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Éllen Rimkevicius Carbognin for her essential laboratorial assistance. Furthermore, I

thank my wife, parents and plenty of friends for all their cheer and incentive. Finally,

I thank to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior –

Brasil) - Finance Code 001 for its financial support to my doctoral scholarship both

in Brazil and France (PDSE process number: 88881.188834/2018-01).



Abstract

This thesis presents two manuscripts previously sent to publication in scientific jour-

nals. In the first manuscript, a delay differential equation model is developed to study

the dynamics of two Aedes aegypti mosquito populations: infected by the intracel-

lular bacteria Wolbachia and non-infected (wild) individuals. All the steady states

of the system are determined, namely extinction of both populations, extinction of

the infected population and persistence of the non-infected one, and coexistence.

Their local stability is analyzed, including Hopf bifurcation, which promotes perio-

dic solutions around the nontrivial equilibrium points. Finally, one investigates the

global asymptotic stability of the trivial solution. In the second manuscript, after

rearing soybean looper Chrysodeixis includens in laboratory conditions, thermal re-

quirements for this insect-pest are estimated, from linear and nonlinear regression

models, as well as the intrinsic growth rate. This parameter depends on the life-

history traits and can provide a measure of population viability of the species.
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1 INTRODUCTION

Insect invasions and insect outbreaks have dominated the headlines

worldwide for decades. Some of them are important agents of large economic losses

and of disease transmission. Numerous efforts have been employed by the scienti-

fic and no-scientific community to treat these issues by solving or softening them.

Applied mathematics and statistics, often combined, are an relevant support to this

purpose, since they allow to understand, describe and evaluate the underlying me-

chanisms of insect dynamics. Tools like differential equations (deterministics and

stochastics), optimization models, regression models, survival analysis, individual-

based models, complex networks and many others have been broadly used.

Abiotic factors such as temperature and humidity, influence insects

temporal and spatial dynamics both directly and indirectly. The direct influence can

be observed through limiting and stimulating the activity of larvae and adults, insect

dispersal, insect development rate, insect survival in adverse weather conditions, etc.

Indirect influence includes modulation of the environment where the insect lives, such

as plant formation and phenology, food quality, number of predators and parasitoids,

and activity of entomopathogens (Jaworski & Hilszczański, 2013).

Complex relations among these factors have been gradually understood

but not completely explained. For instance, the closer is the environment tempera-

ture to the thermal optima, the faster is the insect metabolism leading to greater

feeding and mating activities, and the longer is the time seeking places of oviposi-

tion. This may increase the chances of dispersing, the frequency of laying eggs, and

the probability of colonising a larger number of host plants (Moore & Allard, 2008).

The shortening of immature development in higher environment temperatures can
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result in reproductive success of many insects since there would be a shorter time of

immature exposition to adverse conditions such as low temperature, extremely high

or inadequate humidity, predator or parasitoid attacks and entomopathogenic acti-

vity. Furthermore, fast-growing may, in addition to shorten the biological life cycle,

increase the generation number and outbreak frequency of some species (Netherer &

Schopf, 2010).

Therefore, understanding the connection between vital rates and tem-

perature variation is crucial for predicting seasonal fluctuation of insect populations

and developing strategies of control. Several empirical linear and nonlinear models

of temperature-dependent development rate have been established to estimate the

vital thermal requirements from life table data of poikilothermic species obtained at

constant temperatures in laboratory (Damos & Savopoulou-Soultani, 2012).

Moreover, developmental and other life-cycle traits models might be

incorporated in mathematical models to predict seasonal insect abundance and out-

break timing in field. Among them, delay differential equation (DDE) models have

shown to be appropriate to describe the dynamics of species with stage-structured

life cycles, and they also allow changing the stage duration driven by biotic or abiotic

factors.

Besides their exclusive property of capturing delayed feedback, DDE

models are only slightly more complex than ordinary differential equation (ODE) to

simulate numerically and simpler as for mathematical analysis compared to partial

differential equation (PDE) models (Kim et al., 2009). DDE modeling has been used

in many distinct areas such as medicine, engineering and industry, ecology, genetics

and so on for the most variable applications, e.g. cardiovascular system (Ottesen,

1997), teleoperation problems (Kruszewski et al., 2014), gene regulatory networks

(Ahsen et al., 2014), glucose-insulin systems for diabetes patients (Palumbo et al.,

2014), neural networks (Orosz, 2014), cell population dynamics in cancer treatment

(Avila et al., 2014) among others.

In this context, the current thesis presents two manuscripts already
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submitted to scientific journals related to both aforementioned classes of biological

problem. Two different insects were chosen: (i) Aedes aegypti and (ii) Chrysodeixis

includens. The first one is a known vector of many vector-borne diseases, such

as dengue, Zika, Chikungunya, and yellow fever, causing millions of human deaths

every year; and the second one is the main plusine pest in the Americas, for the sake

of damage caused to soybean and also to many other crop species across a broad

geographical range.

The first manuscript introduces a new DDE model, reducible to a

Nicholson-type delay system under some parametric conditions, to study the coloni-

zation and persistence of Wolbachia-transinfected Aedes aegypti into environments

wherein an uninfected wild mosquito population is already settled. This model is

derived by the method of characteristics from a previous PDE model. A broad

theoretical analysis is held including positiveness, boundedness, and uniqueness of

solutions, local stability of steady states, Hopf bifurcation and the global stability

of the trivial steady state given by the extinction of both populations. The results

gathered in this work can lead to further study about the influence of abiotic factors

on the dynamics of these populations, so long as they cause change in the immature

development time, e.g. the temperature.

In the second manuscript, the thermal requirements of soybean looper

Chrysodeixis includens, namely lower and upper temperature thresholds and optimal

temperature for immature stages, are unprecedentedly obtained through linear and

nonlinear temperature-driven models fitted to laboratory data. The latter were also

used to evaluate the population viability under different temperatures, for which the

intrinsic growth rate was calculated as a function of the life-history traits. Hopefully,

the results achieved here may be used to forecast accurately the occurrence of the

different stages of C. includens in field and help optimize the efforts of controlling

this insect-pest. In this sense, a new study addressing the modeling of C. includens

life cycle by DDE equations considering the temperature-dependence of the model

parameters is in progress. This survey will put together the knowledge acquired in
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the two previous works.
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MODELING THE DYNAMICS OF WOLBACHIA-INFECTED AND

UNINFECTED AEDES AEGYPTI POPULATIONS BY DELAY DIFFERENTIAL

EQUATIONS

A. S. Benedito1, C. P. Ferreira1 and M. Adimy2

Abstract. Starting from an age structured partial differential model, which takes into account the
mosquito life cycle and the main features of the Wolbachia-infection, we derive a delay differential
model by using the method of characteristics to study the colonization and persistence of the Wol-
bachia-transinfected Aedes aegypti mosquito in an environment in which the uninfected wild mosquito
population is already established. Under some conditions, the model can be reduced to a Nicholson-
type delay differential system, where the delay represents the duration of mosquito immature phase
that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of
the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacte-
rial inheritance and sex ratio deviation are considered in the model. There exist three equilibriums:
the extinction of both populations, the extinction of Wolbachia-infected population and persistence
of uninfected one, and their coexistence. Analytical conditions of existence for each equilibrium are
provided and biologically interpreted. It is shown that the increase of the delay can promote, through
Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the
delay increases and crosses predetermined thresholds, the populations go to extinction.

...

Introduction

Aedes aegypti is a widespread human blood-feeding mosquito responsible for the transmission of several
arboviruses including Dengue, Yellow fever, Zika, Murray Valley, La Crosse, Chikungunya and Rift Valley fever.
For most of these diseases an efficient vaccine is not available and the reduction of mosquito population is still the
only way to prevent epidemics [17]. The traditional approach to diminishing the mosquito population includes
the reduction of breeding sites and the use of larvicides and pesticides for adults. In general, mechanical
control and the application of larvicides are carried out before the period favorable to the proliferation of
mosquitoes, while pesticides for adults are applied during epidemics when the number of infected humans is
high [41]. Environmentally-friendly techniques include the use of sterile males (SIT) [8, 16] and Wolbachia-
infected mosquitoes [7, 15]. While the first one focus on the reduction of mosquito population to halt disease
transmission, the second one aims to replace the wild population for an infected one that is not able to transmit
the virus. Both require the release of a large number of mosquitoes, hence a combination between traditional
and new technologies are encouraged [33].

Keywords and phrases. Age structured partial differential system, delay differential system, local and global asymptotic stability,
Hopf bifurcation

1 São Paulo State University (UNESP), Institute of Biosciences, 18618-689 Botucatu, SP, Brazil; e-mail: antone.santos@unesp.br

& claudia.pio@unesp.br
2 Inria, Université de Lyon, Université Lyon 1, 69200 Villeurbanne, France; e-mail: mostafa.adimy@inria.fr

5



2

The intracellular bacteria of the genus Wolbachia manipulates host reproductive systems to increase its
transmission by inducing parthenogenesis, feminization, male-killing or cytoplasmic incompatibility (CI) [2,
37]. Additionally, the bacteria is transmitted vertically from mother to its offspring. Put together, these
characteristics confer a fitness advantage over uninfected population that can drive the Wolbachia-infected
population to fixation [20, 24]. The same is not true for the SIT, since the mating with sterile mosquitoes does
not produce viable offspring; they must therefore be introduced periodically.

In field, the Wolbachia strains that have been used in releases come from Drosophila melanogaster, wMel
and wMelPop, and from Aedes albipicus, wAlbB. Artificial infections with new strains of bacteria still be
done in laboratory in order to increase technique factibility. This is because recent research has shown that
biotics and abiotics factors can influence Wolbachia densities and its distribution in mosquito tissue, and if the
thresholds related to heritability and cytoplasmic incompatibility cannot be achieved the technique efficacy is
lost [9, 35, 37]. The thermal sensitivity of Wolbachia-infection is variable and can differ considerably between
host species and strains. High temperatures might reduce its density in hosts, weaken the reproductive effects
induced by Wolbachia-infection and even eradicate Wolbachia completely. In Ae. aegypti, the wAlbB infection
type is more stable than wMel and wMelPop at high temperatures [35].

Moreover, for poikilothermic species such as the Aedes aegypti mosquito, the body temperature depends on
external factors and has strong effects over its entomological parameters and behavior. The lower and upper
developmental threshold are 16◦C and 34◦C, being the development time shorter at higher temperatures [34].
Also, the survival of immatures and adults may be negatively influenced by large diurnal temperature range
since their mortality rates present U-shaped forms [42]. The oviposition rate in turn increases quasi-linearly with
temperature increasing [42]. Both flight activity and mating rate were detected to increase with temperature
ranging from 18◦C to 31◦C [11]. Moreover, it was found that the length of the gonotrophic cycle was reduced
with increasing mean temperatures. Besides, wing beat frequency, blood-feeding, biting activity, host seek
among other behavior characters are significantly affected by temperature variation [34].

Several mathematical models have been addressing the use of Wolbachia infected mosquitoes to control dengue
(and other viruses) transmission, because the presence of the bacteria reduces vector competence [28, 31, 32]. In
[14], a sex-structured model taking into account cytoplasmic incompatibility, male killing, incomplete maternal
transmission, and different mortality rates for uninfected/infected population was developed. The boundedness
of population was provided by considering competition among females for nesting places which give an upper
limit for egg-laying rate. The ordinary differential model was studied analytically, and it was shown that the
steady state where the Wolbachia-infected individuals dominate the population is possible when the maternal
transmission is complete and cytoplasmic incompatibility is high. Coexistence of Wolbachia-infected and unin-
fected mosquito and Wolbachia-free equilibrium are found for a large set of relevant biological parameters. By
considering that density-dependent death rate controls the exponential growth of populations, [27] showed that
only when the initial level of infection (given by the percentage of Wolbachia-infected population), breaks some
critical thresholds that the infection takes off from the population (i.e. the threshold for invasion is achieved).
In [31], the aquatic stage was also included and population boundedness was guaranteed by considering a lo-
gistic carrying capacity on this phase. It was shown that Wolbachia-infected mosquitoes always dominate the
population provided they persist. The same approach was done in [29] and the existence of a minimum infection
frequency above which Wolbachia could spread into the whole population of mosquitoes was explored. All of
these mathematical models used ordinary differential equations to model the temporal dynamics of the mosquito
population.

In turn, partial differential equations (PDE) are much less explored. Some studies such as [19, 21] present
reaction-diffusion models for the Wolbachia-infected and uninfected populations. They concluded that there is
no spatial influence on the stability criteria for the steady states. Moreover, [21] focused on determining the
threshold for invasion of the wild population by the Wolbachia-infected one. Further, [13] compares the stability
results of the equilibriums obtained for an age-structured (PDE) with the one of an unstructured (ODE) model.
For simplicity, two asexual population were considered, uninfected and Wolbachia-infected one.

6
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Finally, rarer is the use of delay differential equations (DDE) for such problem. In [22], a DDE phase-
structured model (larva and adult populations) evaluated the suppression of the wild population of Aedes
mosquitoes by releasing a continuous constant number of Wolbachia-infected male. This is modeled by changing
the growing rate of the population. The model considered two delays, one representing the average time from
adult emergence to the hatching of the first larval stage (which determines larva population growth), and the
other the average time from the first larval stage to adult emergence (which models adult population growth).
Also, a strong density-dependent death rate was considered in the larval stage. They concluded that the delays
do not impact population suppression. A modification of this model was proposed in [23] to compare two
opposite phenomena which are the decrease on mating competitiveness of the released males relative to the wild
males and the fitness advantage given by the cytoplasmic incompatibility probability to the Wolbachia-infected
population over the wild one. The model considers only adult population and the delay gives the contribution
of the last generation to the growth of the new population. They showed that CI plays a more important role
in the suppression of Aedes population.

Then, starting from an age structured PDE model which considers the mosquito entomological parameters
and also biological features associated to Wolbachia infection, a new two-population DDE model is obtained
and carefully assessed. Analytical results such as positiveness, boundedness, and uniqueness of solutions are
provided. Further, thresholds for existence and stability of the steady states were obtained and interpreted
in the context of population fitness. The role performed by the delay on the insect temporal dynamics can
help to understand the effect of changing abiotic factors such as temperature on the long-run behavior of
these populations. The model appears for the first time in [15] where numerical results concerning population
dynamics are explored.

1. Age structured partial differential model

Let w and u be Wolbachia-infected and uninfected mosquito status. We denote fj := fj(t, a) with j ∈ {w, u}
the female population density of mosquito, a ∈ [0, τ) the physiological age of the immature phase including egg,
larva and pupa, a ≥ τ the physiological age of the mature phase (fertile adults), t the calendar time, µw and
µu the adult mortality rates, and µ the immature mortality rate. We assume that the parameters τ and µ are
the same for infected and uninfected mosquitoes [31]. The temporal evolution of mosquito population satisfies
the following age-structured Lotka-McKendrick system

∂fj
∂t

+
∂fj
∂a

= −κj(a)fj , j ∈ {w, u}, (1)

where

κj(a) =

{
µ, a ∈ [0, τ),

µj , a ≥ τ.
The Wolbachia bacteria is transmitted from mother to its offspring with probability ξw ∈ (0, 1). Thus, with
probability

ξu := 1− ξw (2)

an infected female can produce uninfected offspring. The mating probability between an uninfected female
and an infected male is denoted by ν ∈ (0, 1) and the probability of cytoplasmic incompatibility occurrence is
q ∈ (0, 1). This means that the fraction of matings between uninfected females and infected males that produce
viable eggs is given by 1−qν. The average birth rates are φw > 0, φu > 0 with the average percentage of female
births rw, ru ∈ (0, 1). We denote by

Fj(t) =

∫ +∞

τ

fj(t, a)da, j ∈ {w, u}, (3)

7
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the total population of infected and uninfected adult females, respectively. Therefore, the newborn individuals
introduced into the population are given at a = 0 by

fw(t, 0) = ξwrwφwFw(t)G (Fw(t), Fu(t)) ,

fu(t, 0) = [(1− qν)ruφuFu(t) + ξurwφwFw(t)]G (Fw(t), Fu(t)) ,
(4)

where G(X,Y ) = e−α(EwX+EuY )η measures competition among individuals. More precisely, to take into account
the competition between mosquitoes for oviposition sites, the number of eggs per female is multiplied by the
density-dependent factor G (Fw(t), Fu(t)). The parameters α > 0 and η > 0 are, respectively, the environmental
carrying capacity and the measurement of how rapidly it is achieved [12]. The parameters Ew and Eu take
into account the different behaviors between infected and uninfected females. In addition, the populations are
assumed to satisfy

lim
a→+∞

fj(t, a) = 0, j ∈ {w, u}, t > 0. (5)

The initial age-distribution fj(0, a), j ∈ {w, u}, is assumed to be known. Finally, as we are assuming that the
mating between male and female is given by a constant parameter ν, we do not need to explicitly model the
male population, and we will omit it from the analysis.

2. Reduction to a delay differential system

Henceforth, we reduce the system (1)-(5) to delay differential equations. We denote by

F ij (t) =

∫ τ

0

fj(t, a)da, j ∈ {w, u}, (6)

the total population of immature females, Wolbachia-infected and uninfected, respectively. By integrating the
system (1) over the age variable from 0 to τ and from τ to +∞, respectively, we get for j ∈ {w, u},





d

dt
F ij (t) = −µF ij (t) + fj(t, 0)− fj(t, τ),

d

dt
Fj(t) = −µjFj(t) + fj(t, τ),

where Fj is given by (3) and F ij by (6). On the other hand, the method of characteristics (see [36]) implies that

fj(t, τ) =

{
fj(0, τ − t)e−µt, 0 ≤ t ≤ τ,
fj(t− τ, 0)e−µτ , t > τ.

As we are interested on the asymptotic behavior of the population, we can assume that t is large enough such
that t > τ . Then,

fj(t, τ) = fj(t− τ, 0)e−µτ , j ∈ {w, u}.

8
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By adding the boundary conditions (4), we get the following delay differential system





d

dt
F iw(t) = −µF iw(t) + ξwrwφwFw(t)G (Fw(t), Fu(t))

−e−µτξwrwφwFw(t− τ)G (Fw(t− τ), Fu(t− τ)) ,

d

dt
Fw(t) = −µwFw(t) + e−µτξwrwφwG (Fw(t− τ), Fu(t− τ))Fw(t− τ),

d

dt
F iu(t) = −µF iu(t) + [(1− qν)ruφuFu(t) + (1− ξ)rwφwFw(t)]

×G (Fw(t), Fu(t))

−e−µτ [(1− qν)ruφuFu(t− τ) + ξurwφwFw(t− τ)]

×G (Fw(t− τ), Fu(t− τ)) ,

d

dt
Fu(t) = −µuFu(t) + e−µτ [(1− qν)ruφuFu(t− τ) + ξurwφwFw(t− τ)]

×G (Fw(t− τ), Fu(t− τ)) ,

where F ij , Fj , j ∈ {w, u}, are the total population of immature and adult females, Wolbachia-infected and
uninfected, respectively. We can see that the equations of mature population Fj are independent on the
equations of immature one F ij . Then, we will omit the system of F ij and concentrate only on Fj . Remembering
that the nonlinear function G is given by

G(X,Y ) = e−α(EwX+EuY )η ,

we carry out the transformations

w(t) := α
1
ηEwFw(t), u(t) := α

1
ηEuFu(t),

and we define the new parameters

Pw := ξwrwφw, Pu := (1− qν)ruφu and Pwu := ξurwφw; (7)

respectively, the number of infected eggs per time per infected individual that will hatch, the number of unin-
fected eggs per time per uninfected individual that will hatch, and the number of uninfected eggs per time per
infected individual that will hatch.

Then, the model can be reduced, for t > τ , to





d

dt
w(t) = −µww(t) + e−µτPww(t− τ)e−(w(t−τ)+u(t−τ))η ,

d

dt
u(t) = −µuu(t) + e−µτ [Puu(t− τ) + Pwuw(t− τ)] e−(w(t−τ)+u(t−τ))η ,

(8)

with initial conditions given by

(w(t), u(t)) = (Ψ̄w(t), Ψ̄u(t)), t ∈ [0, τ ]. (9)

We make a translation in time so as to define the system (8) on the interval [0,+∞) and the initial conditions
(9) on the interval [−τ, 0].

Remark 2.1. If we consider the case

µw = µu := δ, Pw + Pwu = Pu and η = 1,

9
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then, we obtain the famous Nicholson’s blowflies equation

N ′(t) = −δN(t) + pN(t− τ)e−N(t−τ), (10)

where N = w + u and p = Pue
−µτ . The equation (10) has been extensively studied in the literature [5, 6, 10].

The main results on equation (10) deal with the global attractivity of the positive steady state and the existence
of oscillatory solutions (see [6]).

3. Positivity and boundedness of solutions

The positivity and boundedness of solutions are important in biological models. We first establish an existence
and uniqueness theorem about the positive solution for the nonlinear delay differential system (8)-(9).

Theorem 3.1. For any nonnegative continuous initial function (Ψ̄w, Ψ̄u) on [−τ, 0], there is a unique nonneg-
ative global solution (w, u) of the problem (8)-(9). Furthermore, t 7→ (w(t), u(t)) is such that w(t) > 0, u(t) > 0,
for t ≥ 0 provided that Ψ̄w(t) ≥ 0, Ψ̄u(t) ≥ 0, for all t ∈ [−τ, 0) and Ψ̄w(0) > 0, Ψ̄u(0) > 0.

Proof. It follows from the standard existence theorem [26], that there exists a unique local solution (w, u) of the
problem (8)-(9), defined on an interval [−τ, t0), t0 > 0. By steps, suppose that t ∈ [0, τ ]. Then, t− τ ∈ [−τ, 0],
and using the variation of constants formula for the system (8)-(9), we obtain for t ∈ [0, τ ],

w(t) = Ψ̄w(0)e−µwt + Pwe
−µτe−µwt

∫ t

0

Ψ̄w(s− τ)e−(Ψ̄w(s−τ)+Ψ̄u(s−τ))ηeµwsds (11)

and

u(t) = Ψ̄u(0)e−µut + e−µτe−µut
∫ t

0

[
PuΨ̄u(s− τ) + PwuΨ̄w(s− τ)

]

× e−(Ψ̄w(s−τ)+Ψ̄u(s−τ))ηeµusds.

(12)

Then, for a nonnegative initial condition (Ψ̄w, Ψ̄u) on [−τ, 0], we have a nonnegative solution (w, u) on [0, τ ].
Through the method of steps, we have w(t) ≥ 0, u(t) ≥ 0 on [τ, 2τ ], [2τ, 3τ ], and so on. Thus, w(t) ≥ 0, u(t) ≥ 0
for all t ∈ [0, t0). We suppose by contradiction that (w, u) exists only on an interval [−τ, t0) with 0 < t0 <∞.
Let

y(t) = w(t) + u(t), t ∈ [−τ, t0).

Then, limt→t−0 y(t) = +∞. We define the constantM = e−µτ max{Pu, Pw+Pwu} and the function g(x) = xe−x
η

.

We have

max
x≥0

g(x) = g

((
1

η

) 1
η

)
=

(
1

ηe

) 1
η

.

Then, from the system (8), we can write the following estimation

d

dt
y(t) = − µww(t)− µuu(t)

+ e−µτ [Puu(t− τ) + (Pw + Pwu)w(t− τ)] e−(w(t−τ)+u(t−τ))η ,

≤ −min{µw, µu}y(t) +M

(
1

ηe

) 1
η

.

Hence, y is bounded on the interval [−τ, t0). This gives a contradiction and proves that the problem (8)-(9) has
a global solution on the interval [−τ,+∞). Now, we assume that Ψ̄w, Ψ̄u ≥ 0 on [−τ, 0) and Ψ̄w(0), Ψ̄u(0) > 0.
Using the variation of constants formulas (11)-(12), we get w(t), u(t) > 0, for all t ∈ [0, τ ]. By steps, we prove
that w(t), u(t) > 0, for all t ≥ 0. �

10
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Proposition 3.2. The solution (w, u) of the system (8)-(9) is bounded on the interval [0,+∞), with

lim sup
t→+∞

w(t) ≤ Pwe
−µτ

µw

(
1

ηe

) 1
η

, lim sup
t→+∞

u(t) ≤ (Pu + Pwu)e−µτ

µu

(
1

ηe

) 1
η

.

Proof. Let f(x) = Pwe
−µτg(x), for x ≥ 0. We have

max
x≥0

f(x) = Pwe
−µτg

((
1

η

) 1
η

)
= Pwe

−µτ
(

1

ηe

) 1
η

.

Then, from (8) we obtain

d

dt
w(t) ≤ −µww(t) + Pwe

−µτw(t− τ)e−w(t−τ)η ≤ −µww(t) + Pwe
−µτ

(
1

ηe

) 1
η

.

The last inequality implies that

w(t) ≤ Pwe
−µτ

µw

(
1

ηe

) 1
η [

1− e−µwt
]

+ e−µwtw(0).

Then,

lim sup
t→+∞

w(t) ≤ Pwe
−µτ

µw

(
1

ηe

) 1
η

.

This completes the proof of the boundedness of w(t).
By using the same argument, we can write

d

dt
u(t) ≤ −µuu(t) + (Pu + Pwu)e−µτ

(
1

ηe

) 1
η

.

This implies that

u(t) ≤ (Pu + Pwu)e−µτ

µu

(
1

ηe

) 1
η [

1− e−µut
]

+ e−µutu(0).

Then, we conclude that

lim sup
t→+∞

u(t) ≤ (Pu + Pwu)e−µτ

µu

(
1

ηe

) 1
η

.

�

4. Existence of steady states

Let (w∗, u∗) be a steady state of the system (8). Then,

{
Pwe

−µτw∗e−(w∗+u∗)η − µww∗ = 0,

(Puu
∗ + Pwuw

∗) e−µτe−(w∗+u∗)η − µuu∗ = 0.
(13)

11



8

Defining

δw :=
Pw
µw

=
ξwrwφw
µw

, δu :=
Pu
µu

=
(1− qν)ruφu

µu
(14)

and

δwu :=
Pwu
µu

=
ξurwφw
µu

, (15)

the system (13) can be rewritten as

{
δwe
−µτw∗e−(w∗+u∗)η − w∗ = 0,

(δuu
∗ + δwuw

∗) e−µτe−(w∗+u∗)η − u∗ = 0,

and we obtain three solutions S0, Su and Swu of this system which are:

(i) Extinction of both populations (trivial equilibrium)

S0 = (0, 0); (16)

(ii) Extinction of infected population and persistence of uninfected one

Su =
(

0, (lnRu)
1
η

)
, with Ru = δue

−µτ ; (17)

(iii) Persistence of both populations (coexistence of infected and uninfected mosquitoes)

Swu =
(

(lnRw)
1
η (1− βwu), (lnRw)

1
η βwu

)
,

with Rw = δwe
−µτ and βwu =

δwu
δw − δu + δwu

.
(18)

By examining the components of the steady states, we can deduce the following existence conditions.

Proposition 4.1. (a) S0 always exists;
(b) Su exists if and only if Ru > 1;
(c) Swu exists if and only if Rw > max{1, Ru}.

In terms of the original parameters, we have

Rw =
ξwrwφw
µw

e−µτ and Ru =
(1− qν)ruφu

µu
e−µτ .

The two dimensionless parameters Rw and Ru are, respectively, the mean number of female infected offspring
produced by a Wolbachia-infected female mosquito during her whole life, and the mean number of female
uninfected offspring produced by an uninfected female mosquito during her whole life.

As we are interested on the relationship between temperature variation (that affects strongly the maturation
time τ) and population dynamics of both Wolbachia-infected and uninfected mosquitoes, we have to study the
existence of the steady states in terms of the delay τ . We consider the following thresholds of the maturation
time

τj =
1

µ
ln (δj) , j ∈ {w, u}. (19)

In fact, τj ∈ R and we have:

(1) τj ≥ 0 if and only if δj ≥ 1, and
(2) τj < 0 if and only if 0 < δj < 1.

In terms of the delay, we obtain the following result.

12



9

Proposition 4.2. (1) Su exists if and only if

0 ≤ τ < τu.

(2) Swu exists if and only if
0 ≤ τ < τw and τu < τw.

We remark that the steady states Su and Swu exist in the same time if and only if

0 ≤ τ < τu and τu < τw.

In summary, we can distinguish four situations.

Proposition 4.3. (i) Assume that 0 < δu ≤ 1 and 0 < δw ≤ 1 (which is equivalent to τu ≤ 0 and τw ≤ 0).
Then, for all τ ≥ 0, S0 is the only steady state.

(ii) Assume that τu > 0 and τw ≤ τu. Then,
(a) if 0 ≤ τ < τu, there are two steady states S0 and Su, with

lim
τ→τu

Su = S0;

(b) if τ ≥ τu, S0 is the only steady state.
(iii) Assume that τu ≤ 0 < τw, (τu ≤ 0 means 0 < δu ≤ 1). Then,

(a) if 0 ≤ τ < τw, there are two steady states S0 and Swu, with

lim
τ→τw

Swu = S0;

(b) if τ ≥ τw, S0 is the only steady state.
(iv) Assume that 0 < τu < τw. Then,

(a) if 0 ≤ τ < τu, there are three steady states S0, Su and Swu, with

lim
τ→τu

Su = S0;

(b) if τu ≤ τ < τw, there are two steady states S0 and Swu, with

lim
τ→τw

Swu = S0;

(c) if τ ≥ τw, S0 is the only steady state.

Figure 1 summarizes the results obtained in Proposition 4.3. The different scenarios correspond to the three
parameter sets shown in Table 1. For each τ the corresponding steady state was obtained from (17) or (18).
The panel (a) corresponds to case (ii), the panel (b) to case (iii), and the panel (c) to case (iv).

5. Stability analysis of the steady states

5.1. Local asymptotic stability of the trivial steady state S0

We conclude from the four scenarios of Proposition 4.3, that the trivial steady state is the only equilibrium
if and only if

τ > max{0, τu, τw}. (20)

We prove in Theorem 5.2 that the local asymptotic stability of the trivial steady state S0 is given by the
condition (20). We will need the following useful lemma.
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Figure 1. Components X and Y of the steady states Sj = (X,Y ), with j = {0,u,wu} versus
the delay τ . The parameter sets used in the simulations are given in Table 1, and in all cases
η = 3.0. In (a), we plotted case (ii) in which τu > 0 and τw ≤ τu. Then, if 0 ≤ τ < τu, there are
two steady states S0 and Su, and if τ ≥ τu, S0 is the only steady state. In (b), we plotted case
(iii) in which τu ≤ 0 < τw. Then, if 0 ≤ τ < τw there are two steady states S0 and Swu, and if
τ ≥ τw, S0 is the only steady state. In (c), we plotted case (iv) in which 0 < τu < τw. Then, if
0 ≤ τ < τu, there are three steady states S0, Su and Swu, if τu ≤ τ < τw, there are two steady
states S0 and Swu, and if τ ≥ τw, S0 is the only steady state. In all panels S0 component Y
appears as a dotted line, Su component Y appears as a solid, and Swu component X and Y
appear, respectively, as a dot-dashed and dashed line.

Table 1. Parameters sets used in all Figures [1, 3, 30, 31, 38, 39, 40, 43].

Parameter
Value

Range [units]
case (ii) case (iii) case (iv)

q 0.3 0.8 0.7 (0,1)
ν 0.3 0.8 0.7 [0,1]
φu 3.0 1.25 1.25 (0.35,11.2) [per day per female]
φw 2.1φu 2.1φu 2.1φu (0.10,11.0) [per day per female]
ru 0.5 0.5 0.5 (0,1)
rw 0.5 0.5 0.5 (0,1)
µu 1/14 1/4 1/14 (1/4,1/37) [per day]
µw 1/7 1/7 1/7 (1/4,1/32) [per day]
µ 1/7.78 1/7.78 1/7.78 (1/7.5,1/30) [per day]
ξw 0.8 0.5 0.8 (0,1]

ξu 0.2 0.5 0.2 calculated by (2)
Pu 1.37 0.22 0.32 calculated by (7) [number of eggs per day per female]
Pw 2.52 0.65 1.05 calculated by (7) [number of eggs per day per female]
Pwu 0.63 0.65 0.26 calculated by (7) [number of eggs per day per female]
δu 19.11 0.9 4.46 calculated by (14) [number of eggs per female]
δw 17.64 4.59 7.35 calculated by (14) [number of eggs per female]
δwu 8.82 2.63 3.67 calculated by (14) [number of eggs per female]
βwu 1.2 0.41 0.56 calculated by (18)
τu 22.95 -0.81 11.64 calculated by (19) [days]
τw 22.33 11.86 15.52 calculated by (19)[days]
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Lemma 5.1. [Theorem A.5 in [26], p. 416, see also [18]] All roots of the algebraic equation

λ+ a+ be−λτ = 0,

have negative real parts if and only if

(i) aτ > −1,

(ii) a+ b > 0,

(iii) b < ζ sin ζ − aτ cos ζ, where ζ is the root of

ζ =

{
−aτ tan ζ, 0 < ζ < π, a 6= 0,

π/2, a = 0.

Theorem 5.2. (1) If (20) is satisfied, then the trivial steady state S0 is locally asymptotically stable.
(2) If (20) is not satisfied, then the trivial steady state S0 is unstable.

Proof. We linearize the system (8) around S0. Then, we obtain





d

dt
x(t) = −µwx(t) + e−µτPwx(t− τ),

d

dt
y(t) = −µuy(t) + e−µτPwux(t− τ) + e−µτPuy(t− τ).

The corresponding characteristic equation is given by

det
(
λI −A−Be−λτ

)
= 0,

with

A =

(
−µw 0

0 −µu

)
and B = e−µτ

(
Pw 0
Pwu Pu

)

and I the 2× 2 identity matrix. Therefore,

(
λ+ µw − Pwe−µτe−λτ

) (
λ+ µu − Pue−µτe−λτ

)
= 0. (21)

The objective is to find conditions such that the solutions of (21) have negative real parts. We have to analyze
separately the solutions of each factor of the product given by (21). For the equation

λ+ µj − Pje−µτe−λτ = 0, j ∈ {u,w},

the statement (i) aτ = µjτ > −1 of Lemma 5.1, is always satisfied. On the other hand, the condition (ii)
a+ b = µj − Pje−µτ > 0 of Lemma 5.1, is equivalent to

τ > τj :=
1

µ
ln (δj) , j ∈ {u,w}.

For the statement (iii) of Lemma 5.1, as a 6= 0, we remark that the condition 0 < ζ < π, implies that sin ζ > 0.
Then, the relation ζ = −µjτ tan ζ means that cos ζ < 0. Thus, π/2 < ζ < π. Consequently, the statement (iii)
is always satisfied for τ > 0. We conclude that the conditions (i)-(iii) of Lemma 5.1, can be summed up in

τ > max{0, τu, τw}.

This conclude the proof of Theorem 5.2. �
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5.2. Global asymptotic stability of the trivial steady state S0

Let’s write the nonlinear system (8) in the following general form





dx

dt
= Ax(t) + F (x(t− τ)), t > 0,

x(t) = φ(t), t ∈ [−τ, 0] ,

(22)

where

A =

[
−µw 0

0 −µu

]
, x(t) =

[
w(t)
u(t)

]
, F (y) =

[
f1(y1, y2)
f1(y1, y2)

]
,

with {
f1(y1, y2) = Pwe

−µτy1e
−(y1+y2)η ,

f2(y1, y2) = (Puy2 + Pwuy1) e−µτe−(y1+y2)η .

To prove our result (Theorem 5.4) on the global asymptotic stability of the trivial steady state, we use the
following lemma.

Lemma 5.3. ([6, 25]). Suppose that there exists γ > 0 such that, for all y ∈ R2
+,

‖F (y)‖ ≤ γ‖y‖ and γ < −θ(A),

where ‖.‖ is a norm in R2 and θ(A) is the matrix measure of A,

θ(A) = lim
ε→0+

‖I + εA‖ − 1

ε
.

Then, the trivial equilibrium of (22) is globally asymptotically stable.

Theorem 5.4. Suppose that

τ >
1

µ
ln

(
max{Pw, Pu + Pwu}

min{µw, µu}

)
.

Then, the trivial steady state S0 of the system (8) is globally asymptotically stable.

Proof. We have to find 0 < γ < −θ(A), such that ‖F (y)‖ ≤ γ‖y‖, for all y ∈ R2
+. We choose the norm

‖x‖ = max{|w| , |u|} in R2. Then,

‖F (y)‖ ≤ e−µτ max{Pw, Pu + Pwu}‖y‖ := γ‖y‖.

We also have

θ(A) = lim
ε→0+

‖I + εA‖ − 1

ε
,

= lim
ε→0+

max{1− εµw, 1− εµu} − 1

ε
,

= lim
ε→0+

1− εmin{µu, µw} − 1

ε
,

= −min{µw, µu}.
Finally, provided that

0 < e−µτ max{Pw, Pu + Pwu} < min{µw, µu}, (23)
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Lemma 5.3 guarantees the global asymptotic stability of the trivial steady state S0. In fact, the condition (23)
is equivalent to

τ >
1

µ
ln

(
max{Pw, Pu + Pwu}

min{µw, µu}

)
.

This finishes the proof of the theorem. �
Remark 5.5. It is not difficult to see that the condition

τ >
1

µ
ln

(
max{Pw, Pu + Pwu}

min{µw, µu}

)

implies in particular that
τ > max{0, τu, τw}.

The local asymptotic stability of the other steady states will be analyzed by increasing the delay τ from zero
with the possibility of eigenvalues to cross on the imaginary axis and the appearance of Hopf bifurcation.

5.3. Local asymptotic stability and Hopf bifurcation of Wolbachia-free steady state Su

The Wolbachia-free steady state Su :=
(

0, (lnRu)
1
η

)
, Ru = δue

−µτ , exists only in the scenarios (ii)-(a) and

(iv)-(a) of Proposition 4.3. That is under the condition

0 ≤ τ < τu.

The linearization of the system (8) around the steady state Su is given by





d

dt
x(t) = −µwx(t) +

Pw
δu
x(t− τ),

d

dt
y(t) = −µuy(t) +

Pwu
δu

x(t− τ) +
Pu
δu

(1− η ln (Ru)) y(t− τ).

(24)

Note that Pu = µuδu, Pw = µwδw and Pwu = µuδwu. Then, the characteristic equation associate to (24) is
given by (

λ+ µw − µw
δw
δu
e−λτ

)(
λ+ µu − µu (1− η ln(Ru)) e−λτ

)
= 0. (25)

The roots of the first term of the characteristic equation (see Lemma 5.1),

λ+ µw − µw
δw
δu
e−λτ = 0,

have negative real parts if and only if

(i) µwτ > −1,

(ii) δu > δw,

(iii) −τµw
δw
δu

< ζ sin ζ − µwτ cos ζ, where ζ is the root of

ζ = −µwτ tan ζ, 0 < ζ < π.

The statements (i) and (iii) are always satisfied and the statement (ii) is equivalent to

τu > τw.

Then, we can immediately conclude the following result.
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Proposition 5.6. Suppose that
τu ≤ τw and 0 ≤ τ < τu.

Then, the steady state Su is unstable.

Now suppose that
τu > τw.

Then, the local asymptotic stability of the steady state Su is given by the roots of the second term of the
characteristic equation (25):

λ+ µu − µu (1− η ln(Ru)) e−λτ = 0. (26)

Thanks to Lemma 5.1, the roots of (26) have negative real parts if and only if

(i) µuτ > −1,

(ii) Ru > 1,

(iii) −τµu (1− η ln(Ru)) < ζ sin ζ − τµu cos ζ, where ζ is the root of

ζ = −τµu tan ζ, 0 < ζ < π.

The statement (i) is always satisfied and the statement (ii) is equivalent to the condition that gives the existence
of the steady state Su. Suppose that

η >
1

ln(Ru)
. (27)

Then, the statement (iii) is satisfied and we have the local asymptotic stability of the steady state Su. In fact,
the condition (27) is equivalent to

max

{
0, τu −

1

ηµ

}
< τ < τu. (28)

We directly conclude the following result.

Proposition 5.7. If the condition (28) is satisfied then, the steady state Su is locally asymptotically stable. In
particular, if

η <
1

ln(δu)
,

then, for all 0 ≤ τ < τu, Su is locally asymptotically stable.

Now suppose that

η >
1

ln(δu)
.

This inequality is equivalent to

τu := τu −
1

ηµ
> 0.

We proved that Su is locally asymptotically stable for τu < τ < τu. Suppose that

0 ≤ τ < τu.

When τ = 0, the characteristic equation (26) reads

∆(0, λ) = λ+ µu − µu (1− η ln(δu)) = 0.

It has only one root
λ0 = −µuη ln(δu) ∈ R.

As δu > 1, then λ0 < 0. We conclude that the steady state Su is locally asymptotically stable for τ = 0.
By using a continuity argument, it is straightforward that there exists % ∈ (0, τu), such that Su is locally
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asymptotically stable for τ ∈ [0, %). Consequently, when τ ∈ [0, τu) increases, the stability of Su can only be
lost if characteristic roots cross on the imaginary axis. We look for purely imaginary roots ±iω, ω ∈ R. Remark
that if λ is a characteristic root then its conjugate λ is also a characteristic root. Then, we look for purely
imaginary roots iω with ω > 0. By separating real and imaginary parts in the characteristic equation (26), we
get {

µu(1− η ln(Ru)) cos(τω) = µu,

µu(1− η ln(Ru)) sin(τω) = −ω.
(29)

Adding the squares of both hand sides of the last system and using the fact that cos2(τω) + sin2(τω) = 1, it
follows that

ω2

µ2
u

= η ln(Ru) (η ln(Ru)− 2) .

For the existence of ω > 0, it is necessary to have

0 < τ < τ̃u := τu −
2

ηµ
.

Then, it is immediate to conclude the following result.

Proposition 5.8. If

η <
2

ln(δu)

then, for all 0 ≤ τ < τu, Su is locally asymptotically stable.

Now suppose that

η >
2

ln(δu)

and consider the function $ : [0, τ̃u)→ (0,+∞) defined by

$(τ) = µu
√
η ln(Ru) (η ln(Ru)− 2), for all τ ∈ [0, τ̃u).

In fact, we have

$(τ) = ηµµu
√

(τu − τ) (τ̃u − τ), for all τ ∈ [0, τ̃u). (30)

Then, for each τ ∈ [0, τ̃u), there is a unique solution Θ(τ) ∈ [0, 2π) of the system





cos(Θ(τ)) = − 1

ηµ(τ̃u − τ) + 1
< 0,

sin(Θ(τ)) =
ηµ
√

(τu − τ) (τ̃u − τ)

ηµ(τ̃u − τ) + 1
> 0.

Then, Θ(τ) ∈ (π/2, π) and it is given by

Θ(τ) = arccos

(
− 1

ηµ(τ̃u − τ) + 1

)
. (31)

We conclude that the system (29) is equivalent to find τ ∈ [0, τ̃u) solution of

τ$(τ) = Θ(τ) + 2kπ, k ∈ N,

with $(τ) given by (30) and Θ(τ) by (31). We remark here that in all this study, the set N includes 0. This is
equivalent to solve

Zk(τ) := τ − 1

$(τ)
[Θ(τ) + 2kπ] = 0, k ∈ N, τ ∈ [0, τ̃u).

19



16

More precisely, we have to solve for k ∈ N and τ ∈ [0, τ̃u),

Zk(τ) := τ − 1

ηµµu
√

(τu − τ) (τ̃u − τ)

[
arccos

(
− 1

ηµ(τ̃u − τ) + 1

)
+ 2kπ

]
= 0. (32)

The functions Zk(τ) are given explicitly. However, we cannot determine explicitly their roots. The roots can
be found numerically. The following lemma states some properties of the functions Zk, k ∈ N.

Lemma 5.9. For all k ∈ N and τ ∈ [0, τ̃u),

Zk(0) < 0, Zk+1(τ) < Zk(τ) and lim
τ→τ̃u

Zk(τ) = −∞.

Therefore, provided that no root of Zk is a local extremum, the number of positive roots of Zk, k ∈ N, on the
interval [0, τ̃u) is even.

This lemma implies, in particular, that, if Zk has no root on [0, τ̃u), then no function Zj , with j > k, has
roots on [0, τ̃u). The next proposition is a direct consequence of Lemma 5.9.

Proposition 5.10. If the function Z0 defined on the interval [0, τ̃u), by

Z0(τ) := τ −
arccos

(
− 1

ηµ(τ̃u − τ) + 1

)

ηµµu
√

(τu − τ) (τ̃u − τ)
(33)

has no root, then the steady state Su is locally asymptotically stable for all τ ∈ [0, τ̃u).

We now suppose that Z0, under the condition

η >
2

ln(δu)
,

has at least one positive root on the interval [0, τ̃u). Let τ∗u ∈ (0, τ̃u) be the smallest root of Z0. Then, Su is
locally asymptotically stable for τ ∈ [0, τ∗u), and loses its stability when τ = τ∗u . A finite number of stability
switch may occurs as τ increases and passes through roots of the Zk functions.

Our next objective is to prove that Su can be destabilized through a Hopf bifurcation as τ ∈ [0, τ̃u) in-
creases. We start by proving that if an imaginary characteristic root iω exists then, it is simple. Suppose, by
contradiction, that λ = iω is not a simple characteristic root. Then, λ is a solution of

∆(τ, λ) = 0 and
∂

∂λ
∆(τ, λ) = 0,

where

∆(τ, λ) = λ+ µu − µu (1− η ln(Ru)) e−λτ . (34)

This is equivalent to {
eλτ [λ+ µu] = µu [1− η ln(Ru)] ,

eλτ = −τµu [1− η ln(Ru)] .
(35)

The two equations of the system (35) lead to

(λ+ µu)τ + 1 = 0.

This a contradiction with the fact that λ = iω.
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As τ∗u is the smallest root of Z0 then, from the definition of Z0, the characteristic equation (34) has purely
imaginary roots ±i$(τ∗u), where $ is defined by (30). The stability of the positive steady state switches from
stable to unstable as τ passes through τ∗u . Other stability switch occur when τ passes through roots of the Zk
functions (see [4]).

Now, we rewrite the characteristic equation (34) in the following form

∆(τ, λ) := A(τ, λ) +B(τ)e−λτ = 0.

We define, for λ = iω, the polynomial function

H(τ, ω) := |A(τ, iω)|2 − |B(τ)|2.

Then,

H(τ, ω) = ω2 − η2µ2µ2
u (τu − τ) (τ̃u − τ) .

Let λ(τ) be a branch of roots of (34) such that λ(τ∗u) = i$(τ∗u). The Hopf bifurcation theorem says that a Hopf
bifurcation occurs at Su when τ = τ∗u if

sign

[(
d<(λ(τ))

dτ

)

τ=τ∗
u

]
> 0.

We know from [4] that

sign

[(
d<(λ(τ))

dτ

)

τ=τ∗
u

]
= sign

(
∂h

∂z
(τ∗u , $

2(τ∗u))

)
sign

(
dZ0(τ∗u)

dτ

)
,

with

h(τ, ω2) := H(τ, ω).

That is to say

h(τ, z) = z − η2µ2µ2
u (τu − τ) (τ̃u − τ) .

It is clear that
∂h

∂z
(τ∗u , $

2(τ∗u)) = 1.

It follows

sign

[(
d<(λ(τ))

dτ

)

τ=τ∗
u

]
= sign

(
dZ0(τ∗u)

dτ

)
.

The following proposition states the existence of a Hopf bifurcation at τ = τ∗u that destabilizes the positive
steady state Su.

Proposition 5.11. If Z0(τ) has at least one positive root on the interval (0, τ̃u), then the positive steady state
Su is locally asymptotically stable for τ ∈ [0, τ∗u), where τ∗u is the smallest root of Z0(τ) on (0, τ̃u), and Su loses
its stability when τ = τ∗u . A finite number of stability switch may occur as τ passes through roots of the Zk
functions. Moreover, if

dZ0(τ∗u)

dτ
> 0,

then a Hopf bifurcation occurs at Su for τ = τ∗u .

Figure 2 shows, for two set of parameters, the existence or non-existence of roots for the functions Z0 and
Z1, given by the equation (32). In each case, τ ∈ (0, τ̃u). On the left, we have η = 2.0 and no root for Zk. Then,
the equilibrium Su stays locally asymptotically stable on the interval (0, τ̃u). On the right, we have η = 3.0 and
two roots for Z0 (no root for Z1). A Hopf bifurcation occurs at τ = τ∗u and periodic oscillations around the

21



18

τ

0 5 10 15

Z
k
(τ

),
(k

=
0
,k

=
1
)

-60

-50

-40

-30

-20

-10

0

10

τ̃u
Z

0
(τ)

Z
1
(τ)

τ

0 5 10 15

Z
k
(τ

),
(k

=
0
,k

=
1
)

-60

-50

-40

-30

-20

-10

0

10

τ̃u

Z
0
(τ)

Z
1
(τ)

Figure 2. The functions Zk, k = 0, 1, given by the equation (32), versus τ . On the left, we
can see that Z0 and Z1 have no roots. The vertical line shows the right end of Zk domain,
τ̃u = 13.65. On the right, we can see that Z0 has two roots τ∗u = 4.01 and τ+

u = 12.67, and
Z1 has no root. The vertical line shows the right end of Zk domain τ̃u = 15.98. At τ = τ∗u
a Hopf bifurcation occurs and periodic oscillations around the equilibrium are observed until
τ = τ+

u ; outside the interval (τ∗u , τ
+
u ), the equilibrium Su is locally asymptotically stable. In

both panels, we use the parameter set from case (ii) (Table 1). On the left, we set η = 2.0, and
on the right, we set η = 3.0.

equilibrium Su are observed until the threshold τ = τ+
u . The equilibrium Su corresponds to the extinction of

Wolbachia-infected mosquito and the persistence of uninfected one.
For the set of parameters given in the case (ii), Table 1, where the equilibrium Su exists for τ ∈ [0, τu), we

can see in Figure 3, for each value of η, the roots of Z0. For η less than a threshold, ηmin (ηmin ≈ 2), Z0 has no
root which implies that the steady state Su is stable. For η greater than ηmin, Z0 has two roots τ∗u and τ+

u . In
this case, Su looses stability at τ = τ∗u and periodic oscillations can be seen. For τ = τ+

u the stability of Su is
recovered. The equilibrium Su corresponds to the extinction of Wolbachia-infected mosquito and persistence of
uninfected one.

Using the set of parameters from case (ii), Table 1, and η = 3.0, in Figure 4, we can see in the panel (a)
the minimum and the maximum values of the periodic solutions u(t) of the system (8) plotted for τ∗u ≤ τ < τ+

u

(where Su is unstable). This corresponds to the amplitude of u(t) for τ∗u ≤ τ < τ+
u . In the panel (b), we plotted

the period of these periodic oscillations which is an increasing function of τ ∈ (τ∗u , τ
+
u ). Finally in the panel (c),

we can see an example of temporal evolution of the system (8) for η = 3.0 and τ = 10. The component u(t)
oscillates around the steady state and the component w(t) tends to zero with positive damped oscillations.

5.4. Local asymptotic stability of the coexistence steady state Swu

The coexistence steady state

Swu = (w∗, u∗) :=
(

(lnRw)
1
η (1− βwu), (lnRw)

1
η βwu

)
,

with Rw = δwe
−µτ and βwu =

δwu
δw − δu + δwu

, exists only under the condition

τu < τw and 0 ≤ τ < τw.
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Figure 3. η versus τ . The continuous curve provides the roots of Z0(τ) given η (see 33). For
the set of parameters chosen, case (ii) (Table 1), the horizontal dotted line highlights the lower
threshold to have Hopf bifurcation. The domain of Z0 is given by (0, τ̃u) with τ̃u = 17.76. As
an example, the dashed line is set for η = 3.0. For this value of η, the corresponding roots of
Z0 are τ∗u = 3.85 and τ+

u = 14.67. As dZ0(τ∗u)/dτ > 0 a Hopf bifurcation occurs at τ = τ∗u by
Proposition 5.11. At this point, the equilibrium Su looses his stability and periodic oscillations
can be seen until τ+

u . At τ = τ+
u the stability of Su is recovered. This corresponds to the

extinction of Wolbachia-infected mosquito and persistence of uninfected one.
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Figure 4. From the left to the right we have: (a) the minimum and the maximum values
of the component u(t) of the system (8) plotted against τ ∈ (τ∗u , τ

+
u ); (b) the period of the

oscillations of u(t) versus τ ∈ (τ∗u , τ
+
u ); and (c) the temporal evolution of u(t) (solid line) and

w(t) (dot-dash line) given by the system (8) with τ = 10. In all panels, the parameters were
taken from Table 1 case (iv) and η = 3. The thresholds given by τ∗u = 3.85, τ+

u = 14.67,
τ̃u = 17.76 and τu = 22.95 are, respectively, the first and second roots of Z0, the right end of
the domain of the function Z0, and the right end of τ that allows the existence of Su.

The linearization of the system (8) around the steady state Swu is given by





d

dt
x(t) = −µwx(t) + b11x(t− τ) + b12y(t− τ),

d

dt
y(t) = −µuy(t) + b21x(t− τ) + b22y(t− τ),
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with 



b11 = Pwe
−µτe−(w∗+u∗)η

(
1− ηw∗(w∗ + u∗)η−1

)
,

b12 = −ηPwe−µτe−(w∗+u∗)ηw∗(w∗ + u∗)η−1,

b21 = e−µτe−(w∗+u∗)η
(
Pwu − η(Puu

∗ + Pwuw
∗)(w∗ + u∗)η−1

)
,

b22 = e−µτe−(w∗+u∗)η
(
Pu − η(Puu

∗ + Pwuw
∗)(w∗ + u∗)η−1

)
.

When τ = 0, the Jacobian matrix evaluated at Swu is given by

J(Swu) =



−ηµw(1− βwu) ln(δw) −ηµw(1− βwu) ln(δw)

Pwu
δw
− ηµuβwu ln(δw)

Pu
δw
− ηµuβwu ln(δw)− µu


 .

Hence, the eigenvalues λ of J(Swu) satisfy the characteristic equation

λ2 + λ

(
−Pu
δw

+ ηµw(1− βwu) ln(δw) + ηµuβwu ln(δw) + µu

)

+

(
Pwu − Pu

δw
+ µu

)
ηµw(1− βwu) ln(δw) = 0.

Thus, by the Routh-Hurwitz criterion, the steady state Swu is stable when the following conditions are satisfied.





µu

(
1− δu

δw

)
+ ηµw(1− βwu) ln(δw) + ηµuβwu ln(δw) > 0,

ηµuµw

(
δwu + δw − δu

δw

)
(1− βwu) ln(δw) > 0.

Remember that the condition for the existence of Swu for τ = 0, is given by

δu < δw and δw > 1.

This means in particular, that 0 < βwu < 1. We conclude that the steady state Swu is always locally asymp-
totically stable for τ = 0. Thus, it is straightforward that there exists % ∈ (0, τw), such that Swu is locally
asymptotically stable for τ ∈ [0, %). Consequently, when τ ∈ [0, τw) increases, the stability of Swu can only be
lost if characteristic roots cross on the imaginary axis. Indeed, we showed numerically that this really happens
and, similarly to Su, there exists Hopf bifurcation for Swu. As an example, we plotted Figure 5. In (a), we
can see for each value of η > 0 the corresponding values of τ that limit the region where the equilibrium Swu

is stable and unstable (with periodic oscillations). For η = 4, a Hopf bifurcation occurs at τ ≈ 3.5 and the
stability of Swu is restored at τ ≈ 8.2. For values of τ ∈ [3.5, 8.2[ the temporal behaviour of the system (8)
shows periodic oscillations around Swu.

6. Discussion

Starting from an age structured partial differential model ( 4-equations), constructed taking into account
the mosquito life cycle and the main features of the Wolbachia-infection, we derived a delay differential model
(2-equations) using the method of characteristics, to study the colonization and persistence of the Wolbachia-
transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is
already established. The reduction of the model to a delay differential system permits that several important
and interesting questions, such as the equilibriums and their local and global stability, can be analytically
addressed while keeping all the biological assumptions behind the model.
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Figure 5. In (a), η versus τ (it was obtained using the package DDE-BIFTOOL v. 3.1.1 and
MATLAB R2019). For η = 4 the panels (b), (c) and (d) show the temporal evolution of u(t)
(solid line) and w(t) (dot-dash line) given by (8) with τ = 3.2, τ = 5 and τ = 8.9, respectively.
The other parameters were taken from the case (iv) of Table 1. A Hopf bifurcation occurs at
τ ≈ 3.5 and the stability of Swu is restored at τ ≈ 8.2; τ ∈ (0, 22.33).

Thus, the positivity, boundedness and uniqueness of solutions were proved. The model admits three steady
states: extinction of both populations (S0), extinction of infected population and persistence of uninfected
population (Su), and persistence of both populations (Swu). The conditions of existence of each equilibrium
were established as a combination of the entomological parameters that describe mosquito life’s cycle (such as
mortality, oviposition and development rates) and the effects of the Wolbachia presence in the host (vertical
transmission of the bacteria, cytoplasmic incompatibility, and sex-ratio-distorting). The two thresholds Rw and
Ru can be interpreted as the net reproductive rates which are defined as the average numbers of female offspring
that a female produces during her lifetime. Therefore, Rw measured the number of infected offspring produced
by an infected female and Ru measured the number of uninfected offspring produced by an uninfected female.
Moreover, we could prove that S0 always exists, Su exists if and only if Ru > 1 and Swu exists if and only if
Rw > max{1, Ru}.

As we were interested in analyzing the effect of variation on developmental time in population dynamics, we
rewrote the condition of existence of each equilibrium in terms of the delay τ which measures the time spent
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from egg to adult. Four scenarios can be drawn (Figure 1): (i) assume that τu, τw ≤ 0 (these thresholds are
equivalent to the ones on Ru and Rw, respectively). Then, for all τ ≥ 0, S0 is the only steady state; (ii) assume
that τu > 0 and τw ≤ τu. Then, if 0 ≤ τ < τu, there are two steady states S0 and Su, and if τ ≥ τu, S0 is the
only steady state; assume that τu ≤ 0 < τw. Then, if 0 ≤ τ < τw, there are two steady states S0 and Swu, if
τ ≥ τw, S0 is the only steady state; (iv) assume that 0 < τu < τw. Then, if 0 ≤ τ < τu, there are three steady
states S0, Su and Swu, if τu ≤ τ < τw, there are two steady states S0 and Swu, and if τ ≥ τw, S0 is the only
steady state.

The global stability of S0 was obtained under the condition τ > 1
µ ln (max{Pw, Pu + Pwu}/min{µw, µu}).

Therefore, the increase of the immature development time τ (which could occur under decreasing temperature
for example) leads both populations to extinction. Interestingly, the increase of the delay can also destabilize,
by a Hopf bifurcation, the equilibriums Su and Swu. For the equilibrium Su, we could determine analytically
a threshold τ∗u for the appearance of Hopf bifurcation (Figure 2). It depends on τu, µ, µu and η, which are
respectively the threshold for the existence of Su, the mortality rates of immature and mature uninfected
individuals and the velocity at which the carrying capacity is achieved. In turn, the bigger η the wider the
range of τ wherein oscillations around Su are observed (Figure 3 and 4) as well as stability switch occurs earlier
(i.e. for smaller τ values). Observe that during the transient time, damped oscillations are seen in one of
the components of Su. Although, we could not prove analytically the occurrence of Hopf bifurcation for the
equilibrium Swu, we could get oscillations around this equilibrium numerically (Figure 5).

For many arthropod-borne diseases such as Dengue, Zika, and others, vector control is the only available
way to control the transmission of the disease to the human population. In this context, the threshold for the
persistence of the disease depends on the ratio between the vector and the human population. As the mosquito
infected with Wolbachia transmits the virus less than the wild mosquito, the increase in the population of infected
mosquitoes with a good choice of bacterial strains (that promotes an increase of Rw), can make interesting the
technique proposed in this paper for mosquito control.

Several studies have addressed the importance of temperature on the dynamics of infected mosquitoes,
since the spread and quantity of bacteria on mosquito tissues are modulated by this abiotic factor [34, 35].
Reproduction, dispersal, mating behavior, bacterial inheritance and cytoplasmic incompatibility can be strongly
affected by temperature variations in the field. In our model, we varied the parameters Ru and Rw to take
into account the change in these factors which could lead to the extinction of one or both populations, or their
coexistence.

Based on observations both in laboratories and in nature, [34, 35], there is evidence of oscillations in mosquito
populations due to the variation in temperature. We showed in this paper that an increase in the duration of
the aquatic phase (the delay), due to a decrease in temperature, for instance, gives one of the following two
scenarios. In the first scenario, an increase in the delay leads to the extinction of the infected mosquito and
the persistence of the uninfected one (with oscillations that are first damped and then become periodic for the
uninfected mosquito). In the second scenario, an increase in the delay maintains the persistence of the two
populations, with the appearance of damped oscillations which afterwards become periodic. The existence of
periodic solutions can be rather simply understood from the mathematical point of view as produced by a Hopf
bifurcation.

Finally, variation in temperature may make ineffective the use of Wolbachia-infected mosquito as a biological
technique to reduce the population of wild mosquito. In addition, several types of infection adapted to different
field conditions are necessary; besides, the right time for the release of infected mosquito to optimize the invasion
and colonization of this population in an environment already occupied by the wild population is an important
problem to be addressed. The present work may contribute to the study of the influence of abiotic factors on
the temporal dynamics of mosquito population.
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Abstract

Development, mortality, fecundity and longevity of soybean looper Chrysodeixis includens (Lepidoptera:

Noctuidae) were examined at six constant temperatures (18, 22, 25, 28, 32 and 36◦C) under laboratory

conditions. The development from egg to adult was completed between 18 and 32◦C. Linear and nonlinear

models were fitted to the data to estimate thermal constants and bioclimatic thresholds. Although the

development of immature stages of C. includens can be expected across broader temperature ranges, this

species is meant to complete the whole cycle and recover from low densities between 19.4 and 29.8◦C. The

best fitness is achieved at 25.2◦C. The results can be used to parameterize phenological or mathematical

models to forecast the occurrence of different stages of C. includens in the field and help optimize the efforts

to control this insect-pest.

Keywords: thermal biology; life-history traits; intrinsic growth rate; pest control

Introduction

The soybean looper, Chrysodeixis includens (Walker, 1858) (Lepidoptera: Noctuidae, Plusiinae), is a lepi-

dopteran pest geographically restricted to the Western Hemisphere (Herzog 1980, Alford and Hammond Jr

1982, Barrionuevo and San Blas 2016). It is a polyphagous defoliator whose larval stage lasts approximately

two weeks (Smith et al. 1994) and can cause economically damaging losses to host plants (Herzog 1980).

Although this insect feeds mainly on soybean, it is able to survive on different plant species of at least 28

botanical families such as cotton, tobacco, common bean and sunflower, which especially increases its impor-

tance for agriculture and integrated pest management (Herzog 1980, Specht et al. 2015, Moonga and Davis

2016).
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Until 2003, C. includens was considered a minor pest of soybean in Brazil, because it was naturally

controlled by parasitoids and entomopathogenic fungi (Specht et al. 2015). However, the introduction of

soybean rust (Phakopsora pachyrhizi Syd. & P. Syd.) in 2001 led growers to apply fungicide in order to

reduce losses and to assure production (Yorinori et al. 2005). A side effect of this application was the negative

impact of fungicides on the naturally occurring entomopathogenic fungi Metarhizium rileyi which used to

keep the population of C. includens under control (Sosa-Gómez et al. 2003). Consequently, the soybean

looper became a key pest of soybean in the country (Bueno et al. 2009, Specht et al. 2015).

While in the USA C. includens is migratory in some parts of the territory due to extreme low temperatures

(Herzog 1980), milder weather conditions and the year-round presence of crops theoretically favour the

occurrence and abundance of polyphagous insects as it in the Brazilian Savanna. Nevertheless, its presence

is hardly detected in most months and elevated abundances are restricted to a little part of the rainy season

and practically synchronic to soybean availability (Santos et al. 2017, Zulin et al. 2018).

Temperature is perhaps the most important abiotic factor which affects insect dynamics. Its influence on

the life-history traits of a species includes changes in fecundity, mortality and development rates, and mating

behavior (Huffaker et al. 1999). Despite the aforementioned economic importance and extensive research

on control methods for the soybean looper, the literature is scarce with regard to temperature influence on

C. includens. For instance, Mason and Mack (1984) investigated the impact of temperature variation on

oviposition rate and adult female longevity. On the other hand, Barrionuevo et al. (2012) determined life

cycle, reproductive and population parameters, using only one constant temperature. Likewise, Specht et al.

(2019) studied development, survival, reproduction and other traits of C. includens feeding on two different

crops (soybean and forage turnip).

Understanding phenology of an insect species at different temperatures is crucial for predicting its seasonal

occurrence and integrated management planing. In this context, many mathematical models describing insect

developmental rate as a function of temperature are already proposed (Kontodimas et al. 2004, Aghdam et al.

2009). Linear models are widely used to explain the straight relationship between the developmental rate

and temperature (in an intermediate range of temperature), and to calculate lower developmental thresholds

and thermal constants required to complete development of immature stages (Campbell et al. 1974, Ikemoto

and Takai 2000). In order to describe the developmental rate more realistically and over a wider temperature

range, several nonlinear models have been applied to provide estimated values for optimum and maximum

temperatures and also for minimum temperature for development (Kontodimas et al. 2004, Aghdam et al.

2009). Nonetheless, estimation of thermal constant cannot be derived from nonlinear models (Kontodimas

et al. 2004, Aghdam et al. 2009).

In addition to these parameters, the intrinsic growth rate can be a useful metric to quantify populations
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persistence by comparing the performance of populations inhabiting different environments. It is defined

as the per capita growth rate of a population in the absence of density-dependent factors such as resource

limitation and natural enemies. This parameter is particularly important in determining the ability of a

species to recover from low densities, because density-dependent factors are less important at low densities

than the intrinsic ability of the species to achieve a net increase in birth and developmental rates relative to

death rates (Amarasekare and Savage 2012, Amarasekare and Coutinho 2013). If environmental conditions

are such that the intrinsic growth rate cannot be positive at small population density, one would expect that

the species will not be viable in such environment (Amarasekare and Savage 2012, Amarasekare and Coutinho

2013). Compared with other measures of population viability, a distinctive attribute of the intrinsic growth

rate is that it incorporates not only survival and reproduction, but also development, and hence the effects

of environmental factors on the entire life cycle of the target population (Amarasekare and Coutinho 2013).

Thus, it is a particularly useful metric for assessing the viability of many ectothermic taxa having complex

life cycles, enabling the estimation of a temperature range where it is feasible.

Therefore, the objectives of this study were: (i) to determine the thermal characteristics of C. includens,

estimating the lower and upper temperature thresholds, and the optimal temperature for immature stages

through linear and nonlinear temperature-driven models fitted to laboratory data, and (ii) to predict the

species viability through the intrinsic growth rate which is evaluated as a function of the life-history traits

of the population under different temperatures.

Materials and Methods

Soybean Looper Stock

Larvae of C. includens were obtained from a laboratory colony (CortevaAgrisciences, Mogi Mirim, SP, Brazil).

They were kept in plastic cups (200 ml) and fed on artificial diet based on Greene et al. (1976) but using

white bean as protein source. These plastic cups were maintained in climatic chambers (25 ± 1◦C; 70 ± 10%

RH and 12L:12D) until adult emergence. After emergence, adults were transferred into a Polyvinyl Chloridae

(PVC) cage (30 cm in diameter x 30 cm high) whose top was closed with voile fabric to allow ventilation.

The cage was internally covered with white paper as substrate for oviposition. Adults were fed using cotton

swabs soaked with 10% aqueous honey solution placed on the bottom of the cage. Eggs from F1, laid on the

same date, and larvae from F2 generations were used in the experiments.
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Data Collection

Rearing was conducted at six constant temperatures, 18, 22, 25, 28, 32 and 36◦C in climate chambers.

Photoperiod and relative humidity were maintained at 12L:12D and 70 ± 10%, respectively.

For the egg study, a total of 600 eggs (< 24 h old) were distributed into the six temperatures (treatments)

being 100 eggs per temperature placed into a Petri dish (1.5 cm high x 10 cm in diameter). Distilled water

was sprinkled on the eggs daily every morning to avoid dissection. Egg development and mortality were

monitored at each 24 hours and hatching date recorded.

For the larvae and pupae study, eggs were initially separated from the mating cage and placed in Petri

dishes to allow embryo development at 25◦C. After hatching, a total of 180 neonates larvae (< 24 h old) were

transferred to individualized test tubes (8.5 cm high x 2.5 cm in diameter) containing artificial diet (Greene

et al. 1976), being 30 larvae at each treatment. They were also monitored for development (including molting

of all larval instars) and mortality at each 24 hours. After pupation, insects were kept in the same test tubes

until adult emergence. Pupal viability was daily registered. Upon emergence, pupal cases were used for sex

determination according to Butt and Cantu (1962). Adults emerged on the same day were separated to

establish mating couples. Each couple was transferred into a plastic cup (200 ml) internally covered with

white paper which was replaced daily. Daily oviposition and death of adults were recorded.

Linear Developmental Models

In order to estimate the linear relationship between temperature and development rate of C. includens two

approaches were used. Both came from the law of total effective temperatures that assures the temperature-

dependent development of ectotherms is expressed by:

K = D(T − Tmin), (1)

where D is the duration of development (in days), T is temperature (in degrees Celsius), Tmin is the temper-

ature threshold at which development is either zero or no measurable development occurs, and K is called

species (or stage-specific) thermal constant, defined as the number of degree-days (DD) or heat units above

the threshold required to achieve the next stage or maturation. Linear models work well when development

is measured at intermediate temperature; at lower and upper temperature (extreme conditions) deviation

from linearity is observed, and nonlinear models are more appropriate. By fitting equation (1) to laboratorial

data of DT versus D, the parameters K (y intercept) and Tmin (slope coefficient) can be estimated (Ikemoto

and Takai 2000).

Usually, a reciprocal transformation is carried out on the empirical data, and the equation (1) is rewritten
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as:

1

D
=
T

K
− Tmin

K
. (2)

From the plot of the development rate r = 1/D versus T , the lower temperature threshold (Tmin) can

be determined by the x-intercept method, i.e., by extrapolation of the regression line. In this case, the

approximated standard errors (SE) of estimated Tmin and K are given by:

SETmin
=
r

b

√
s2

nr2 +

(
SEb
b

)2

and SEK = SEb/b
2,

where r is the sample mean of r, s2 is the residual mean square, b is the slope of the fitted straight line, i.e.,

1/K, SEb is the standard error of b, and n is the sample size (Campbell et al. 1974).

Nonlinear Developmental Models

Seven published nonlinear (whether in their parameters or in their variables) models, commonly used for

modeling arthropod development rates (Kontodimas et al. 2004, Aghdam et al. 2009), were used to fit

individual development rate as a function of temperature (Table 1). The optimum (Topt), lower (Tmin) and

upper (Tmax) temperatures were obtained straightaway or indirectly from the models. Topt is the threshold

temperature at which developmental rate assumes its maximum value, while Tmax is the lethal threshold at

which life cannot be maintained for a long time or the development ceases.

Intrinsic growth rate

Also known as Malthusian parameter, the intrinsic growth rate has been used as a measure of species fitness

under temperature variation (Savage et al. 2004). Furthermore, it permits the estimation of the viable thermal

range from Tvmin to Tvmax, the minimum and maximum viability temperature thresholds, respectively, where

a complete development (from egg to adult) can occur, and the temperature Tvopt where the species growth

rate is maximum. The intrinsic growth rate ξ as a function of the temperature is given by (Amarasekare and

Savage 2012):

ξ(T ) = −d(T ) +
1

φ(T )
W
(
b(T )φ(T ) exp (d(T ) − d̄(T )φ(T ))

)
, (3)

where W represents the principal (positive) branch of the Lambert W function, and the functions b(T ), d(T ),

d̄(T ) and φ(T ) are, respectively, the empirically measured temperature response function for the average per

capita birth rate, adult mortality rate, immature mortality rate (all in days−1) and the age (in days) at

maturity. Equation (3) assumes a stable age distribution of the population and a constant age-specific rate
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of death and reproduction. The reciprocal of average adult longevity yields an estimate of the per capita

adult mortality rate. In turn, the per capita immature mortality rate is estimated by d̄ = − ln(s)/τ , where

s is the immature survivorship (proportion of individuals that survived up adult stage) and τ is the average

duration (in days) of immature stage (from egg to adult). Since the data of eggs and larvae do not come

from the same generation, we multiplied the survivorship (by assuming it as survival probability) of eggs by

that of larva up to adult stage to obtain s.

The per capita birth rate of most ectotherms exhibits a symmetric and unimodal response to temperature

that is well-described by a Gaussian function:

b(T ) = boe
− (T−To)2

2σ2 , (4)

where b(T ) is the average per capita birth rate at temperature T, bo is the average per capita birth rate

attained at an optimal temperature for oviposition To and σ is the standard deviation of the optimum.

Mean lifetime fecundity divided by the average female longevity yielded a daily per capita birth rate at each

temperature.

In general, the per capita mortality rate of ectotherms exhibits a monotonic temperature response that is

well depicted by the Boltzmann–Arrhenius function for reaction kinetics (Savage et al. 2004). Nevertheless,

some studies have found that mortality rates can increase at low temperatures (Morgan et al. 2001). Thus,

we used a second degree polynomial function to describe the temperature response of juvenile and adult

mortality rates:

µ(T ) = aT 2 + bT + c, (5)

where µ := µ(T ) is the immature (d̄) or adult (d) mortality rate at temperature T , and a, b and c are model

parameters.

Ectotherm developmental rates exhibit a left-skewed temperature response that results from the reduc-

tion in reaction rates at low and high temperature extremes due to enzyme inactivation (Amarasekare and

Coutinho 2013). Thus, in order to describe the temperature response of age at maturity (time spend in

developing from egg to mature adult), we used the Brière-1 model:

1

φ(T )
= aT

(
T − T̄min

)√
T̄max − T , (6)

where φ(T ) is the age at maturity, T̄min and T̄max are respectively the minimum and maximum temperature

thresholds, between which the development up to the adult maturity can be achieved.

The models (4), (5) and (6) were fitted to the laboratory data in order to calculate ξ(T ) through equation

6

35



(3). Juvenile mortality and age at maturity values were obtained by combining data from the different

immature stages. Afterwards, the lower and upper temperature thresholds Tvmin and Tvmax were obtained

by setting the right-hand side of equation (3) to zero and solving it numerically for T .

Statistical Analysis

For all linear and nonlinear regressions performed, it is assumed that the variability of the experimental

error (differences between units) is estimated by the variability between individual responses at the same

temperature. Errors were checked for normality by using the Kolmogorov-Smirnov and Shapiro-Wilk tests.

A few points (no more than three) at low and high temperatures for each immature stage have been shown

to be influential in the residual analysis, but excluding them was not justified.

The effect of temperature on the developmental time of soybean looper immature stages and longevity

was analyzed by using one-way analysis of variance (ANOVA) at α = 0.05. Means were separated by using

the Tukey-Kramer honestly significant difference (HSD) test.

The performance of linear developmental models was compared through their values of the coefficient

of determination R2. Nonlinear developmental model evaluation was made based on both goodness-of-

fit and biological significance of estimated values of the bioclimatic thresholds. Since there is no well-

defined R2 statistic (calculated here as the squared correlation coefficient between fitted values and data) for

nonlinear models, and the residual sum of squares (RSS) do not provide good discrimination between models

with different number of parameters, we used the Akaike information criterion (AIC), which is parameter

independent, to assess goodness-of-fit of the nonlinear models and establish their statistical rank. It is defined

as AIC = nLn(RSS/n)+2p, where n is the number of observations and p is the number of model parameters.

Better fits were associated to smaller values of AIC.

All statistical analyses were conducted using R version 3.6.1 (R Core Team 2019) in RStudio version

1.2.5001 (RStudio Team 2019) .

Results

Temperature Range for Development

At 36◦C, the eggs did not hatch and no larvae survived to pupate. Consequently, this temperature was

removed from all analysis. In the temperature range of 18 − 32◦C, the insect was able to complete its

development.
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Survivorship, Longevity and Fecundity

The egg stage presented the lowest survivorship compared to other immature stages despite the temperatures

(Table 2). Larval survivorship decreased substantially at 32◦C, whereas pupae were mainly affected at 18◦C.

Overall, the survivorship of immature stages increased on the range of temperature between 18 and 25◦C,

and decreased beyond the latter. One-way ANOVA showed a significant effect of temperature on longevity

of soybean looper (p < 0.0001). The longest lifespan of adults was observed at 22 and 25◦C. The extreme

temperatures evaluated (18 and 32◦C) caused reduction of more than 40% on the longevity (Table 3). The

largest fecundity was obtained at 25◦C and sharp decreasing was observed at lower or higher temperatures.

At 32◦C few adults emerged and, therefore, only few couples were formed. However, oviposition was not

observed at this temperature (Table 3).

Development Time

One-way ANOVA also showed a significant effect of temperature on developmental time for all soybean looper

immature life stages (p < 0.0001). The duration of development decreased with increasing in temperature

for the larval stage; but more strictly for egg and pupa this trend occurred solely until 28◦C. Development of

eggs, larvae and pupae varied from 2 (25, 28 and 32◦C) to 8 days (18◦C); 10 (32 ◦C) to 49 days (18 ◦C); and

5 (28 ◦C) to 23 days (18 ◦C), respectively. Taking into consideration the duration of all immature stages,

the life cycle (egg to adult) of C. includens varied, on average, from 22.10 (32 ◦C) to 62.16 days (18 ◦C).

However, it is important to highlight that the mean development period for 18 and 32◦C was obtained based

on few specimens (6 and 7, respectively) surviving up to the adult stage.

Developmental Models

A linear relationship between developmental rate and temperature was observed in the range between 18 and

28◦C for each immature stage (Table 4). However, outside this range, developmental rates deviate from the

straight line and the temperature of 32◦C was therefore excluded from the analysis, as suggested by Ikemoto

and Takai (2000) and Kontodimas et al. (2004). As expected, this linear relationship for all immature stages

was better explained by the approach proposed by Ikemoto and Takai (2000), i.e. equation (1), with greater

R2 coefficient and lower p-values. According to this model, Tmin was between 13.12±0.32 and 14.75±0.28◦C

for the immature stages, and the time required to complete physiological development (=thermal constant)

of eggs, larvae and pupae were respectively 35.4 ± 2.5, 181.8 ± 7.1 and 88.6 ± 3.2 DD.

All nonlinear models (Table 5) fitted the development rate as a function of temperature of larva and

pupa of C. includens (Fig. 1). However, since the chosen scaling (days) was very long to successfully catch
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nonlinearities in the developmental rate variation of eggs, analysis for this stage was not performed. A wide

variation among the models in estimating the values of thermal requirements was observed. At the end,

only two models were retained for each immature analyzed stage, because their values are in agreement

with what is expected from biology (Table 6). The Brière-1 model presented the most reasonable estimates

of upper threshold (Tmax) compared to Equation-16 in terms of overestimation. The minimum (Tmin),

maximum (Tmax) and optimum (Topt) temperature thresholds for the larval stage were 10.7, 32.1 and 38.6◦C,

respectively. For the pupal stage the estimated values were 15.6, 30.3 and 35.3◦C, respectively.

Intrinsic Growth Rate

Explicit temperature dependence of fecundity, mortality and development rate were considered by fitting

models (4)-(6) to empirical data. Birth rate decreases at extreme temperatures, and reaches the highest

value at 25.54◦C (75.69 eggs/female/day) (Fig. 2a). Immature and adult mortality rates increase at extreme

temperatures presenting both a minimum mean value of mortality rate between 22 and 25◦C (Fig. 2b,c).

Finally, age at maturity decreases nonlinearly as temperature increases (Fig. 2d); for it the preoviposition

period was not computed because there were not enough adult couples to assure sufficient and reliable data

out of the range between 22 and 28◦C. From the intrinsic growth rate curve (Fig. 2e), obtained by the

equation (3), we found that the thermal tolerance of C. includens viability ranges from 19.4 to 29.8◦C, being

the optimum fitness at 25.2◦C (ξ = 0.191).

Discussion

The present study is the first report of lower and upper threshold temperatures, thermal constant and

optimal temperature for soybean looper C. includens. These parameters are crucial in mathematical and

phenological models to better predict population dynamics of insects. Moreover, we calculated the intrinsic

growth rate dependent on the life-history traits as a measure for the population viability of this species.

For this, temperature response data of development, mortality, fecundity and longevity were obtained under

laboratory conditions.

Clearly, temperature significantly affected the development of C. includens. The development time ob-

tained for egg and pupal stages at 28◦C in our study is slightly lower than the result reported by Barrionuevo

et al. (2012), who reared this species in artificial diet and controlled environment (27 ± 2◦C, 70-75% RH

and 14:10 L:D). On the other hand, the development of larval stage observed by Barrionuevo et al. (2012)

was almost twice as long (76%). This might be related to the influence of different types of nutrients in the

diet provided to larvae (Andrade et al. 2016). As to 25◦C, the development time for all immature stages is
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absolutely consistent with Specht et al. (2019).

The immature survivorship was considerably lower for eggs whereas it was mildly higher for larvae and

far greater for pupal stage in our study compared to those of Barrionuevo et al. (2012). Regarding to Specht

et al. (2019), the remarkable difference in survivorship occurred for eggs while it was too close for larval and

pupal stage. It is interesting to highlight that larvae and pupae seem to have larger thermal plasticity than

eggs (Moghadam et al. 2019).

Considering the maximum estimated value for the lower temperature threshold, the development up to

adult stage of this insect-pest is meant to be expected above 15.6◦C (Brière-1 model). This strongly agrees

with Tingle and Mitchell (1977) who registered in field significant adult activity, continuous reproduction

and development of C. includens in the state of Florida, USA, exactly until this temperature. The values

obtained for Tmin using the Brière-1 model (10.7 − 15.6◦C) for larval and pupal stages seem to be the most

reasonable (Table 6) and compatible with those of Ikemoto and Takay. Jarosik et al. (2011) suggested to

use closely related species that share similar thermal requirements if information on the target species is

lacking. The minimum temperature value for development obtained in our study corroborates the statement

proposed by Jarosik et al. (2011), once the values reported by Garcia et al. (2018) for Spodoptera frugiperda

(Lepidoptera: Noctuidae) (from 11.7 ± 1.2 to 14.1 ± 0.9◦C at 14L:10D photoperiod and 70% ± 10% RH)

and by Mironidis and Savopoulou-Soultani (2008) for Helicoverpa armigera (Lepidoptera: Noctuidae) (from

10.17 to 11.95◦C at 16L:8D photoperiod and ≥ 60% RH) were within the range estimated.

As 36◦C was deleterious for eggs of C. includens and all larvae died before completing development, we

can conclude that all nonlinear models overestimated Tmax for the larval stage. This is probably because the

lack of data at high temperatures (between 32 and 36◦C) does not allow a good estimation of Tmax. Future

experiments using development response to temperature should consider to obtain more data points in the

range between 32 and 36◦C, where it seems that the true maximum effective temperature lies. The optimal

temperatures for immature stages 32.1 (larva) and 30.3◦C (pupa), by Brière-1 model, was consistent with

those of any other nonlinear model.

The intrinsic growth rate provides a complete cycle (egg to egg) temperature response for the species, and

it is a quantitative measure of temperature response of species fitness. This parameter requires information

about immature and adult stage such as surviving, development and fecundity. Overall, for C. includens,

immature mortality rate had a greater sensitivity to temperature when compared to adult mortality rate, and

both increased at extreme temperatures. The high pronounced peak observed for fecundity along with low

variability around its maximum value is characteristic of tropical species (Amarasekare and Savage 2012). It is

not clear if the lack of symmetry on the curve of the birth rate is associated to the fact that few adult couples

were formed at 18 and 32◦C or if this curve is really left skewed. The low availability of reproduction data at
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these temperatures could imply overestimation of the lower threshold (Tvmin = 19.4◦C) and underestimation

of the upper threshold (Tvmax = 29.8.4◦C) for C. includens viability. According to Amarasekare and Savage

(2012), the width of the temperature response of birth rate has a strong effect on the proximity of Tvmin

and Tvmax. Therefore, from this work, it is reasonable to assert that the temperature interval into which the

overall cycle of C. includens is feasible shall not be narrower than the range between 19.4 and 29.8◦C, where

the species can survive, reproduce and develop. Thus, this species is meant to be found year-round in regions

where annual temperature average is in this range. Furthermore, as cited above, the preoviposition period

was not computed in the age maturity curve because of lacking data out of the intermediate temperature

range.

Although the development of immature stages of C. includens can be expected across broader temperature

ranges, this species seems able to complete its cycle and to recover from low densities in a narrower interval.

Moreover, the intrinsic growth rate also illustrates the speed at which population recovering takes place. For

C. includens, the highest values of ξ are observed around 25◦C, which is consistent with population outbreaks

observed in Brazilian soybean (Specht et al. 2015). In addition, the intrinsic growth rate allows exploring how

much a species is likely to be impacted by perturbations to their thermal environments, and hence predicting

extinction risk due to climate warming (Amarasekare and Savage 2012).

The results provided in the present work might be used to construct explicitly temperature-dependent

models seeking to forecast accurately the occurrence of different stages of C. includens in field and help

optimize the efforts of controlling this insect-pest.
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Tables and Figures

Table 1. Nonlinear (in parameters or variables) models fitted to development rate of larval and pupal stages
of C. includens as a function of temperature.

Model Equation Reference

Brière-1 r(T ) = aT (T − Tmin) (Tmax − T )
1
2 Brière et al. (1999)

Harcourt r(T ) = a0 + a1T + a2T
2 + a3T

3 Harcourt and Yee (1982)

Equation-16 r(T ) = a (T − Tmin)2 (Tmax − T ) Kontodimas et al. (2004)

Pradhan-Taylor (Gaussian) r(T ) = Rm exp

[
−1

2

(
T − Tm
Tσ

)2
]

Taylor (1981)

Logan-6/Lactin-1 r(T ) = eρT − e

(
ρTMax − TMax − T

∆

)
Lactin et al. (1995)

Logan-6/Lactin-2 r(T ) = eρT − e

(
ρTMax − TMax − T

∆

)
+ λ Lactin et al. (1995)

Janisch/Analytis r(T ) =
2C

a(T−Tm) + b(Tm−T )
Analytis (1981)

Table 2. Percent survival, minimum, maximum and mean developmental time of each immature stage of
C. includens at five constant temperatures. The number of individuals at the beginning of each treatment is
indicated between parenthesis near the temperature value.

Stage Temperature Survival
Developmental time (days)

(◦C) (%) Minimum Maximum Mean ± SE

Egg 18 (100) 10.0 5 8 6.40 ± 0.40a
22 (100) 22.0 3 5 4.05 ± 0.14b
25 (100) 44.0 2 5 3.41 ± 0.10c
28 (100) 27.0 2 4 2.85 ± 0.10d
32 (100) 10.0 2 4 2.90 ± 0.18cd

Larva 18 (30) 70.0 30 49 34.43 ± 1.17a
22 (30) 76.7 18 24 20.33 ± 0.32b
25 (30) 90.0 13 24 15.12 ± 0.47c
28 (30) 83.3 12 23 13.19 ± 0.41c
32 (30) 23.3 10 19 12.20 ±1.17c

Pupa 18 (21) 28.6 17 23 21.33 ± 0.95a
22 (27) 96.3 12 19 12.89 ± 0.25b
25 (24) 100.0 8 10 9.04 ± 0.15c
28 (26) 96.1 5 7 6.36 ± 0.11d
32 (10) 70.0 6 8 7.00 ± 0.31d

At each stage, means followed by the same letter are not significantly different at α = 0.05 (Tukey-Kramer HSD test).
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Table 3. Minimum, maximum and mean longevity (in days) of C. includens, and fecundity of adults at five
constant temperatures. The number of couples at each treatment is indicated between parenthesis near the
female mean longevity.

Temperature
Longevity

Fecundity ± SE
(◦C) Minimum Maximum Mean ± SE Female (from couples) mean ± SE (eggs per female)

18 3 11 6.33 ± 1.30bc 11 (1) 268.0
22 3 17 10.22 ± 0.74ab 10.83 ± 0.78a (13) 163.46 ± 44.61
25 2 18 11.26 ± 0.98a 11.45 ± 1.38a (11) 835.09 ± 243.52
28 2 15 5.84 ± 0.61c 4.82 ± 0.44b (11) 168.16 ± 97.12
32 1 7 3.57 ± 0.78c 2.33 ± 0.88b (3) 0.0

Means followed by the same letter are not significantly different at α = 0.05 (Tukey-Kramer HSD test)

Table 4. Linear regression, lower temperature threshold (Tmin) and thermal constant (K) (with approxi-
mated 95% confidence intervals) of immature stages of C. includens.

Linear model Stage Linear equation Tmin (◦C) K (DD) R2 p

Campbell Egg r = −0.1835 + 0.0196T 9.37 (6.26, 12.48) 51.1 (40.7, 61.4) 0.4816 4.396e-16
Larva r = −0.0566 + 0.005T 11.70 (10.79, 12.61) 206.8 (191.5, 222.2) 0.8795 < 2.2e-16
Pupa r = −0.1843 + 0.0121T 15.28 (14.60, 15.96) 82.9 (77.1, 88.8) 0.9075 < 2.2e-16

Ikemoto-Takai Egg DT = 35.4 + 14.14D 14.14 (12.83, 15.43) 35.4 (30.4, 40.4) 0.8223 < 2.2e-16
Larva DT = 181.8 + 13.12D 13.12 (12.48, 13.76) 181.8 (167.7, 195.8) 0.9449 < 2.2e-16
Pupa DT = 88.6 + 14.75D 14.75 (14.19, 15.31) 88.6 (82.4, 94.9) 0.9722 < 2.2e-16

Table 5. Criteria values of goodness-of-fit for nonlinear models. The lower the AIC value, the higher the
statistical rank. The models were adjusted to data of development rate versus temperature for larval and
pupal stages of C. includens.

Model
Larva Pupa

R2 AIC Rank R2 AIC Rank

Brière-1 0.8383 -720.96 2 0.8711 -498.19 4
Harcourt 0.8348 -711.88 6 0.9057 -519.61 2
Equation-16 0.8388 -721.25 1 0.8695 -493.33 5
Pradhan-Taylor (Gaussian) 0.8382 -720.90 3 0.8848 -504.17 3
Logan-6/Lactin-1 0.8363 -719.60 4 0.8139 -465.86 6
Logan-6/Lactin-2 0.8383 -718.97 5 0.8142 -463.99 7
Janisch/Analytis 0.8297 -710.64 7 0.9089 -528.72 1
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Table 6. Parameter-values (with 95% confidence intervals) and bioclimatic thresholds for selected nonlinear
temperature-driven rate models fitted to developmental rate of larval and pupal stages of C. includens based
on statistical rank and biological significance.

Stage Model Rank
Model

Estimate
Bioclimatic Computed

parameter Threshold valuea

Larva Brière-1 2 a 4.95×10−5 (3.74×10−5, 6.16×10−5) Tmin 10.7
Tmin 10.68 (8.62, 12.73) Topt 32.1
Tmax 38.59 (35.98 , 41.20) Tmax 38.6

Equation-16 1 a 1.16×10−5 (6.12×10−6, 1.70×10−5) Tmin 8.3
Tmin 8.34 (6.43 , 10.25) Topt 33.1
Tmax 45.43 (40.60 , 50.26) Tmax 45.4

Pupa Brière-1 4 a 1.58×10−4 (1.35×10−4, 1.81×10−4) Tmin 15.6
Tmin 15.56 (14.64, 16.49) Topt 30.3
Tmax 35.30 (34.35 , 36.26) Tmax 35.3

Equation-16 5 a 6.60×10−5 (4.69×10−5, 8.51×10−5) Tmin 13.5
Tmin 13.50 (12.49 , 14.50) Topt 30.3
Tmax 38.76 (37.14 , 40.37) Tmax 38.8

a
An analytical expression to calculate the optimal temperature was derived from the models.
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Fig. 1. Selected nonlinear temperature-driven rate models fitted to developmental rate of larval and pupal
stages of C. includens based on statistical rank and biological significance.
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Fig. 2. Temperature responses of life-history traits of C. includens in a constant thermal environment. In
(a), (b) and (c) the temperature responses of birth rate, and immature and adult mortality rates, respectively.
In (d) and (e) the temperature responses of age at maturity and the intrinsic growth rate calculated using the
Euler-Lotka equation (3). The graphs are plotted in Celsius degree for easy interpretation but the fittings were
done using the temperature in Kelvin. Parameters values are as follows: bo = 73.1 ± 14.18, σ = 1.86 ± 0.38,
and To = 298.42± 0.54 (equation 4); ad̄ = 2.39× 10−3 ± 6.08× 10−4, bd̄ = −1.41± 0.36, and cd̄ = 208.9± 54
(equation 5 for immature); ad = 3.53 × 10−3 ± 8.02 × 10−4, bd = −2.09 ± 0.48, and cd = 309.2 ± 71.37
(equation 5 for adult); a = 2.8 × 10−6 ± 6.36 × 10−7, T̄min = 287 ± 1.12, T̄max = 313.85 ± 3.56 (equation 6).
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4 CONCLUSIONS AND FURTHER WORK

Two manuscripts already sent to scientific journals are presented in

this thesis, opening the way to future work and investigation. The first manuscript

enabled me to acquire a robust theoretical learning in mathematical analysis as well

as a considerable expertise in computational tools of DDE systems; in turn, the

second manuscript permitted me to have a significant background in entomological

laboratory, life table data and the use of regression models.

In summary, the first manuscript presents an analytical and numerical

analysis about invasion of an Wolbachia-infected mosquito population in an area al-

ready populated with uninfected mosquitoes. The importance of this study is related

to the fact that the infection mediates antiviral protection against a broad range of

viruses. The proposed model takes into account several aspects of mosquito life cycle

(immature and adult survival, development and oviposition rates) as well as speci-

fic features of Wolbachia infection on mosquito population (maternal inheritance of

bacteria, cytoplasmatic incompatibility, distortion of progeny sex ratio). Differently

from other mathematical models already published, our proposition can be easily

adapted to consider the influence of abiotic factors on mosquito dynamics. This is

important because Wolbachia infections in Ae. aegypti are vulnerable to high tempe-

ratures; heat stress reduces bacteria density in adults and decreases the probability

of cytoplasmic incompatibility and maternal transmission. As it is a new model, it

is important to discuss the positiveness and boundedness of solutions, as well as the

regions of existence and stability of the equilibrium states. We showed that when

the delay crosses some thresholds the populations go to extinction. Moreover, its

increase can promote, through Hopf bifurcation, stability switch towards instability
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for the nonzero equilibria. The overview drawn here, can be used as a safe beginning

to input more complex mechanisms on mosquito-bacteria-temperature interaction.

The second manuscript explores the use of statistical and mathemati-

cal models to address the relation among temperature and mosquito entomological

parameters. The novelty relies on the construction of this relationship for the insect-

pest Chrysodeixis includens. From this work, we can affirm that the overall cycle

of this species is feasible between 19.4 to 29.8 degrees Celsius. Therefore, this spe-

cies viability is restricted to regions where the annual temperature average is in this

range. Furthermore, the optimum temperature value for intrinsic growth rate (25.2

degrees Celsius) is consistent with population outbreaks observed in Brazilian soy-

bean. The results obtained here can be used to forecast accurately the occurrence

of different stages of Chrysodeixis includens in field and help optimize the control of

this insect.

Finally, the knowledge and skills developed throughout my doctorate

study are undoubtedly meaningful to carry out interdisciplinary collaboration, in

particular with researches from entomology that deal with real data and phenological

and/or mathematical models. As an example, the knowledge acquired during the

development of the two works described before has been used in the construction of

a DDE system to model different stages of Chrysodeixis includens life cycle where

all parameters depend on temperature. Birth, mortality and developmental models,

with fitted parameters coming from the second manuscript, are coupled to this DDE

model, whose theoretical background was learned through the first manuscript, in

order to get realistic seasonal fluctuations of the populations. Afterwards, control

functions simulating insecticide application will be added to the model dynamics.

This work is currently underway.
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