td>5.79</td>
<td>2.78</td>
<td>0.60</td>
</tr>
<tr>
<td>x = 4.0</td>
<td>5.75</td>
<td>2.53</td>
<td>0.30</td>
</tr>
</tbody>
</table>
dielectric loss and the frequency [52], different behaviors is noted for the samples with $x = 0.0$, $x = 0.1$ and $x = 0.2$, when compared to samples with $x = 3.8$, $x = 3.9$ and $x = 4.0$. These different behaviors can be associated to polarization mechanisms. The AC conductivity for samples with low Sn$^{4+}$ contents ($x = 0.1$ and $x = 0.2$) is frequency independent, but at higher frequencies, the AC conductivity increases, following Jonscher power law behavior [53]. This conductivity behavior is generally due to the hopping of charge carriers in finite clusters frequency. On the other hand, Fig. 7b shows the activation energy ($E_a$) graphs for a fixed frequency of 1 kHz. The sample with $x = 0.1$ has a $E_a$ value of 0.46 eV indicating a less conductor behavior and the he sample with $x = 2.0$ has a $E_a$ value of 0.09 eV implying a high conductivity.

Fig. 8a–b correspond to the activation energies for the grain boundary and the grain respectively. According to the imaginary impedance vs. frequency curves (Fig. 51), the samples with low Sn$^{4+}$ content presented an inflection point at low frequencies associated to the grain boundary. On the other hand, a different behavior is noted for the samples with Sn$^{4+}$ content above of $x = 2.0$, which presented such inflection at higher frequencies, corresponding to the grain influence. Thus, the samples with $x = 0.0$, 0.1 and 0.2 presented higher values of activation energy for
the grain boundary and very low values for the grain, which explains the high dielectric permittivity, as in agreement with the IBLC model [12,54–57]. In the case of samples with x = 3.8, 3.9 and 4.0, the grain boundary activation energy values were lower when compared to the samples with x = 0.0, x = 0.1 and x = 0.2. This could explained by the segregation of the CuO phase in the grain boundary as already explained by other authors [45,58,59], which occurs due the release of Ti$^{4+}$ from the network. According to the activation energy proposed for the grain boundaries and grains (Fig. 8a–b), it can be noted that the samples with low Sn$^{4+}$ content show low $E_a$ in the grain boundary and high $E_a$ in the grains. These behavior could promoted an increase in the semiconductor character, acting as a resistor. For high Sn$^{4+}$ contents, the activation energy values indicates more insulator grains and grain boundaries more conductive. When the Sn$^{4+}$ contents is x = 2.0, a similar activation energy values for the grain boundary as for the grains, indicates a resistive behavior, independent of the number of grains and grain boundaries.

Fig. 9 shows the current density versus electric field curves for Ca$_2$Cu$_2$Ti$_4$-xSn$_x$O$_{12}$ ceramic composites. Low Sn$^{4+}$ substituted samples (x = 0.1 and x = 0.2) reveal an abrupt decay of the breakdown electric field ($E_b$) and lower non-linear coefficient ($\zeta$), but a slight increasing in the leakage current ($I_L$). On the other hand, for high Sn$^{4+}$ substituted samples (x = 3.8, 3.9 and 4.0), the non-ohmic response becomes more evident increasing the breakdown electric field ($E_b$) and the non-linear coefficient ($\zeta$). New studies are ongoing to better elucidate the varistor response of the SnO$_2$/CaSnO$_3$/CuO system, mainly, to understand the role of CaSnO$_3$ phase, acting as a resistor. For high Sn$^{4+}$ substituted with x = 0.2 is equal to 1.0, indicating an ohmic behavior. As it has been reported, the increase in average grain size leads to huge dielectric permittivity and dielectric loss [60,61]. However, in nonlinear oxide ceramics with Schottky-type grain boundaries, as CCTO [62], there is an increase in the average of grain size, which leads to decrease the breakdown electric field ($E_b$), as consequence of the decreasing on the number of active potential barriers at the grain boundaries [63].

According to the previous discussion, a proposed model will help to understand the dielectric and non-ohmic properties of low Sn$^{4+}$ substituted samples (x = 0.1 and x = 0.2) into CCTO/CTO composite, as shown in equations (4)–(12).

1. Considering only the output of Ti$^{4+}$ from the lattice:

$$\text{Ca}_2\text{Cu}_2\text{Ti}_4\text{O}_{12} \rightarrow 2\text{Ca}_x^{2+} + 2\text{Cu}_x^{2+} + 4\text{V}_0^{-} = 12\text{O}_0^{2-} + 8\text{V}_0^{6+}$$

2. Sn$^{4+}$ substituted Ti$^{4+}$ sites in CCTO or in the CTO phases.

$$\text{Ca}_2\text{Cu}_2\text{Ti}_4\text{O}_{12} \rightarrow 2\text{Ca}_x^{2+} + 3\text{Cu}_x^{2+} + 4\text{V}_0^{-} = 12\text{O}_0^{2-} + 8\text{V}_0^{6+}$$

$$\text{CaTiO}_3 \rightarrow \text{Ca}_x^{2+} + 3\text{O}_0^{2-} + 2\text{V}_0^{6+}$$

Oxygen vacancies are produced with the release of Ti$^{4+}$ from the structure, which will improve the dielectric permittivity.

2. Sn$^{4+}$ substituted Ti$^{4+}$ sites in CCTO or in the CTO phases.

$$\text{Ca}_2\text{Cu}_2\text{Ti}_4\text{O}_{12} \rightarrow 2\text{Ca}_x^{2+} + 3\text{Cu}_x^{2+} + 4\text{Sn}_x^{6+} + 12\text{O}_0^{2-} + 8\text{V}_0^{6+}$$

### Table 2

Electrical and dielectric parameters for Ca$_2$Cu$_2$Ti$_{4-x}$Sn$_x$O$_{12}$ ceramic composites.

<table>
<thead>
<tr>
<th>Sn$^{4+}$ substitution</th>
<th>Impedance ((\mu\Omega))</th>
<th>$\epsilon'$(1 kHz)</th>
<th>$\epsilon'$(10 kHz)</th>
<th>$\tan\delta$$(1$ kHz)</th>
<th>$\tan\delta$$(10$ kHz)</th>
<th>$\sigma$(1–10 mA)</th>
<th>$E_b$(V/cm)</th>
<th>$E_{a,b}$(eV)</th>
<th>$E_{a,s}$(eV)</th>
<th>$I_L$((\mu\A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0.0</td>
<td>1000</td>
<td>2100</td>
<td>873</td>
<td>1.00</td>
<td>0.41</td>
<td>8.0</td>
<td>1200</td>
<td>0.47±0.04</td>
<td>0.04±0.01</td>
<td>210</td>
</tr>
<tr>
<td>x = 0.1</td>
<td>180</td>
<td>166381</td>
<td>29168</td>
<td>0.54</td>
<td>0.49</td>
<td>2.0</td>
<td>25</td>
<td>0.58±0.01</td>
<td>0.04±0.01</td>
<td>250</td>
</tr>
<tr>
<td>x = 0.2</td>
<td>150</td>
<td>140845</td>
<td>68983</td>
<td>0.71</td>
<td>0.92</td>
<td>2.0</td>
<td>48</td>
<td>0.30±0.03</td>
<td>0.08±0.02</td>
<td>160</td>
</tr>
<tr>
<td>x = 2.0</td>
<td>6</td>
<td>3500</td>
<td>1348</td>
<td>210</td>
<td>12.9</td>
<td>1.0</td>
<td>230</td>
<td>0.21±0.02</td>
<td>0.15±0.01</td>
<td>250</td>
</tr>
<tr>
<td>x = 3.8</td>
<td>100</td>
<td>210</td>
<td>122</td>
<td>210</td>
<td>6.48</td>
<td>3.0</td>
<td>420</td>
<td>0.31±0.01</td>
<td>0.15±0.01</td>
<td>340</td>
</tr>
<tr>
<td>x = 3.9</td>
<td>210</td>
<td>210</td>
<td>122</td>
<td>78</td>
<td>3.05</td>
<td>4.0</td>
<td>570</td>
<td>0.24±0.01</td>
<td>0.13±0.04</td>
<td>210</td>
</tr>
</tbody>
</table>

Fig. 6. (a) Electric permittivity ($\epsilon'$) and (b) dielectric loss ($\tan\delta$) as function of frequency of Ca$_2$Cu$_2$Ti$_4$-xSn$_x$O$_{12}$ ceramic composites.
CaTiO$_3$ $\rightarrow$ Ca$_{x}$Cu$_{x}$Ti$_{4-x}$Sn$_{x}$O$_{12}$

In this case, no electronic defect will be produced associating the high dielectric permittivity with huge grain size. The previous notations described the possibility of the oxygen vacancies formation and the possibility to rule out any kind of point defect. Following, there are no metal vacancies produced:

3. When the Sn$^{4+}$ replaces the Cu$^{2+}$ into the CCTO lattice, produces a decrease in the dielectric property.

$$CaCu_{x}Ti_{4-x}O_{12} \rightarrow Ca_{x}^{2+} + 3Sn^{4+} + 4Ti^{4+} + 3O^{2-}$$

4. When Sn$^{4+}$ enters into the CCTO lattice interstitially.

$$CaCu_{x}Ti_{4}O_{12} \rightarrow Sn^{4+} + 3Cu^{2+} + 4Ti^{4+} + 12O^{2-} + 2V_{Cu}^{o}$$
5. When Sn\(^{4+}\) enters into the CTO lattice interstitially

\[
2\text{CaTiO}_3 \xrightarrow{\text{Sn}^{4+}} \text{CaT}_{\text{i}^{+} \text{n}^{4+}}^+ + 2\text{Ti}^{4+} + 2\text{O}_2^+ + 2\text{V}_\text{ca}^-
\]

Equations (9-12) would help to explain the non-ohmic response. However, we conclude that samples with low Sn\(^{4+}\) substituted samples \((x = 0.1 \text{ and } 0.2)\) may be solely governed by the defects reactions present in equations (4)-8. Besides that, the non-ohmic response of the samples with higher Sn\(^{4+}\) substitutions \((x = 3.8, 3.9 \text{ and } 4.0)\) can be only explained by the SnO\(_2\) phase frequently investigated as varistors [64-66]. However, CaSnO\(_3\) has not yet being applied for varistors and CuO which would be a densifying agent in the SnO\(_2\)/CaSnO\(_3\)/CuO system [37]. Therefore, we infer that at low Sn\(^{4+}\) concentrations, more oxygen vacancies were produced as a consequence of Ti\(^{4+}\) output from the lattice, which increases the lattice parameters (see Table S1). On the other hand, Cu\(^{2+}\) is replacing Sn\(^{4+}\) into the CCTO lattice producing Cu\(^{2+}\) vacancy, which reduced the dielectric properties significantly. Ribeiro et al. have reported that the substitution of Sn\(^{4+}\) into pure CCTO ceramics leads to an improvement in the non-ohmic behavior, which it may indicate that low substitution of Sn\(^{4+}\) \((x = 0.1 \text{ and } 0.2)\) leads to an increasing in the potential barrier height at the CCTO grain boundaries [67]. Besides, it is well known in the literature that relaxation processes in oxide ceramics at low frequency are normally related to the grain boundary contribution [68]. As shown in Fig. 10, it can be clearly observed one impedance arc as a function of the Sn\(^{4+}\) contents in the CCTO/CTO samples which suggest a relaxation process at low frequency (Fig. S1). On the other hand, for \(x = 0.0\), the impedance arc is not full in the analyzed frequency range. Also the impedance for \(\omega \rightarrow 0\) (Table 2), normally related to the grain boundary resistance, is much lower for small concentrations than for the \(x = 0.0\) [69]. Such model can be explained based on the Internal Barrier Capacitor Layer (IBCL) revealing a huge increase in the dielectric permittivity. On the other hand, the dielectric characteristics of the high Sn\(^{4+}\) substituted samples \((x = 3.8, 3.9 \text{ and } 4.0)\) were expected as a consequence of multiple phases, once tin-based ceramics are normally well-known as good non-ohmic ceramics [70]. Furthermore, the studies have revealed that the non-linear behavior can be improved by controlling the characteristics of the grain boundary using different approaches, such as thermal treatment under oxygen atmosphere, doping with different oxidation states in order to promote defects in the grain boundary region affecting the conduction behavior at the grain boundary [70,71]. The initial results indicate that tin-based ceramic composites follow the main characteristics of the conventional non-ohmic materials [28], for instance, the breakdown electric field increases as the average grain size decreases. Those interesting phenomena need to be further studied.

4. Conclusion

\(\text{Ca}_{2}\text{Cu}_3\text{Ti}_4-x\text{Sn}_x\text{O}_{12}\) ceramic composites were prepared by solid-state method. XRD results indicated that two different groups of ceramic composites were obtained depending on the level of ionic substitution. The microstructure results have shown that each ceramic composite has its densification and grain growth processes controlled by different sintering mechanisms. This study also revealed that low Sn\(^{4+}\) substitutions \((x = 0.1 \text{ and } 0.2)\) showed the AC conductivity increased, following Jonscher power law behavior, associated to hopping of charge carriers in finite clusters frequency.

That makes more effective the improvement in the dielectric property, while the non-ohmic property was enhanced with higher Sn\(^{4+}\) substitutions \((x = 3.8, 3.9 \text{ and } 4.0)\), excepts to samples with \(x = 2.0\), that showed an ohmic behavior. The activation energy showed that at low Sn\(^{4+}\) levels, the grains are conductive while the grain boundary is insulator. However, for higher Sn\(^{4+}\) concentrations, the CuO phase is segregated at the grain boundary, leading to a more conductive sample. In summary, this work indicates that low amounts of Sn\(^{4+}\) are effective to enhance the dielectric performance of CCTO/CTO based ceramics and points out to a new kind of approach to improve the performance of non-ohmic tin-based ceramics.

Acknowledgements

The authors gratefully acknowledge the National Council for Scientific – (CAPES) and also thanks Anderson André Felix for their contribution to the development of this work.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jallcom.2017.11.089.

References


