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Abstract

The grinding process is situated at the end of the machining chain, where geometric and dimensional characteristics and high-
quality surface are required. The constant use of cutting tool (grinding wheel) causes loss of its sharpness and clogging of the
pores among the abrasive grains. In this context, the dressing operation is necessary to correct these and other problems related to
its use in the process. Dressing is a reconditioning operation of the grinding wheel surface aiming at restoring the original
condition and its efficiency. The objective of this study is to evaluate the surface regularity and dressing condition of the grinding
wheel in the surface grinding process by means of digital signal processing of acoustic emission and fuzzy models. Tests were
conducted by using synthetic diamond dressers in a surface grinding machine equipped with an aluminum oxide grinding wheel.
The acoustic emission sensor was attached to the dresser holder. A frequency domain analysis was performed to choose the bands
that best characterized the process. A frequency band of 25-40 kHz was used to calculate the ratio of power (ROP) statistic, and
the mean and standard deviation values of the ROP were inputted to the fuzzy system. The results indicate that the fuzzy model
was highly effective in diagnosing the surface conditions of the grinding wheel.
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1 Introduction

Manufacturing processes are of utmost importance due to the
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ances of design increasingly tighter, increase in quality, and,
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to the ability to achieve geometrical characteristics and high-

quality areas with low surface roughness [1]. The grinding

process is a cutting operation performed by using a grinding

wheel, which contains randomly distributed abrasive particles.

Thus, simultaneous distribution of the cutting edges as well as
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The constant use of the grinding wheel causes its wear
and loss of the cutting capacity of the abrasive grains.
In this context, it is necessary to perform the dressing
operation, in which a diamond tool is used to remove a
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thin layer of material from the grinding wheel surface,
aiming to remove the worn cutting edges and to pro-
duce sharp cutting edges [5].

Sharpness is a tool parameter that measures the ability of a
body to remove material from another structure by virtue of its
shape [6]. According to [7], the increase of the dressing depth
entails an increase of the grinding wheel sharpness as well as a
reduction of forces in the grinding process and rougher work-
pieces. Sharpness is important because it determines the ca-
pacity of the grinding wheel to remove material during the
grinding process.

The monitoring of manufacturing processes helps
with the failures detection during their operations.
There are many methods for monitoring the condition
of the dresser wear, such as acoustic emission (AE),
vibration, and electric current. [8]. Among the advan-
tages of using AE sensors are the ease of installation,
monitoring without the need to interrupt the process,
and the fact that the frequency range analyzed is higher
than the machine vibrations and ambient noises [9].

Fuzzy logic has many applications in engineering where
the domain of knowledge is usually imprecise. It is based on
the theory of fuzzy sets, in which an association of objects in a
set is continuous instead of just belonging or not belonging to
the given set [10]. Fuzzy systems are close to the human
reasoning sense.

The reason for obtaining information about the dress-
ing operation is to improve the process, providing the
operator the ability to schedule replacement of the
dresser or the grinding wheel so that it is not too early
or late to perform it, avoiding damages to the
manufacturing. Thus, this article aims to evaluate the
condition of the surface and shape of the grinding
wheel through digital signal processing of acoustic
emission and fuzzy models. Through studies on the fre-
quency domain, selection of bands that best character-
ized the process, the use of digital filters, and, finally,
application of the ratio of power (ROP) statistic in the
acoustic emission signals, a vector of input data was
obtained and then used in a fuzzy system. The results
indicate that the fuzzy model was highly effective to
provide information regarding shape and sharpening of
the grinding wheel. This work stands out by studying
the harmonic content of the AE signal applied to diag-
nose the shape and sharpness of the grinding wheel. A
fuzzy system was used based on the ROP statistic,
which was not applied in [11]. In [11], the raw signal
was processed through statistical parameters and applied
in neural networks, aiming the same purpose of the
present work, that is, to diagnose the shape and sharp-
ness of the grinding wheel during the process.
Furthermore, the research work of [12] performed a
study about the shape and sharpness of the grinding

@ Springer

wheel by using the counts statistic and the harmonic
content of the AE signal.

Thus, this work presents a unique approach through the
application of ROP statistic along with a fuzzy controller
and harmonic content study of the AE signal, aiming to detect
the cutting surface condition of the aluminum oxide grinding
wheel during the single-point dressing operation, that is, if the
wheel has regular or irregular cutting surface and or if it is
dressed or undressed.

2 Monitoring the dressing operation

The main goal of the grinding process is to ensure high quality
to the finished workpiece. The growing field of automation in
the manufacturing industry has been promoted by the need to
maintain high product quality and increasing productivity
[13].

According to [8], acoustic emission signal provides several
types of information about the dressing process. However,
more rigorous analyzes could be obtained from digital signal
processing by using statistical parameters. Such parameters
help to identify information which could be related to phe-
nomena in the process. Among the statistical parameters that
are applied in manufacturing processes monitoring with AE
signals, the root mean square (RMS) parameter is the most
common. Equation 1 defines RMS [8]:

RMS = %fgvz(t)dt (1)

where 7 is the time constant integration and v(¢) is the instan-
taneous signal.

Over the last decade, several studies have been developed
with the objective of measuring the dresser wear and propos-
ing an optimized moment to replace the worn tools. A method
for characterizing the condition of the dresser wear by using
vibration signals and Artificial Neural Networks (ANN) was
proposed by [14]. Tests were performed using single-point
dresser in a surface grinding machine, and the wear was mea-
sured throughout the experiment. The results showed that the
ANNSs provide an effective method for monitoring the dresser
wear.

In [15], a new approach in the dressing operation was pro-
posed by using materials of high thermal conductivity
(copper) on the dresser holder. Furthermore, cold air was
projected into the contact between the dresser and the grinding
wheel and thus getting rid of the coolant. Tests were per-
formed to compare the difference of wear when using copper
(high conductivity) and steel (conventional). The results
showed that the diamond temperature was reduced by about
35%, increasing the resistance to wear. The results were con-
firmed by scanning electron microscopy (SEM),
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measurements of energy consumption for different dressing
conditions, and X-ray diffraction analysis. This new approach
stands out for easy implementation and low cost.

The optimization of the dressing operation in cylindrical
grinding (centerless) using load cells and applying the
Tamaguchi method was presented in [16]. The input parame-
ters were the dressing depth, the dresser feed rate, diameter of
the grinding wheel and the wheel speed. The signal-to-noise
ratio (SNR) was used for the selection of the best cutting
conditions. The results showed that the dressing operation
time was reduced, improving the process efficiency.
Therefore, the Tamaguchi method allows for a better under-
standing of the dressing operation, concluding that the use of
load cells for monitoring the dresser condition provides an
extremely efficient diagnosis, besides helping in the grinding
problems identification.

The monitoring of the dressing operation through AE sig-
nals and ANNs, with the goal of classifying the grinding
wheel condition, was demonstrated in [11]. An aluminum ox-
ide grinding wheel installed in a surface grinding machine, a
data acquisition system, and a single-point dresser were used
in the tests. The tests were performed by varying the overlap
ratio and the dressing depths. The RMS and other statistical
parameters were applied to the AE raw signals and input to a
multilayer perceptron (MLP) ANN. The results indicated that
this method was successful to classify the conditions of the
grinding wheel in the dressing process, identifying the tool
with cutting capacity or without cutting capacity.

The method proposed in [17] and adapted in [18] was used
to measure the sharpness of the grinding wheel. This method
consists of pressing a fixed disk (without rotation) against the
grinding wheel with a constant normal force. Such disk is
usually manufactured with the same material of the part to
be ground. As the grinding wheel wears the disk out, the disk
is displaced against the grinding wheel, and the displacement
is acquired during a certain period of time. Subsequently, the
regression and transformation are applied by the authors in
[17], and the sharpness of the grinding wheel (K) is deter-
mined by Eq. (2).

Ko 2b/8r 3
3Fy

(2)

where b and r are the width and radius of the disk, respective-
ly, Fyy is the normal force applied to the opposite end of the
disk, and a is the gradient of the regression line obtained from
the characteristic curve of displacement versus (0 or the
characteristic curve of grinding wheel, where # is the time of
the experiment or contact time.

In [19], a comparison was performed between two types of
ANNSs with the aim at classifying the dresser wear condition,
in which statistics applied to the AE raw signal were inputs to
the neural models. Two ANNs of MLP type were compared

regarding the ability of classification, one using RMS and the
other using ROP, which is calculated by Eq. (3).

ny
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ROP = - ——— (3)
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where N is the size of the AE data segment, n; and n, define
the frequency range for analysis, and X} is the kth output of the
DFT. The value of N equals to 2048 was used in this study.
This statistic is dimensionless due to the power relation. It was
found that both statistics have proven to be efficient, present-
ing an error of only 2.4%, and therefore, the AE signal is
influenced by the dressing tool condition.

The use of fuzzy models for wear prediction was presented
in [20]. Vibration and AE signals were used as data sets for the
fuzzy systems. The tests used synthetic diamond dressers in a
surface grinding machine equipped with an aluminum oxide
grinding wheel. Through a microscope, the dresser wear was
measured every 20 passes. A study of frequency bands was
conducted, and statistical parameters were applied to the sig-
nal. The results indicated that the fuzzy models proposed are
highly effective in the process diagnosis.

In [12], a frequency domain analysis was performed on AE
signals through the PSD with Welch’s method, and frequency
bands that best characterize the process were selected. After
selecting the frequency bands, the counts statistic was applied
with the objective of diagnosing the condition of shape and
sharpness of the grinding wheel. The grinding wheel is one of
the main tools responsible for quality of the grinding process.
Its topography, shape, and sharpness affect directly on the
surface quality of the workpieces [21]. The tests were per-
formed in a surface grinding machine with aluminum oxide
grinding wheel and the AE sensor was attached to the dresser
holder. The results indicate that the statistics and the frequency
bands that were selected are effective to determine the shape
and sharpness conditions of the grinding wheel. Hence, this
method could be used for the process automation.

The present paper differs from [11], because it first
analyzes the harmonic characteristic content of the
dressing process, associating such characteristics with
different uniformity conditions of the grinding wheel,
which was not considered in [11]. Furthermore, the
present study has differences in relation to [19, 20]
due to the fact that both are focused only on the con-
dition of the dressing tool (dresser) using neural net-
works and fuzzy models, respectively, while this paper
focuses on the condition of the cutting tool, i.e., the
grinding wheel. Therefore, this work stands out for
measuring, at the same time, the condition of the grind-
ing wheel in terms of its shape and its sharpness, asso-
ciating them with the characteristic frequencies of the
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dressing operation. Additionally, only one sensor is
used, becoming the system simple to install and to ex-
ecute the fuzzy controller.

3 Fuzzy modeling

The fuzzy logic (FL) is an analysis method purposefully de-
signed to incorporate uncertainty into a decision model. In
essence, the fuzzy logic allows for considering reasoning that
is approximate rather than precise [22].

The fuzzy inference is the mapping formulating pro-
cess from a given input to an output using fuzzy logic.
The fuzzy inference process involves functions of asso-
ciation, fuzzy logical operators, and if-else rules. A
membership function is a curve that defines how each
point in the input space is mapped to a membership
value, or degree of membership, between 0 and 1 [23].

The specialist of the fuzzy system can determine
values of imprecision for the inputs at different levels.
Therefore, it is common that different types of ap-
proaches are applied to better adapt to the degree of
membership to each input. Some functions that could
be applied are as follws: trapezoidal, linear, exponential,
Gaussian, triangular, and even functions created by the
user of the system [24].

According to [25], the implementation of fuzzy analysis
can be divided in three main steps: Fuzzification of input
values, reasoning based on rules, and defuzzification for
the system output. According to [26], fuzzification is a
process that sorts numeric values in fuzzy sets. The rea-
soning based on fuzzy rules is easily understandable to
humans due to the linguistic terms associated with fuzzy
sets [27]. Finally, the defuzzification is the process by
which the fuzzy system returns a representative number
of conditions analyzed as response, i.c., the response con-
sists of a number belonging to a “crisp” set.

The approach through the fuzzy logic contains the
potential to give a simplified control of applications in
the field of engineering. The character based on rules of
fuzzy model allows for an interpretation of the model in
a way that is similar to the one humans use to describe
the reality [28].

According to [29], there are two important aspects
related to the control strategy in industrial applications
of fuzzy control. In some situations, the fuzzy control
has been suggested as an alternative approach to classi-
cal control (crisp) or conventional control. Compared to
conventional control, the fuzzy control can be strongly
based and focused on the human operator’s experience.
A fuzzy controller can model this experience with more
accuracy in relation to the conventional control.
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4 Material and methods
4.1 Test bench and experiments

The test bench was designed to analyze the surface conditions
and shape of the grinding wheel from AE signals. To collect
the signals, an oscilloscope DL850 model was used, from
Yokogawa, at a sampling rate of 2 MHz.

The tests were performed for the dressing operation in a
surface grinding machine, from Sulmecanica, RAPH 1055
model, which was equipped with an aluminum oxide grinding
wheel, manufactured from NORTON, model 38A150LVH,
with dimensions of 355.6 x 25.4 X 127 mm.

A single-point dresser of synthetic CVD diamond (chemical
vapor deposition) was used in the dressing tests, without using
cutting fluid. Three dressing tests were performed with the aim
of obtaining three conditions of shape and surface of the grind-
ing wheel: dressed and even, dressed and uneven, and un-
dressed and uneven. For the dressed and even condition, the
dresser was considered in full contact with the surface of the
grinding wheel. For the dressed and uneven condition, the
dresser was in full contact with the surface of the grinding
wheel only in a fraction of the dressing time. Finally, the un-
dressed and uneven condition implies that grinding wheel is
clogged (chips impregnated in the pores) and the dresser was
in full contact with the surface of the grinding wheel only in a
fraction of the dressing time. Before starting the tests, the grind-
ing wheel was clogged and worn by using a piece of SAE 1020
steel in a grinding process, without cutting fluid, with wheel
speed (vg) of 33 m/s and cutting speed (vy,) of 0.048 m/s. The
dressing tests were performed with overlap ratio [11] of 1.5 and
dressing depth of 10 um. According to [30], the rough grinding
is conducted when overlap ratio from 1.0 to 2.5 is used, i.e., any
value belonging to this range could be chosen, and therefore,
the value chosen for this study was of 1.5.

The dressing depth was determined based on preliminary
tests, which indicated that the dressing configuration with the
values mentioned previously best fit the proposed study. The
phenomena related to phase and shape changes in the surface
of the grinding wheel (undressed and uneven, dressed and
uneven and dressed and even) occur more smoothly, allowing
for a better observance of the phenomena by using acoustic
emission signals. A higher dressing depth, however, hinders
the observation of the dressed and uneven condition.

Table 1 shows the parameters of each dressing test, in
which vy is the dressing speed, by is the dresser width, and ¢4
is the dressing time.

The AE raw signal was obtained in real time by using an
acoustic system, which consisted of a signal processing
module, from Sensis, model DM-42, and the AE sensor
from the same manufacturer, with frequency response
up to 1 MHz, which is the same employed in [31].
Figure 1 shows the tests bench.
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Table 1 Test parameters
Test (n) Pass Vs (m/s) Vg (mm/s) bq (um) tq (s)
Fuzzy system design I 10 33 9.8 520 2.6
I 16 33 6.9 365 3.7
I 24 33 9.8 520 2.6
Validation v 27 33 9.4 470 2.7
A% 13 33 9.4 470 2.7

Visual inspections were performed during the tests by
means of high-resolution pictures to assist in the identification
of the grinding wheel conditions.

4.2 Sharpness

The displacement measurements of the grinding wheel against
the disk were recorded by TESATRONIC, TT60 model, from
Tesa Technology. Signals were collected via serial communi-
cation through Matlab software. The sharpness value of the
grinding wheel was determined for different moments of the
test; four curves of displacement over time were obtained for
four positions along the cutting surface of the grinding wheel.
Figure 2 shows the tests bench for the measurements of sharp-
ness, which is constituted of the grinding wheel (a), sharpness
measurement device (b), displacement sensor (c), samples
(disks) (d), and TESATRONIC (e).

The cylindrical samples (disks) used in the acquisition pro-
cess of the sharpness curves owned 24 mm external diameter,
7.8 mm internal diameter, and 2 mm thickness. These disks
were made of SAE 1020 steel. The sharpness values were
calculated using a force Fy of 1.02 N.

To exemplify the behavior of the sharpness curve of the
grinding wheel surface in function of time, the angles v and /3
were computed to represent the wheel conditions, that is,

undressed and uneven condition and dressed and even condi-
tion, respectively. The angles were obtained from the displace-
ment curves versus time, from which the linear regression for
the first ten samples were performed.

4.3 Digital signal processing

Initially, the AE raw signal was analyzed based on the period
corresponding to the dressing time. Then, the signal was ana-
lyzed in the frequency domain with the objective of identify-
ing frequency bands that best characterize the process behav-
ior. The spectrum was obtained for three different conditions
of the grinding wheel (undressed and uneven, dressed and
uneven, dressed and even). The discrete Fourier transform
(DFT) was obtained for nine equidistant points in the dressing
pass. Therefore, nine vectors of 32.768 points were processed
in Matlab by means of the fff command and Hanning window,
and then the average of the spectra was calculated,
representing the spectral behavior of the dressing pass. From
the spectra analysis of these three conditions of the grinding
wheel surface, a frequency band was selected using the non-
overlap criterion of the spectra, similar to the criterion used in
the works of [8, 32].

To obtain the RMS values for each AE raw signal, the next
steps were taken: Firstly, a Butterworth band-pass filter with

Fig. 1 Test bench
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Fig. 2 Test bench for the
sharpness measurements

cutoff frequencies of 25-40 kHz (frequency band selected
from the spectra study) and of 30th order was implemented
in Matlab to eliminate frequencies out of this range. Secondly,
the dressing pass was extracted from the AE signal, that is, the
range which refers to the contact between the cutting surface
of the grinding wheel and the dresser diamond tip. Then, the
RMS values were computed for each block of 2048 values of
the extracted and filtered raw signal, which corresponds to
1 ms, as suggested in [33]. Next, the signals obtained from
the RMS calculation were filtered again, but using a
Butterworth low-pass filter with cutoff frequency of 10 Hz
and of first order. Thus, the mean RMS values and respective
standard deviations were calculated for each dressing pass.

The ROP statistic of the pass-extracted raw AE signals
(non-filtered) was computed based on the frequency band se-
lected (25-40 kHz) for each dressing pass. A window of 1 ms,
corresponding to 2048 points, was also used to calculate the
ROP values along each dressing pass, as suggested in [33] to
compute the RMS values. Finally, the mean values and stan-
dard deviations of the ROP statistic were computed for each
pass.

4.4 Fuzzy models

The fuzzy models used in this study are based on the
Mamdani method. The inputs to the system consist of the
ROP mean values and ROP standard deviation of AE signals
from the dressing process. The Gaussian type membership
functions were used in the fuzzy system, due to smooth tran-
sition and better behavior in situations of sudden spikes, and
they were generated by the gaussmfand gauss2mf commands
in Matlab. The linguistic variables (low, medium and high)
were used for both inputs. Regarding the system output, the
following linguistic variables were adopted: undressed/un-
even, dressed/uneven and dressed/even. The limits of the
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membership functions were determined by means of the ana-
lyzed dressing data of the passes and based on the experience
of the research group in dressing operation. The centroid
defuzzification method used in [20, 31, 34] produced satisfac-
tory results. Thus, this method was employed in the present
study due to the same nature of the machining processes pre-
viously cited. Figure 3 presents the fuzzy system structure.

5 Results and discussions
5.1 Visual inspection of the grinding wheel surface

Figure 4 shows three different surface and shape conditions of
the grinding wheel studied in this work, i.e., undressed and
uneven (Fig. 4a), dressed and uneven (Fig. 4b), and dressed
and even (Fig. 4c¢).

It is possible to identify grooves and several levels of clog-
ging in Fig. 4a, exemplified and highlighted by three red cir-
cles. Such irregularities are related to the unevenness of the
grinding wheel surface, which causes an uneven clogging.
Based on the observation of Fig. 4c, the evenness condition
is easily identified, because the surface of the grinding wheel
presents no significant variations. On the other hand, the ir-
regularities on the grinding wheel surface shown in Fig. 4b are
of difficult identification if this figure is alone analyzed, and
therefore, other tools are required for such analysis, for in-
stance the ROP statistic.

Thus, the Sect. 5.2 will discuss the results regarding the
spectra of the raw AE as well as the criterion of frequency
band selection based on the cutting surface conditions of the
grinding wheel. On the other hand, Sect. 5.4 will present the
discussion of the RMS and ROP results for the frequency
band selected.
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Fig. 3 Diagram of the fuzzy (
system structure
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5.2 Digital signals processing

Figure 5a shows the frequency spectra from the raw AE sig-
nals for three different grinding wheel conditions. It is noticed
that the most significant harmonic content for this study is
between 20 and 80 kHz, with some peaks spread between
100 and 200 kHz. Figure 5b shows a magnification of the
frequency spectra in the selected band from 25 to 40 kHz.
The range chosen in Fig. 5b shows a few overlaps among
the presented conditions. It is observed that the frequency
spectrum has lower amplitudes for the undressed and uneven
condition of the grinding wheels. This occurs due to the ex-
cessive wear on the grinding wheel surface (clogging) and its
unevenness. According to [11], when the grinding wheel is
clogged, there is not only a lower level of friction, but also less
impact of the dresser with the grinding wheel. The chips im-
pregnated in the grinding wheel act as acoustic damper. The

dressed and even condition, illustrated in Fig. 5b, has a higher
amplitude in the spectrum than the others. In this case, there is
a full contact between the dresser and the grinding wheel, and
consequently, the friction is large, resulting in an increasing
acoustic activity. The intermediary condition (dressed and un-
even) has different amplitudes due to the same reasons ex-
posed above, i.e., the larger the contact area between the abra-
sive grains and the grinding wheel, the greater the amplitude
of the signal and its spectrum.

5.3 Sharpness analysis

Figure 6a shows two sharpness curves for two different con-
ditions: undressed and uneven and dressed and even. The
shaded region identifies the curves used to calculate the sharp-
ness of the grinding wheel. It should be noted that the greater
the angle (« and /) between the sharpness curve and the time

Fig. 4 Three different grinding
wheel conditions. a Undressed
and uneven. b Dressed and
uneven. ¢ Dressed and even
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Fig. 5 a Spectra of the three 0.07
grinding wheel conditions. b
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axis (that is, the more inclined the curve), the greater the
sharpness of the grinding wheel.

Figure 6b shows the magnification of the region used to
calculate the sharpness. The curve corresponding to the un-
dressed and uneven condition presents a low value for the «
angle, which implies in a grinding wheel with low sharpness
level. The grinding wheel in such situation has its abrasive
grains with rounded shapes. This can occur due to the clog-
ging or even to the natural wear of the grains. In contrast, the

curve corresponding to a dressed and even condition shows an
inverse situation, i.e., the § angle between the sharpness curve
and the time axis owns high value, indicating a sharp grinding
wheel. Thus, in this case, the cutting edges are uneven and
sharp and the abrasive grains are more protruding on the sur-
face of the sharp grinding wheel.

Table 2 shows the angles (a and [3), the curves gradient (),
and the sharpness values (K) for two different conditions of
the grinding wheel. It is observed that for a grinding wheel
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0.60 | —Dressed and Even

0.50

0.40

0.30

Displacement (mm)

0 20 40 60 80
Time (s)

0.70 —Undressed and Uneven
0.60 | —Dressed and Even
£ 050
E
-
g 040 y =0.0629x - 0.0091
]
S 030
=
(=9
£ 0.20 /
a
010 y = 0.0056x - 0.009
0.00 —
0 2 4 6 8 10
(b) Time ( s%/3)

Fig. 6 a Sharpness conditions. b Magnification of the region used to calculate the sharpness
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Table 2 Sharpness parameters

Condition « and 3 angles Gradient of the Angle after Sharpness
(©) regression line (a) Transform (°) (mm>/N*s)

Undressed and uneven 0.006 0.0056 0.32 0.569

Dressed and even 2.65 0.0629 3.60 2.854

without cutting capacity, i.e., not sharp, the capacity to remove
material is much lower than that of the full capacity. The
grinding wheel surface results in different values of sharpness
in such a way that a surface with greater evenness removes a
larger quantity of material in the grinding process, since a
larger portion of abrasive grains will be in contact with the
workpiece. On the other hand, an uneven surface will not
achieve the same efficiency in the contact between the grind-
ing wheel surface and the workpiece, producing a surface out
of the required specifications, or even causing damages to it.

5.4 Analysis of the RMS and ROP statistical
parameters

Figure 7a shows the RMS signal for the 1st and 2 1st dressing
passes. Figure 7b shows the mean values and the standard
deviation of the RMS signals for the test I1I. Figure 7a shows
very small difference between the maximum and minimum
RMS values for the wheel not dressed (pass 1) and dressed

(pass 21), which is about 34 and 54 mV, respectively, and
therefore, the same standard deviation behavior is observed.
It is possible to observe this behavior more clearly in Fig. 7b,
where the variation of the standard deviation is minimal for
the RMS signals throughout the dressing process. Such be-
havior does not characterize the irregularities of the grinding
wheel surface, which makes the irregularity detection unfea-
sible by using these standard deviation values. Therefore, the
RMS mean values and the standard deviation values were not
considered in this research work.

Figure 8a shows the characteristic behavior of the ROP
statistic for three conditions of the grinding wheel, i.e., un-
dressed and uneven (a), dressed and uneven (b), and dressed
and even (c). It can be observed in this figure that a worn
grinding wheel has on its surface numerous peaks and valleys
that influence directly on the AE signal. Due to the uneven-
ness of the grinding wheel during the dressing time, the con-
tact of the dresser with the grinding wheel does not occur on a
regular basis, causing several events in the AE signals, such as
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high deviations, discontinuities, and transients. Figure 8b
shows the ROP mean values and their respective standard
deviations. It is observed in the region (a) of Fig. 8b that
ROP amplitudes are smaller than the other regions, which
means a grinding wheel with clogged surface, i.e., impregnat-
ed with chips, and consequently a less intense acoustic activ-
ity, as reported in [11].

It is also observed a large standard deviation of ROP in this
region, which implies great unevenness of the grinding wheel
surface due to the partial contact of the dresser with the surface
of the grinding wheel during the dressing process. It is also
observed a high standard deviation in Fig. 8b, but with higher
amplitudes than in region (a), indicating that the surface of the
grinding wheel is dressed in part of grinding wheel and un-
even in the remaining part. Finally, the region (c) has the
highest amplitude and lowest standard deviations of the
ROP statistic, because the dresser makes full contact with
the surface of the grinding wheel in this dressed and even
condition, which is cleaned and conditioned.

5.5 Discussions on the fuzzy model

The behavior of the ROP statistic compared to the condition of
the grinding wheel surface, shown in Fig. 8b, is completely
nonlinear, indicating a difficult diagnosis. The input vector
was constructed from the mean values of the amplitudes and
the standard deviations of the statistic of every dressing pass.
Figure 9 shows two sets of input membership functions. From
the input data shown in Fig. 8b, three distinct regions were
identified. Thus, from the mean values, three linguistic vari-
ables were adopted and named as low, medium, and high. The
low, medium, and high linguistic values represent the grinding
wheel without cutting capacity, with intermediate cutting ca-
pacity and with full cutting capacity, respectively. The low,
medium, and high linguistic variables of the standard devia-
tion represent the uneven grinding wheel, with intermediate
evenness, and smooth surface, respectively. The quantity of
membership functions is related to the complexity of the

1.20

Undressed/Uneven Dressed/Uneven Dressed/Even

1.00
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0.40

0.20

Membership Function
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Condition of Grinding Wheel

1.00

Fig.9 Input membership functions. a Mean ROP. b Standard deviation ROP
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Table 3  Set of rules

ROP mean 2540 kHz

ROP standard deviation 25-40 kHz Low Mean High
Low Undressed/uneven surface Undressed/uneven Surface Dressed/even Surface
Mean Undressed/uneven surface Undressed/uneven Surface Dressed/uneven surface
High Undressed/uneven surface Undressed/uneven Surface Dressed/uneven surface

system. In view of the complexity and the effectiveness of the
system associated with the knowledge of the group of experts,
only three membership functions were necessary.

This use of just three membership functions is justified
because other fuzzy controllers with more membership func-
tions have been tested, which increased the complexity of the
system without significant improvement in the final result.

Figure 10 shows the single set of output functions. The
Gaussian membership functions were chosen due to the
smooth transition and better behavior in situations of sudden
transient. The same criterion applied to the inputs shown in
Fig. 9 was also applied to the output membership functions of
the fuzzy system, i.e., a minimal amount of membership func-
tions was used, which satisfactorily characterizes the require-
ments of shape and sharpness of the grinding wheel.

Based on the fuzzified inputs and outputs, an inference
system was established for a fuzzy model. The choice of in-
puts (ROP mean values and standard deviation) is based on
the characterization of the process.

The relationship among the inputs contains, at the same
time, the conditions of the cutting tool regarding its shape
(even and uneven) and its sharpness (dressed and undressed).

The set of rules extracted for the model was obtained from
the input data of the signal (ROP mean values and ROP stan-
dard deviation), as well as the experience of the research group
involved (specialists), thus characterizing a typical fuzzy sys-
tem. Table 3 presents the set of rules for the proposed fuzzy
controller.

Based on the set of rules previously obtained for the fuzzy
model and inserted into Matalab®, a 3D surface was

0.8
0.7
0.6 -
0.5
0.4
0.3

02—

095 o
09 g5
Mean ROP

Condition of the Grinding Wheel

08 075

Fig. 11 3D surface—fuzzy controller

generated, as shown in Fig. 11, to observe the input and output
effects of the fuzzy model. The smoothness in the transitions
from one condition of the grinding wheel to another is the
main feature of this 3D surface, in addition to showing well-
defined areas in relation to the set of rules.

The combined inputs resulted in different influences on
predicting the life span of the cutting tool (grinding wheel).
According to the rules surface, when the mean has a high
value and the standard deviation has a low value, the grinding
wheel reaches its best condition, about 0.84, i.e., dressed and
even. However, if the standard deviation is high and the mean
is low, the condition obtained is represented by 0.17, which
indicates a bad condition of the grinding wheel (bad shape and
sharpness), i.e., undressed and uneven. The intermediate con-
dition regarding the dressed and uneven wheel is related to the
means and standard deviations in intermediate levels.
Figure 12 shows an example for two input vectors.

—
R 0.7532
0.7 Mean ROP 0.99
0.105 High

0 Standard Deviation ROP 0.18

0 Undressed/Uneven 1
(a) Condition of the Grinding Wheel

0.9098 High
0.7 Mean ROP 0.99
vV Lo 0.0118

0 Standard Deviation 0.18

0 Dressed/Even 1
(b) Condition of the Grinding Wheel

Fig. 12 Example of membership functions. a Dressed and even
conditions. b Undressed and uneven conditions
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Fig. 13 Validation results (a) and response (b) of the fuzzy controller

Figure 12a shows the result of the fuzzy system for
an input of mean value of 0.7532 and standard devia-
tion of 0.105. The membership function enabled is
equivalent to the undressed and uneven wheel, because
the mean is low and the standard deviation is high. On
the other hand, Fig. 12b shows the result for the mean
value of 0.9098 and standard deviation of 0.0118, which
leads to the activation of the membership function re-
garding the dressed and even grinding wheel, since the
mean is high and the standard deviation is low.

To validate the fuzzy controller, a matrix consisting
of mean values and standard deviations of the ROP
statistic, from tests IV and V, was used. It is worth
mentioning that the computation of ROP statistic was
based on the selected frequency band of 25-40 kHz.
The matrix has three distinct regions as shown in
Fig. 13a. The region (a) represents the undressed and
uneven condition, the region (b) represents the dressed
and uneven condition, and finally, the region (c) repre-
sents the dressed and even condition. Figure 13b shows
the response of the fuzzy controller. The result indicates
consistency in about 92% of the samples. The samples
of numbers 33 and 34 presented low standard deviation
and low mean values, indicating a condition that is not
represented by the controller. This condition occurs due
to some variations throughout the dressing process, such
as the emergence of new cutting edges and uneven wear
of the dresser diamond. Therefore, the fuzzy controller
indicates robustness in view of the results and high
assertiveness, which is essential in practical applications.

@ Springer

6 Conclusions

This work presented a method to evaluate the conditions of
the cutting tool (grinding wheel) with respect to their sur-
face regularities and dressing condition based on the study
of the frequency content of AE signals. The frequency band
of 25-40 kHz best characterized three grinding wheel con-
ditions studied. The RMS and ROP statistics of the signals
were calculated to extract relevant features related to the
grinding wheel conditions. However, the RMS statistic
did not show a consistent behavior regarding the surface
irregularities of the grinding wheel and then discarded. A
fuzzy model was developed to indicate the condition of the
grinding wheel surface. The mean value and the standard
deviation of the ROP statistic were computed for each pass
considering the selected frequency band. The fuzzy model
was implemented in Matlab®, which consisted of the mean
values and standard deviations of ROP as inputs. The fuzzy
model showed high assertiveness, even though the data
have strongly shown non-linear behavior. Due to its sim-
plicity, the fuzzy model can be attractive for manufacturing
industry, engineers and technicians responsible for the
grinding and dressing operation.

Such findings are only applied for the tools used in this
study (aluminum oxide grinding wheel and single-point
CVD dresser). As a suggestion for future works, it is expected
to generalize the model to other types of dressers and increase
the number of inputs to allow the system to become more
robust, as well as including other characteristics that could
be obtained during the dressing operation. Thus, other exper-
iments should be performed, and the use of different statistic
parameters may also be used to characterize the dressing op-
eration, e.g., the counts statistic used in [12].
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