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Abstract 

๠is paper presents a study about operation planning for radial distribution systems using a mixed-integer second-
order cone programming formulation. ๠e proposal consists of a complete model for solving the problems of the 
reconfiguration of feeders and allocation of capacitor banks simultaneously, with the objective of achieving a min-
imum overall investment, in both fixed and switchable capacitor banks, and operational costs, related to the cost 
of energy losses. ๠e approach includes a voltage-dependent load representation, as well as a precise representation 
of the operation of capacitor banks, which is also voltage dependent. ๠e use of a mixed-integer second-order cone 
programming model guarantees convergence to optimality using existing optimization software. A strategy to re-
duce the number of candidate nodes of the system for capacitor banks allocation is also presented. Several tests 
are performed using the 69-node distribution system and a real 2313-node distribution system, demonstrating the 
effectiveness of the proposal. ๠e results indicate that better solutions can be obtained by performing the simulta-
neous optimization of the reconfiguration and allocation of capacitor banks than by solving the two problems 
sequentially, which may even lead to infeasible solutions. It is also verified that both the load and capacitor banks 
models have an influence on the problem’s solution. 

Keywords: Allocation of capacitor banks; mixed-integer second-order cone programming; optimization; reconfig-
uration of distribution systems; voltage-dependent models. 
 

Nomenclature 

Sets: 

Ωӵ Set of load nodes; 

Ω𝓈 Set of substation nodes; 

Ωգ Set of branches; 

Ωդ  Set of capacitor module options; 

Ωեը Set of nodes with distributed generation; 

Ωխ Set of load levels; 

Ωկ  Set of nodes, Ωկ = Ωӵ ∪ Ω𝓈. 

Parameters: 

𝑏դ  Susceptance of a capacitor module; 

𝑐դ  Annualized cost of a capacitor module; 

𝑐և
զ  Price of the energy losses at load level 𝑙; 

𝑐ժ  Annualized installation cost of a capacitor bank; 

𝑐մո  Annualized cost of the switching equipment for a capacitor bank; 

𝑛ք
դ  Maximum number of capacitor modules at node 𝑖; 

𝐼քօ Maximum current magnitude of branch 𝑖𝑗; 
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𝑁
դ

 Maximum number of capacitor banks in the system; 

𝑝𝑓ք
եը Limit of the capacitive power factor of the distributed generator at node 𝑖; 

𝑝𝑓
ք

եը
 Limit of the inductive power factor of the distributed generator at node 𝑖; 

𝑃քӴև
֊  Active power load at the nominal voltage magnitude 𝑉֊ at node 𝑖 at load level 𝑙; 

𝑄քӴև
֊  Reactive power load at the nominal voltage magnitude 𝑉֊ at node 𝑖 at load level 𝑙; 

𝑅քօ Resistance of branch 𝑖𝑗; 

𝑆ք

մ
 Maximum apparent power limit of a substation at node 𝑖; 

𝑉  Minimum voltage magnitude; 

𝑉  Maximum voltage magnitude; 

𝑉֊ Nominal voltage magnitude; 

𝑋քօ Reactance of branch 𝑖𝑗; 

𝑍քօ Magnitude of the impedance of branch 𝑖𝑗; 

𝒬դ  Nominal power of a capacitor module, at 1 p.u. voltage; 

𝛾քӴև
ժ  Participation of constant current load on the active power demand at node 𝑖 at load level 𝑙; 

𝛾քӴև
ձ  Participation of constant power load on the active power demand at node 𝑖 at load level 𝑙; 

𝛾քӴև
ջ  Participation of constant impedance load on the active power demand at node 𝑖 at load level 𝑙; 

𝜙քӴև
ժ  Participation of constant current load on the reactive power demand at node 𝑖 at load level 𝑙; 

𝜙քӴև
ձ  Participation of constant power load on the reactive power demand at node 𝑖 at load level 𝑙; 

𝜙քӴև
ջ  Participation of constant impedance load on the reactive power demand at node 𝑖 at load level 𝑙; 

∆և Duration of load level 𝑙. 

Continuous Variables: 

𝐼քօӴև
֎֌  Square of the current magnitude of branch 𝑖𝑗 at load level 𝑙; 

𝑃քօӴև Active power flow of branch 𝑖𝑗 at load level 𝑙; 

𝑃քӴև
եը Active power generation by the distributed generator at node 𝑖 at load level 𝑙; 

𝑃քӴև
մ  Active power generation by the substation at node 𝑖 at load level 𝑙; 

𝑄քօӴև Reactive power flow of branch 𝑖𝑗 at load level 𝑙; 

𝑄քӴվӴև
դ  Reactive power injected at node 𝑖 by the capacitor module 𝑐, at load level 𝑙; 

𝑄̂քӴև
դ  Total reactive power injection by the capacitor bank at node 𝑖 at load level 𝑙; 

𝑄քӴև
եը Reactive power generation by the distributed generator at node 𝑖 at load level 𝑙; 

𝑄քӴև
մ  Reactive power generation by the substation at node 𝑖 at load level 𝑙; 

𝑉քӴև Voltage magnitude at node 𝑖 at load level 𝑙; 

𝑉քӴև
֎֌  Square of the voltage magnitude at node 𝑖 at load level 𝑙; 

𝜆քօӴև
շ  Slack variable used in the squared voltage drop magnitude calculation of branch 𝑖𝑗 at load level 𝑙; 

𝜆քօӴև
ษ  Slack variable used in the voltage drop magnitude calculation of branch 𝑖𝑗 at load level 𝑙; 

𝛽քօ Auxiliary variable used in the radiality constraints. 

Integer Variables: 

𝑛ք
դ  Integer variable that indicates the number of capacitor modules installed at node 𝑖; 

𝑛̂քӴև
դ  Integer variable that represents the number of capacitor modules connected at node 𝑖 at load level 𝑙; 

𝑞ք
դ  Binary variable that indicates whether a capacitor bank is installed at node 𝑖 (𝑞ք

դ = 1) or not (𝑞ք
դ = 0); 

𝑞ք
մո  Binary variable that indicates whether a switching equipment is installed with the capacitor bank at 

node 𝑖 (𝑞ք
մո = 1) or not (𝑞ք

մո = 0); 

𝑤քӴվӴև
դ  Binary variable that indicates whether capacitor module 𝑐, of the capacitor bank at node 𝑖, is operating 

at load level 𝑙 (𝑤քӴվӴև
դ = 1) or not (𝑤քӴվӴև

դ = 0); 

𝑦քօ Binary variable that indicates whether branch 𝑖𝑗 is connected to the system (𝑦քօ = 1) or not (𝑦քօ = 0). 
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1. Introduction 

๠e need for improvements in power supply quality by electricity utilities has inspired several strategies, 

such as the allocation of capacitor banks and network reconfiguration in distribution systems [1], among others 

[2–4]. ๠e installation of capacitor banks offers diverse benefits to the distribution network, e.g., improving the 

system’s voltage profile, providing reactive power compensation, and reducing energy losses. ๠e reconfiguration 

of distribution systems can be used to alleviate the feeders’ loading, improve the voltage profile, and reduce losses 

by modifying the network topology. 

In the specialized literature, several works have tackled the problem of the sizing and allocation of capac-

itor banks and the distribution feeders’ reconfiguration problem separately. For the capacitor banks allocation, 

heuristic approaches can be found in [5,6]. Metaheuristic algorithms that try to avoid convergence to locally opti-

mal solutions are proposed in [7–10], based on the tabu search, genetic, and particle swarm algorithms. A mathe-

matical formulation to be solved by exact methods is proposed by [11], which presents a two-stage strategy, using 

a conic optimization model for the first stage, considering capacitor banks’ sizes as continuous variables; then, 

mixed-integer linear programming is applied at the second stage, assuming the capacitor banks’ sizes to be discrete 

variables. Although the capacitor allocation problem is widely addressed in the literature, the model for the reactive 

power injection by the capacitor banks to the distribution system is generally assumed to be constant, as the nom-

inal rating, independent of the voltage at the node in which the bank is installed. For the distribution feeders’ 

reconfiguration, several approaches, especially heuristic and metaheuristic techniques, have been developed, with 

different objectives. Heuristic algorithms to solve this problem can be found in [12,13]. On the other hand, me-

taheuristic techniques have also been used to solve the problem, such as simulated annealing in [14], the tabu 

search in [15], and the genetic algorithms in [16–18]. A multiobjective evolutionary algorithm is proposed in [19], 

in which the loads are represented through intervals to account for the uncertainties. In [20], a modified bacterial 

foraging algorithm is adapted to solve the reconfiguration problem of distribution systems. Mathematical models 

that can be solved using optimization solvers by exact techniques can also be used to solve the reconfiguration 

problem, as in [21,22]. A linearized formulation obtained from a mixed-integer nonlinear model in the presence of 

distributed generation is presented in [22]. In [21], a conic convex programming model is presented; the radiality 

is considered to be a set of spanning tree constraints. ๠e authors in [23] use a spanning tree theory and propose a 

heuristic approach to solve the problem and show the impact on the power losses when voltage-dependent loads 

are incorporated in the reconfiguration problem. 

๠e network reconfiguration and the capacitor banks allocation problems in radial distribution systems 

have been addressed simultaneously due to the shared objective functions, such as the minimization of power 
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losses and the necessity of maintaining the voltage system profile between adequate values in order to achieve an 

overall optimal solution. In [24], active power losses of the distribution network are minimized by alternately 

solving the capacitor banks allocation problem and the network reconfiguration problem with a genetic algorithm 

and a heuristic algorithm, respectively. ๠e work of [25] presents a single dynamic data structure for evolutionary 

programming for simultaneous reconfiguration and capacitor banks allocation, to maximize system loadability. 

๠e authors of [26] use an efficient method for energy loss reduction based on the system state characterization 

performing reconfiguration after capacitor placement. In [27], both the reconfiguration and capacitor allocation are 

resolved through an ant colony search algorithm. ๠e authors of [28] present a genetic algorithm strategy for solv-

ing the joint problem of reconfiguration and capacitor banks allocation. In [29], the reconfiguration and capacitor 

allocation problems are solved using a heuristic approach in order to minimize energy losses. ๠e work of [30] 

presents a branch exchange method for solving the reconfiguration problem, while a genetic algorithm approach 

optimizes the size and location of capacitors within an integrated framework. In [31], a fuzzy binary gravitational 

search algorithm is used for improving system efficiency by solving the reconfiguration and the capacitor allocation 

problems. ๠e authors introduce in [32] a new perturbation particle swarm optimization method for solving the 

reconfiguration and capacitor allocation problems simultaneously, by considering nonlinear loads. In [33], a krill 

herd algorithm is modified through opposition-based learning strategies for the optimal location of capacitor banks 

together with the reconfiguration problem. Finally, [34] presents a symbiotic organisms search in combination with 

a particle swarm optimization algorithm to improve the search space exploration for the capacitor placement and 

reconfiguration network problems. It can be verified that the joint problem of reconfiguration and capacitor banks 

allocation problems have been solved through heuristics- and metaheuristics-based strategies, whereas the voltage 

dependence of the capacitor’s reactive power contribution to the network is, usually, disregarded. 

In the literature, there are also works that solve the joint problem of the reconfiguration of feeders and 

operation of capacitor banks, assuming that the capacitor banks are already installed in the system [35]. In [36], a 

simulated annealing algorithm is used to solve the reconfiguration problem, while the capacitor operation is solved 

in a two-stage algorithm. ๠e first stage finds the optimal continuous shunt susceptances that minimize the power 

losses, and then, in the second stage, and using the optimal continuous values, a Taylor approximation of losses is 

used to find the discrete values for the capacitor banks. In [37], the authors use an ant colony and harmony search 

to solve the network reconfiguration and capacitor banks switching problem in the presence of distributed gener-

ation, considering generation uncertainty. A two-step heuristic algorithm is proposed in [38]. In the first step, a 

binary particle swarm optimization algorithm is employed to determine a reduced set of feasible reconfigurations 

that are evaluated using a nonlinear optimal power flow (OPF); the objective function of this OPF minimizes the 

energy production cost. ๠e second step determines the optimal switching of the already-installed capacitor banks 
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for each previously obtained reconfiguration, using exhaustive search. In [39], a two-stage robust reactive power 

optimization model is presented to coordinate discrete and continuous reactive power compensators, considering 

the power output uncertainty in installed wind farms. 

Most of the papers present heuristic and metaheuristic approaches to solve the problem of feeders’ recon-

figuration and capacitor banks allocation, either considering only one of these problems or both problems simul-

taneously. Although heuristic-based methods are able to find good-quality solutions with low computational ef-

forts, and metaheuristics are robust, flexible methods that can avoid the main drawback of heuristics, i.e., conver-

gence to low-quality local optimal solutions, neither method can guarantee convergence to optimality [40]. Besides 

that, metaheuristics-based approaches present many issues, such as a high computational demand, the necessity of 

adjusting parameters, and the need to define a stop criterion. 

Regarding the formulation of the problem, voltage-dependent models for capacitor banks and loads are 

disregarded in the clear majority of works [2]. ๠is fact may provide solutions that can be not only suboptimal for 

the more precise model, with voltage-dependent loads and capacitor banks operations, but also infeasible and 

costly with respect to the investment, as was verified in the tests presented. 

In this work, a complete mathematical model for the problem of the simultaneous reconfiguration of feed-

ers and allocation of capacitor banks is presented. ๠e proposed approach considers investment in both fixed and 

switchable capacitor banks and aims to minimize the overall investment and operational costs. ๠e proposed for-

mulation includes voltage-dependent loads by using the polynomial model presented in [41]. Besides that, the 

reactive power injection of the capacitor banks is formulated using an accurate model that considers reactive power 

injections as a function of the voltage magnitude in which the bank is installed. ๠e resulting model is a mixed-

integer second-order cone programming problem, which is convex; therefore, optimality can be achieved by using 

existing optimization software. A new strategy to reduce the number of candidate nodes for capacitor banks allo-

cation is also presented. 

๠e main contributions and conclusions of this paper are the following: 

i. A new convex complete formulation, of mixed-integer second-order cone programming, for the sim-

ultaneous reconfiguration of feeders and capacitor banks allocation, which ensures convergence to 

the optimal solution of the problem; 

ii. Voltage-dependent models considered for the representation of the operation of the capacitor banks 

and loads. ๠is type of representation, which is more precise than constant power models, is widely 

neglected in existing works that optimize either the reconfiguration problem or the capacitor banks 

allocation problem; 
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iii. A new, efficient strategy to reduce the number of candidate nodes for installing capacitor banks in 

large distribution systems. ๠e results indicate that the proposed strategy is capable of defining can-

didate nodes without excluding the optimal solution of the problem; 

iv. ๠e results show that it is important to perform the joint optimization of the feeders’ reconfiguration 

and capacitor banks allocation, since solving the two problems sequentially may lead to suboptimal 

or even infeasible solutions, as presented in the results for the first system; 

v. ๠e influence of the model used to represent the operation of the capacitor banks and the loads is 

also analyzed—it was demonstrated that when the optimization of the considered problem is per-

formed using the constant power models, commonly used in the literature, the obtained results are 

infeasible for the voltage-dependent formulation, which is a more realistic representation of the real-

world problem. 

๠e remainder of this paper is organized as follows: Section 2 presents the proposed formulation for the 

problem; Section 3 presents a strategy to reduce the number of candidate nodes for installing capacitor banks in 

large systems; Section 4 presents the results for several tests performed with the 69-node test system and a 2313-

node real system; Section 5 presents a discussion about the obtained results; and Section 6 presents the conclusions 

of the work. 

2. Mathematical Formulation 

๠is section presents the mixed-integer second-order cone programming model for the problem of joint 

reconfiguration of feeders and capacitor banks allocation in distribution systems considering voltage-dependent 

loads. ๠e proposed model provides a solution with both optimal investment in fixed and switchable capacitor 

banks, with their location and number of modules at the system’s nodes, as well as the optimal operation of the 

switchable banks for each load level. A single optimal topology is obtained simultaneously by reconfiguration to 

operate at all load levels. 

2.1 Objective Function 

๠e objective function 𝑣 shown in (1) considers both the investment cost in capacitor banks and the oper-

ational costs. 

min 𝑣 = ంि𝑐ժ𝑞ք
դ + 𝑐մո 𝑞ք

մո + 𝑐դ𝑛ք
դी

ք∈ျӲ

+ ం ం 𝑐և
զ∆և𝑅քօ𝐼քօӴև

֎֌

քօ∈ျԭև∈ျԷ

 (1)

Capacitor banks can be installed at load nodes, and in the first sum of (1), the first term, 𝑐ժ𝑞ք
դ , is related 

to the installation cost of a capacitor bank at a node. ๠erefore if 𝑞ք
դ = 1, then a capacitor bank is installed at node 
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𝑖, and the installation cost 𝑐ժ  is added to the objective function, independently of the number of modules of the 

bank. ๠e second term, 𝑐մո 𝑞ք
մո , is related to the purchase and installation costs of the switching devices for 

capacitor banks. If 𝑞ք
մո = 1, then the capacitor bank installed at node 𝑖 is switchable, and the cost, 𝑐մո , is added 

to the objective function. ๠e third term, 𝑐դ𝑛ք
դ , is related to the cost of purchasing the capacitor modules, 𝑐դ , 

according to the number of capacitor modules added to the bank at node 𝑖, 𝑛ք
դ . Note that all of the investment costs 

are annualized, and the parameter ∆և represents the number of hours of operation for load level 𝑙, considering an 

operation period of one year. ๠e second part of the objective function represents the cost of energy losses in the 

system for a one-year horizon. 

2.2 Network Operation Modeling 

๠e operation of the network is represented by the power flow equations presented in (2)–(8), based on 

the branch-flow formulation presented in [42]. 

ం 𝑃ֆքӴև
ֆք∈ျԭ

− ం ॕ𝑃քօӴև + 𝑅քօ𝐼քօӴև
֎֌ ॖ

քօ∈ျԭ

+ 𝑃քӴև
մ + 𝑃քӴև

եը = ভ𝛾քӴև
ջ

𝑉քӴև
֎֌

𝑉֊
ϵ

+ 𝛾քӴև
ժ

𝑉քӴև

𝑉֊

+ 𝛾քӴև
ձ ম 𝑃քӴև

֊  ∀𝑖 ∈ Ωկ , 𝑙 ∈ Ωխ (2)

ం 𝑄ֆքӴև
ֆք∈ျԭ

− ం ॕ𝑄քօӴև + 𝑋քօ𝐼քօӴև
֎֌ ॖ

քօ∈ျԭ

+ 𝑄քӴև
մ + 𝑄քӴև

եը + 𝑄̂քӴև
դ

= ভ𝜙քӴև
ջ

𝑉քӴև
֎֌

𝑉֊
ϵ

+ 𝜙քӴև
ժ

𝑉քӴև

𝑉֊

+ 𝜙քӴև
ձ ম 𝑄քӴև

֊

∀𝑖 ∈ Ωկ , 𝑙 ∈ Ωխ (3)

𝑉քӴև
֎֌ − 𝑉օӴև

֎֌ + 𝜆քօӴև
շ = 2ि𝑅քօ𝑃քօӴև + 𝑋քօ𝑄քօӴևी + 𝑍քօ

ϵ 𝐼քօӴև
֎֌  ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (4)

𝑉օӴև
֎֌𝐼քօӴև

֎֌ ≥ 𝑃քօӴև
ϵ + 𝑄քօӴև

ϵ  ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (5)

ੵ𝜆քօӴև
շ ੵ ≤ ५𝑉

ϵ
− 𝑉 ϵ६ ि1 − 𝑦քօी ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (6)

𝑉քӴև − 𝑉օӴև + 𝜆քօӴև
ษ = 𝑅քօ𝑃քօӴև + 𝑋քօ𝑄քօӴև ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (7)

ੵ𝜆քօӴև
ษ ੵ ≤ ि𝑉 − 𝑉 ीि1 − 𝑦քօी ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (8)

Constraints (2) and (3) represent the active and reactive power balance in the system (Kirchhoff’s current 

law), while (4) and (5) impose Kirchhoff’s voltage law on the system operation, in all load levels. ๠e slack vari-

able, 𝜆քօӴև
շ , is calculated in (6) according to the status of the switch of branch 𝑖𝑗, at load level 𝑙. ๠at is, if 𝑦քօ = 1 

(the switch of branch 𝑖𝑗 is closed, and the branch is connected to the system), then 𝜆քօӴև
շ = 0 and the difference 

𝑉քӴև
֎֌ − 𝑉օӴև

֎֌  is calculated in (4); otherwise, if 𝑦քօ = 0 (the switch of branch 𝑖𝑗 is open, and the branch is not oper-

ating), then constraint (4) is not applied to the branch 𝑖𝑗, and 𝑉քӴև
֎֌  and 𝑉օӴև

֎֌  are independent. 

Constraints (2) and (3) use the polynomial load model, also known as the ZIP model, to represent the 

voltage dependency characteristic of loads. In this representation, the loads consist of constant impedance (Z), 
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constant current (I), and constant power (P) components, and the dependence of the voltage magnitude changes 

according to the participation, 𝛾 and 𝜙, of each component. ๠e value of each component can be in the interval 

[0,1] in the “constrained ZIP model” [41], or it can be greater than 1 and/or less than 0 in the “accurate ZIP model” 

[41]. However, the sum of the load participation, 𝛾քӴև
ջ + 𝛾քӴև

ժ + 𝛾քӴև
ձ  and 𝜙քӴև

ջ + 𝜙քӴև
ժ + 𝜙քӴև

ձ , of each component at each 

node and each load level, must be equal to one [41]. For the constant power load model, 𝛾քӴև
ձ = 𝜙քӴև

ձ = 1, and 𝛾քӴև
ջ =

𝛾քӴև
ժ = 𝜙քӴև

ջ = 𝜙քӴև
ժ = 0, while for voltage-dependent loads, many utilities consider 𝛾քӴև

ջ = 𝛾քӴև
ժ = 0.5, 𝛾քӴև

ձ = 0, 

𝜙քӴև
ջ = 1, and 𝜙քӴև

ժ = 𝜙քӴև
ձ = 0 [41]. 

๠e conditions for which the conic constraint (5) is active are presented in [42,43]. After solving the 

model, it must be verified if (5) is active for all branches and load levels considered. 

Since the load is voltage-dependent, the terms related to the constant power and constant impedance (de-

pendent of the square of the voltage magnitude, 𝑉քӴև
֎֌) in (2) and (3) are readily available. However, the constant 

current component is dependent of the voltage magnitude, which can be obtained by ఊ𝑉
քӴև
֎֌. ๠is would make the 

model nonlinear. To avoid this issue, the voltage magnitude drop is calculated in (7), which provides a good ap-

proximation for the voltages (tests have shown errors lower than 0.4%). ๠e slack variable, 𝜆քօӴև
ษ , calculated in (8), 

is used to include constraint (7) in the model (𝜆քօӴև
ษ = 0) or not (𝜆քօӴև

ษ = 1), according to the status of the switch 𝑦քօ 

of branch 𝑖𝑗. 

Besides that, in the model, the voltages 𝑉քӴև
֎֌  and 𝑉քӴև are fixed at the voltage magnitude value at the sub-

station 𝑖, ∀𝑖 ∈ Ω𝓈, 𝑙 ∈ Ωխ; 𝑃քӴև
մ = 0; 𝑄քӴև

մ = 0 ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ; and 𝑍քօ = ఊ𝑅քօ
ϵ + 𝑋քօ

ϵ  ∀𝑖𝑗 ∈ Ωգ. For a branch 

𝑖𝑗 without a switch, 𝑦քօ can be fixed at 1. 

2.3 Physical and Operational Limits 

๠e physical and operational limits for the system are represented in (9)–(14). Constraints (9) and (10) 

are the voltage limits in the system for the squared voltage magnitude and for the voltage magnitude, respectively. 

𝑉 ϵ ≤ 𝑉քӴև
֎֌ ≤ 𝑉

ϵ
 ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ (9)

𝑉 ≤ 𝑉քӴև ≤ 𝑉  ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ (10)

Constraint (11) represents the current limit of each branch 𝑖𝑗, according to the status of the corresponding 

switch 𝑦քօ. Constraints (12) and (13) limit the active and reactive power flow on each branch 𝑖𝑗 and each load level 

𝑙, according to 𝑦քօ. 



9 
 

0 ≤ 𝐼քօӴև
֎֌ ≤ 𝐼քօ

ϵ
𝑦քօ ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (11)

ੵ𝑃քօӴևੵ ≤ 𝑉 𝐼քօ𝑦քօ ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (12)

ੵ𝑄քօӴևੵ ≤ 𝑉 𝐼քօ𝑦քօ ∀𝑖𝑗 ∈ Ωգ, 𝑙 ∈ Ωխ (13)

๠e capacities of the substations are represented by the quadratic constraint (14). 

ि𝑃քӴև
մ ीϵ + ि𝑄քӴև

մ ीϵ ≤ ঁ𝑆ք

մ
ং

ϵ

 ∀𝑖 ∈ Ω𝓈, 𝑙 ∈ Ωխ (14)

๠e distributed generation limits are represented in (15)–(17). 

ि𝑃քӴև
եըीϵ + ि𝑄քӴև

եըीϵ ≤ ঁ𝑆ք

եը
ং

ϵ

 ∀𝑖 ∈ Ωեը, 𝑙 ∈ Ωխ (15)

𝑃քӴև
եը ≥ 0 ∀𝑖 ∈ Ωեը, 𝑙 ∈ Ωխ (16)

−𝑃քӴև
եը tanिcos−φि𝑝𝑓ք

եըीी ≤ 𝑄քӴև
եը ≤ 𝑃քӴև

եը tan ঁcos−φ ঁ𝑝𝑓
ք

եը
ংং ∀𝑖 ∈ Ωեը, 𝑙 ∈ Ωխ (17)

Constraints (15) and (16) represent the generation limits of the distributed generators installed in the sys-

tem. Constraint (17) is the limit for the reactive power generation by the distributed generators. ๠e presented 

limits must be satisfied at all load levels. 

2.4 Radiality Constraints 

๠e radiality of the network is imposed by (18)–(21), as proposed in [21], using spanning tree constraints. 

𝛽քօ + 𝛽օք = 𝑦քօ ∀𝑖𝑗 ∈ Ωգ (18)

𝛽քօ = 0 ∀𝑖𝑗 ∈ Ωգ|𝑖 ∈ Ω𝓈 (19)

𝛽օք = 0 ∀𝑖𝑗 ∈ Ωգ|𝑗 ∈ Ω𝓈 (20)

ం 𝛽քօ

օ∈ျԹ|քօ∈ျԭ πϝ օք∈ျԭ

= 1 ∀𝑖 ∈ Ωӵ (21)

๠e status of the switch at branch 𝑖𝑗 is represented by 𝑦քօ, such that if 𝑦քօ = 1, then branch 𝑖𝑗 is connected 

to the system, and it is disconnected otherwise. Two auxiliary binary variables, 𝛽քօ and 𝛽օք, are defined for each 

branch 𝑖𝑗, indicating the direction of the flow in the branch, and constraint (18) imposes that only one direction is 

possible for a flow on branch 𝑖𝑗 if 𝑦քօ = 1, and if 𝑦քօ = 0, then both auxiliary variables are equal to 0 for branch 

𝑖𝑗. If the flow is from node 𝑗 toward node 𝑖, then 𝛽քօ = 1, and 𝛽օք = 1 if the flow is from 𝑖 toward 𝑗. Constraints 

(19) and (20) impose that the flows can only leave the substation, i.e., for a branch 𝑖𝑗 in which node 𝑖 is a substation 

node, then (19) imposes that 𝛽քօ = 0, indicating that 𝛽օք = 1 (if 𝑦քօ = 1) and the flow must be from node 𝑖 toward 
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node 𝑗. Constraint (20) is similar to (19), but refers to the branches in which node 𝑗 is a substation node. Finally, 

constraint (21) imposes that, for each load node 𝑖, there is only one flow arriving, and all other flows must be 

leaving the node. 

2.5 Investment and Operational Constraints for Capacitor Banks 

๠is section presents two sets of constraints related to the investment and operation of capacitor banks. 

๠e first one is a simplified model that considers constant reactive power injection by the capacitor banks and is 

the most used formulation in works that solve the capacitor banks allocation problem, while the second one is a 

precise formulation, with voltage-dependent reactive power injection. 

2.5.1 Capacitor Banks with Constant Reactive Power Injection Model 

๠e first set of constraints is (22)–(26), which considers that the reactive power injection by a capacitor 

bank is independent of the voltage at the node in which the bank is installed, as considered in most works presented 

in the literature. 

𝑄̂քӴև
դ = 𝑛̂քӴև

դ 𝒬դ  ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ (22)

𝑛̂քӴև
դ ≤ 𝑛ք

դ  ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ (23)

𝑛ք
դ ≤ 𝑛ք

դ𝑞ք
դ  ∀𝑖 ∈ Ωӵ (24)

ੵ𝑛̂քӴև
դ − 𝑛̂քӴև−φ

դ ੵ ≤ 𝑛ք
դ𝑞ք

մո  ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ|𝑙 > 1 (25)

ం 𝑞ք
դ

ք∈ျӲ

≤ 𝑁
դ

  (26)

Constraint (22) defines 𝑄̂քӴև
դ , the reactive power injection at node 𝑖 at load level 𝑙, as the number of capac-

itor modules connected to node 𝑖 at load level 𝑙, 𝑛̂քӴև
դ , multiplied by the nominal reactive power of a capacitor 

module, 𝒬դ . Note that in this model, the total injection, 𝑄̂քӴև
դ , does not depend on the voltage at node 𝑖 at load level 

𝑙. 

Constraint (23) limits the number of capacitor banks that are connected to node 𝑖 at load level l, 𝑛̂քӴև
դ , to 

the number of capacitor modules installed at node 𝑖, 𝑛ք
դ . In other words, for a capacitor module to be connected 

to a node, it must be installed at that node, and its price must be considered in the objective function. 

Constraint (24) is used to indicate whether a capacitor bank is installed at node 𝑖 or not. If 𝑛ք
դ > 0, then 

𝑞ք
դ = 1, and the installation cost of the capacitor bank at node 𝑖 is added to the investment cost. ๠is constraint is 

also used to limit the number of capacitor banks installed at node 𝑖 to a maximum of 𝑛ք
դ . 
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Constraint (25) indicates whether the capacitor bank installed at node 𝑖 is switchable or not. If 𝑞ք

մո = 0, 

then ੵ𝑛̂քӴև
դ − 𝑛̂քӴև−φ

դ ੵ = 0, indicating that the number of capacitor banks connected to node 𝑖 cannot change from 

one load level to another, which represents a fixed capacitor bank. Note that, in this case, the cost of the switching 

device is not added to the objective function. On the other hand, if 𝑞ք
մո = 1, the cost of the switching device is 

added to the investment cost, indicating that, at node 𝑖, there is a switchable capacitor bank, and in this case, 

ੵ𝑛̂քӴև
դ − 𝑛̂քӴև−φ

դ ੵ ≤ 𝑛ք
դ , i.e., the number of capacitor modules connected to the system at consecutive load levels can 

vary from zero to the maximum number of capacitor modules installed at node 𝑖, as presented in constraint (23). 

Finally, constraint (26) limits the number of nodes in the system in which capacitor banks can be installed 

to the value of 𝑁
դ

. 

2.5.2 Capacitor Banks with Voltage-Dependent Reactive Power Injection Model 

A more realistic representation for the operation of the capacitor banks is proposed in constraints (27)–

(34), in which the reactive power injection by a capacitor bank at a node is dependent on the voltage at that node. 

𝑄̂քӴև
դ = ం 𝑄քӴվӴև

դ

վ∈ျԮ

 ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ (27)

−𝑉
ϵ
𝑏դि1 − 𝑤քӴվӴև

դ ी ≤ 𝑄քӴվӴև
դ − 𝑏դ𝑉քӴև

֎֌ ≤ −𝑉 ϵ𝑏դि1 − 𝑤քӴվӴև
դ ी ∀𝑖 ∈ Ωӵ, 𝑐 ∈ Ωդ , 𝑙 ∈ Ωխ (28)

𝑉 ϵ𝑏դ𝑤քӴվӴև
դ ≤ 𝑄քӴվӴև

դ ≤ 𝑉
ϵ
𝑏դ𝑤քӴվӴև

դ  ∀𝑖 ∈ Ωӵ, 𝑐 ∈ Ωդ , 𝑙 ∈ Ωխ (29)

𝑤քӴվӴև
դ ≤ 𝑤քӴվ−φӴև

դ  ∀𝑖 ∈ Ωӵ, 𝑐 ∈ Ωդ , 𝑙 ∈ Ωխ|𝑐 > 1 (30)

ం 𝑤քӴվӴև
դ

վ∈ျԮ

≤ 𝑛ք
դ  ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ (31)

𝑛ք
դ ≤ 𝑛ք

դ𝑞ք
դ  ∀𝑖 ∈ Ωӵ (32)

ઘ ం 𝑤քӴվӴև
դ

վ∈ျԮ

− ం 𝑤քӴվӴև−φ
դ

վ∈ျԮ

ઘ ≤ 𝑛ք
դ𝑞ք

մո  ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ|𝑙 > 1 (33)

ం 𝑞ք
դ

ք∈ျӲ

≤ 𝑁
դ

  (34)

In this formulation, a binary variable, 𝑤քӴվӴև
դ , is used to indicate whether the capacitor module 𝑐 is con-

nected to node 𝑖 at load level 𝑙 (𝑤քӴվӴև
դ = 1) or not (𝑤քӴվӴև

դ = 0). ๠erefore, the set of capacitor modules of a capacitor 

bank is represented by Ωդ , where each module is represented by an index 𝑐. ๠e variable, 𝑄քӴվӴև
դ , represents the 

reactive power injection at node 𝑖, by the capacitor module 𝑐, at load level 𝑙. Figure 1 is used to illustrate these 

considerations. 
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Figure 1: Capacitor bank model 

Based on the proposed approach, constraint (27) defines the total reactive power injection by the capacitor 

bank at node 𝑖 at load level 𝑙 as the sum of injections of each capacitor module 𝑐, 𝑄քӴվӴև
դ . 

Constraints (28) and (29) represent a disjunctive formulation that calculates the reactive power injection 

of each individual capacitor module 𝑐, at node 𝑖 at load level 𝑙, as a function of the voltage magnitude and the 

susceptance of the module, 𝑏դ . Note that if 𝑤քӴվӴև
դ = 0, then in (29), 𝑄քӴվӴև

դ = 0, and in (28), 𝑉 ϵ ≤ 𝑉քӴև
֎֌ ≤ 𝑉

ϵ
. On 

the other hand, if 𝑤քӴվӴև
դ = 1, then in (29), 𝑄քӴվӴև

դ  must be within the minimum and maximum limits of the reactive 

power injection, which depend on the susceptance of the module and the minimum and maximum voltage magni-

tude limits in the system, and by (28), 𝑄քӴվӴև
դ = 𝑏դ𝑉քӴև

֎֌. Note that, if the limits for the voltage magnitude in the 

system are 𝑉 = 0.95 p.u. and 𝑉 = 1.05 p.u., then errors of up to 10.25% can appear in the reactive power injection 

of a capacitor bank if the first model, which does not consider voltage dependency, is used. 

Equation (30) is a fencing constraint, which imposes that the capacitor module 𝑐, with 𝑐 > 1, can only be 

connected to the system if the module 𝑐 − 1 is already connected. Note that, if a capacitor bank has, for example, 

three modules, and two of them should be connected, then it makes no difference which one of them should be 

disconnected, since all of them have the same specification. ๠is type of constraint does not modify the optimal 

solution of the problem, but it can help the efficiency of the solver for the problem. 

Note that, in this second formulation for the capacitor banks’ investment and operation, 𝑛̂քӴև
դ =

∑ 𝑤քӴվӴև
դ

վ∈ျԮ

, and therefore, constraints (31)–(33) are equivalent to (23)–(25). Constraint (34) remains the same 

as (26). 

2.6 Operation and Investment Binary Variables 

๠e discrete nature of some operation and investment variables is represented in (35)–(40). 

𝑞ք
դ ∈ {0,1} ∀𝑖 ∈ Ωӵ (35)

𝑞ք
մո ∈ {0,1} ∀𝑖 ∈ Ωӵ (36)

𝛽քօ, 𝛽օք ∈ {0,1} ∀𝑖𝑗 ∈ Ωգ, 𝑗𝑖 ∈ Ωգ (37)

𝑛̂քӴև
դ ∈ ℤ≥ ∀𝑖 ∈ Ωӵ, 𝑙 ∈ Ωխ (38)

𝑄̂քӴև
դ  

𝑤քӴφӴև
դ  𝑤𝑖,2,𝑙

𝐶  𝑤𝑖,3,𝑙
𝐶  𝑤քӴ|ျԮ|Ӵև

դ

𝑖 

𝑄քӴφӴև
դ  𝑄քӴ|ျԮ|Ӵև

դ  

𝑐 = 1 𝑐 = 2 𝑐 = 3 𝑐 = |Ωդ| 

𝑄
𝑖,2,𝑙
𝐶  𝑄

𝑖,3,𝑙
𝐶  
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𝑤քӴվӴև
դ ∈ {0,1} ∀𝑖 ∈ Ωӵ, 𝑐 ∈ Ωդ , 𝑙 ∈ Ωխ (39)

𝑛ք
դ ∈ ℤ≥ ∀𝑖 ∈ Ωӵ (40)

Equation (35) defines the variable that indicates the presence of a capacitor bank at a node as a binary 

variable, while (36) defines the binary variable related to the installation of the switching device of a capacitor 

bank at a node. Equation (37) indicates the binary nature of the variable related to the switches of the branches, 

used to open or close a circuit. ๠e operation of a capacitor bank is defined in the simplified model by the nonnega-

tive integer variable, 𝑛̂քӴև
դ , presented in (38), and in the more precise model by the set of binary variables, 𝑤քӴվӴև

դ , 

presented in (39). Finally, the nonnegative integer variable, 𝑛ք
դ , which indicates the number of capacitor modules 

installed at node 𝑖, is defined in (40). 

2.7 Complete Models 

Two different models can be obtained for the discussed problem. Both consider the simultaneous recon-

figuration of feeders and allocation of capacitor banks with voltage-dependent loads. 

In the first model (M1), however, the operation of the capacitor banks is simplified, and their reactive 

power injection is independent of the voltage magnitudes at the nodes in which they are installed. ๠e model M1 

is, therefore, formed by objective function (1), subject to (2)–(26) and (35)–(40). 

๠e second model (M2) considers a precise representation of the operation of the capacitor banks, with 

voltage-dependent reactive power injections. ๠e model M2 is formed by objective function (1), subject to (2)–

(21), and (27)–(40). 

Both models can also be solved considering only constant power demands, as is done in most works 

available in the literature, by fixing 𝛾քӴև
ջ , 𝛾քӴև

ժ , 𝜙քӴև
ջ , and 𝜙քӴև

ժ  at zero and 𝛾քӴև
ձ  and 𝜙քӴև

ձ  at one, ∀𝑖 ∈ Ωկ , 𝑙 ∈ Ωխ. Besides 

that, a solution for the reconfiguration problem alone can be obtained by fixing the investment variables related to 

the capacitor banks at zero and performing the reconfiguration. Similarly, a solution for the capacitor banks allo-

cation alone can be obtained by fixing the topology of the network and solving the capacitor allocation problem. 

Since the proposed models are convex, optimality can be ensured by solvers that use exact optimization 

techniques. ๠e next section presents the results of several tests performed with the proposed models, considering 

a case available in the literature. 

3. Strategy to Reduce the Number of Candidate Nodes for Capacitor 
Banks’ Installation 

๠e current generation of computational hardware and commercial optimization solvers may not be able 

to find a good-quality solution for the proposed formulation when large systems are considered. To deal with this 
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issue, a strategy to reduce the number of candidate nodes for capacitor banks’ allocation, and consequently, to 

reduce the combinatorial search space of the problem, is presented in Figure 2. 

 

Figure 2: Flowchart for defining candidate nodes for installing capacitor banks 

๠e proposed strategy for reducing the number of candidate nodes for capacitor banks installation begins 

with the system’s data reading. ๠en, the integrality of the variables related to the capacitor banks installation, 𝑞ք
դ , 

𝑞ք
մո , and 𝑛ք

դ , and the operation, 𝑛̂քӴև
դ  or 𝑤քӴվӴև

դ , is relaxed, i.e., constraints (35), (36), and (39) are replaced by 0 ≤

𝑞ք
դ ≤ 1, 0 ≤ 𝑞ք

մո ≤ 1, and 0 ≤ 𝑤քӴվӴև
դ ≤ 1, respectively, and (38) and (40) are replaced by 𝑛̂քӴև

դ ≥ 0 and 𝑛ք
դ ≥ 0, 

respectively. After that, the corresponding model is solved, considering only the binary variables of the reconfig-

uration problem. With the obtained solution, the candidate nodes are defined using the values of 𝑄̂քӴև
դ , i.e., the nodes 

𝑖 with 𝑄̂քӴև
դ  greater than 𝑄∗ for some 𝑙 are defined as candidate nodes for the installation of capacitor banks. 

After the candidate nodes are defined, the complete optimization model for the problem is solved with 

the discrete variables that correspond to the investment and operation of capacitor banks related to the nodes that 

are not candidates to receive a capacitor bank fixed at zero. ๠e model will provide the final topology of the net-

work, as well as the capacitor banks’ sizes, locations, and types. 

Ideally, this type of reduction should maintain in the candidate set of nodes, the nodes that would have 

capacitor banks installed if the complete model was solved, without the reduction. ๠is is verified for the proposed 

strategy in the next section. It should be noted that the proposed reduction strategy can be used with all of the 

problem formulations presented. 

4. Tests and Results 

๠e proposed convex models for the reconfiguration of distribution systems and the allocation of capacitor 

banks, simultaneously considering voltage-dependent loads and capacitor banks operation, was implemented in 

AMPL [44] and solved with CPLEX version 12.8 [45] (with default settings and an optimality gap of 1%) on a 

computer with a 3.20 GHz Intel® Core™ i7-8700 CPU and 16 GB of RAM. 

4.1 69-Node System 

Start 

Relax the integrality of the 
capacitor banks’ investment 

and operation variables 

Define the candidate nodes for  
capacitor banks’ installation 

Solve the relaxed model 

Restore the integrality of the ca-
pacitor banks’ decision variables 

Solve the complete model 

Capacitor banks’: 
- Locations 
- Sizes 
- Types 
Open switches 

Stop 

Read the 
data 
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๠e 69-node system, adapted from [6,8,46], is used to test the proposed method. ๠e voltage magnitude 

limits for the system are 𝑉 = 0.95 p.u. and 𝑉 = 1.05 p.u. ๠ree load levels, 1-heavy, 2-medium, and 3-light, are 

considered, with durations ∆φ= 1000 h, ∆ϵ= 6760 h, and ∆ϯ= 1000 h [6], and the price of the energy losses 

𝑐և
զ = 0.06 USD/kWh ∀𝑙 ∈ Ωխ. ๠e data for the capacitor banks are 𝑐ժ = 1000 USD, 𝑐մո = 300 USD, 𝑐դ = 900 

USD [6], 𝒬դ = 300 kVAr, 𝑛ք
դ = 6 ∀𝑖 ∈ Ωӵ, and 𝑁

դ
= 6. ๠e initial configuration of the system, i.e., before the 

reconfiguration and allocation of the capacitor banks, is illustrated in Figure 3. ๠e system has 68 load nodes, one 

substation node, and 73 lines. ๠e nominal voltage of the system is 12.66 kV, and the capacity of the substation is 

30 MVA. It is assumed that, for medium and light loads, the voltage at the substation is at 1 p.u., while, for heavy 

loads, the voltage is at 1.05 p.u. ๠e complete data for this system are available in [47]. 

 

Figure 3: Initial configuration for the 69-node system 

๠e following tests were considered: 

Case A1: Simultaneous reconfiguration of feeders and allocation of capacitor banks, considering both constant 

power loads and nominal reactive power injection by the capacitor banks (model M1 with 𝛾քӴև
ջ = 0, 

𝛾քӴև
ժ = 0, 𝛾քӴև

ձ = 1, 𝜙քӴև
ջ = 0, 𝜙քӴև

ժ = 0, and 𝜙քӴև
ձ = 1 ∀𝑖 ∈ Ωկ , 𝑙 ∈ Ωխ [41]); 

Case A2: Simultaneous reconfiguration of feeders and allocation of capacitor banks, considering constant power 

loads and voltage-dependent reactive power injection by the capacitor banks (model M2 with 𝛾քӴև
ջ =

0, 𝛾քӴև
ժ = 0, 𝛾քӴև

ձ = 1, 𝜙քӴև
ջ = 0, 𝜙քӴև

ժ = 0, and 𝜙քӴև
ձ = 1 ∀𝑖 ∈ Ωկ , 𝑙 ∈ Ωխ [41]); 

Case A3: Simultaneous reconfiguration of feeders and allocation of capacitor banks, considering voltage-de-

pendent loads (𝛾քӴև
ջ = 0.5, 𝛾քӴև

ժ = 0.5, 𝛾քӴև
ձ = 0, 𝜙քӴև

ջ = 1, 𝜙քӴև
ժ = 0, and 𝜙քӴև

ձ = 0 ∀𝑖 ∈ Ωկ , 𝑙 ∈ Ωխ [41]) 

and nominal reactive power injection by the capacitor banks (model M1); 

1 18 19 20 21 22 13 14 15 16 17 8 9 10 11 12 3 4 5 6 7 23 24 25 26 27 2 

45 46 40 41 42 43 44 36 37 38 39 

51 52 

47 49 50 48 

66 67 

68 69 

28 35 30 31 32 33 34 29 

53 65 60 61 62 63 64 55 56 57 58 59 54 

Closed switch 

𝑆𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

Open switch 

500A line 

300A line 

100A line 
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Case A4: Simultaneous reconfiguration of feeders and allocation of capacitor banks, considering both voltage-

dependent loads (𝛾քӴև
ջ = 0.5, 𝛾քӴև

ժ = 0.5, 𝛾քӴև
ձ = 0, 𝜙քӴև

ջ = 1, 𝜙քӴև
ժ = 0, and 𝜙քӴև

ձ = 0 ∀𝑖 ∈ Ωկ , 𝑙 ∈ Ωխ 

[41]) and voltage-dependent reactive power injection by the capacitor banks (model M2). 

Tables 1 and 2 present the results for Cases A1 and A2, which consider the constant load model and 

capacitor banks with nominal and voltage-dependent reactive power injections, respectively. 

Table 1: Values of decision variables for Cases A1 and A2, which consider constant power demands 

Results 
Initial 

configuration 
Cases 

A1 A2 

Open switches 
11-43, 13-21, 
15-46, 50-59, 

27-65 
5-6, 13-14, 57-58, 63-64, 13-21 5-6, 13-14, 54-55, 63-64, 13-21 

Capacitor banks’ 
location/ 
operation 

– 

Node Modules Type 

Modules connected 
(reactive power injected [kVAr]) Node Modules Type 

Modules connected 
(reactive power injected [kVAr]) 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

6 
11 
50 
59 
61 
65 

2 
3 
3 
3 
6 
4 

Fixed 
Fixed 
Fixed 

Switchable 
Switchable 
Switchable 

2(600) 
3(900) 
3(900) 
3(900) 

6(1800) 
4(1200) 

2(600) 
3(900) 
3(900) 

0(0) 
5(1500) 

2(600) 

2(600) 
3(900) 
3(900) 

0(0) 
3(900) 
1(300) 

6 
11 
50 
59 
61 
64 

2 
3 
3 
4 
6 
4 

Fixed 
Fixed 
Fixed 

Switchable 
Switchable 
Switchable 

2(552.55) 
3(863.66) 
3(949.18) 

4(1141.54) 
6(1633.63) 
4(1087.82) 

2(552.47) 
3(845.94) 
3(884.44) 
1(279.48) 

5(1365.16) 
2(543.17) 

2(576.81) 
3(875.29) 
3(894.53) 
1(228.45) 
3(852.25) 
1(282.80) 

Table 2: Operational results for Cases A1 and A2 

Results Initial configuration 
Cases 

A1 A2 

Investment cost (USD) – 25,800.00 26,700.00 

Total losses cost (USD) 403,449.90 148,643.38 148,737.27 

Total cost (USD) 403,449.90 174,443.38 175,437.27 

Node - Min. voltage (p.u.)    

Load level 1 65 - 0.7468 64 - 0.9516 64 - 0.9521 

Load level 2 65 - 0.8525 64 - 0.9518 64 - 0.9515 

Load level 3 65 - 0.9070 63 - 0.9691 64 - 0.9709 

Power losses (kW)    

Load level 1 2449.58 794.58 798.92 

Load level 2 596.89 233.57 233.20 

Load level 3 239.62 103.87 103.58 

Losses cost reduction (%) – 63.16 63.13 

CPU time (s) – 242 584 

Table 1 shows that, in the initial state of the system, the switches at branches 11-43, 13-21, 15-46, 50-59, 

and 27-65 are open, and the system does not have any capacitor bank. In this case, in Table 2, the losses cost is 

403,449.90 USD, with minimum voltage magnitudes of 0.7468 p.u., 0.8525 p.u., and 0.9070 p.u. at node 65 for 

the load levels 1–3, respectively. 

For Case A1, with the reconfiguration opening the switches of branches 5-6, 13-14, 57-58, 63-64, and 13-

21 and closing all other switches, and with the capacitor banks allocated at six nodes, with a total investment cost 

of 25,800.00 USD (and their operation described in the table), the losses cost was reduced by 63.16%, to 

148,643.38 USD, and all the voltage magnitudes are, in this case, within the limits of 0.95 p.u. and 1.05 p.u. 



17 
 
In Case A2, which considers the reactive power injection by the capacitor banks represented by the volt-

age-dependent model, a similar reduction in the cost of losses in the system, of 63.13%, was obtained, when com-

pared to Case A1. In this case, however, the topology of the system is different, with the switches of branches 5-6, 

13-14, 54-55, 63-64, and 13-21 open. Also, the investment in capacitor banks is larger (26,700.00 USD), the banks 

are installed at different nodes, and their operation differs from Case A1. It can be verified in the operation of the 

capacitor banks in Case A2 that the reactive power injections differ from the nominal values. For example, at node 

6, at load level 1, two modules, with a nominal reactive power 𝒬դ = 300 kVAr each, are injecting 552.55 kVAr, 

representing a difference of 8.59% from the nominal value. It is worth noting that the solution for Case A1 is 

infeasible when it is fixed in Case A2, due to the voltage magnitude violation at the nodes and current limits 

violation, since the capacitor banks cannot provide enough reactive power compensation to the system. 

Tables 3 and 4 present the results for Cases A3 and A4, which consider the voltage-dependent load model 

and the capacitor banks with nominal and voltage-dependent reactive power injections, respectively. 

Table 3: Values of decision variables for Cases A3 and A4, which consider voltage-dependent loads 

Results 
Initial 

configuration 
Cases 

A3 A4 

Open switches 
11-43, 13-21, 
15-46, 50-59, 

27-65 
5-6, 13-14, 57-58, 61-62, 13-21 5-6, 14-15, 56-57, 61-62, 13-21 

Capacitor banks’ 
location/ 
operation 

– 

Node Modules Type 

Modules connected 
(reactive power injected [kVAr]) Node Modules Type 

Modules connected 
(reactive power injected [kVAr]) 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

6 
11 
49 
61 
65 

2 
2 
6 
6 
4 

Fixed 
Fixed 

Switchable 
Switchable 
Switchable 

2(600) 
2(600) 

6(1800) 
6(1800) 
4(1200) 

2(600) 
2(600) 
3(900) 

4(1200) 
2(600) 

2(600) 
2(600) 
2(600) 
3(900) 
1(300) 

6 
11 
49 
61 
64 

2 
2 
6 
6 
4 

Fixed 
Fixed 

Switchable 
Switchable 
Switchable 

2(552.05) 
2(574.25) 

6(1913.89) 
6(1626.92) 
4(1085.84) 

2(550.96) 
2(561.87) 
3(886.21) 

5(1371.67) 
2(541.95) 

2(572.61) 
2(579.21) 
2(593.35) 
3(844.87) 
1(280.84) 

Table 4: Operational results for Cases A3 and A4 

Results Initial configuration 
Cases 

A3 A4 

Investment cost (USD) – 23,900.00 23,900.00 

Total losses cost (USD) 253,173.16 133,326.39 133,694.25 

Total cost (USD) 253,173.16 157,226.39 157,594.25 

Node - Min. voltage (p.u.)    

Load level 1 65 - 0.8346 62 - 0.9506 62 - 0.9506 

Load level 2 65 - 0.8802 62 - 0.9506 62 - 0.9501 

Load level 3 65 - 0.9185 62 - 0.9673 62 - 0.9673 

Power losses (kW)    

Load level 1 1306.94 725.61 731.79 

Load level 2 403.23 207.41 207.49 

Load level 3 186.77 94.43 93.84 

Losses cost reduction (%) – 47.34 47.19 

CPU time (s) – 550 391 

In the base case, considering voltage-dependent loads, the losses cost is 253,173.16 USD. ๠e minimum 

voltage in the system at all load levels are under the minimum limit of 0.95 p.u., but the minimum voltages are 
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higher than those of the base case with constant power loads. Also, the losses in the system are lower when this 

model is considered. 

๠e results for Cases A3 and A4 indicate the same investment cost (23,900.00 USD), with different to-

pologies for the network and different locations and operations for the capacitor banks. ๠e reductions in the cost 

of the losses were almost the same in both cases. After the reconfiguration, the operation of the system becomes 

feasible, with all the voltages within the range of 0.95 p.u. and 1.05 p.u. Note again that the solutions for Cases A3 

and A4 differ from the solutions for Cases A1 and A2, both in the topology of the network and the investment and 

operation of the capacitor banks. 

Figure 4 shows the voltage profile in the system for Cases A1–A4, compared to the base case. Figure 4 

(a)–(d) indicates that the voltage profile is improved in the system in all four cases, and the operation of the system 

becomes feasible with respect to the voltage magnitude constraint. 

To show the importance of considering voltage-dependent models for the loads and the operation of the 

capacitor banks, Tables 5 and 6 present the results obtained when the binary variables that represent the network 

topology for the reconfiguration problem and the discrete variables that represent the capacitor banks investment 

and operation of Cases A1–A3 are fixed in Case A4, i.e., the integer solutions for Cases A1–A3 are analyzed using 

the complete voltage-dependent formulation. 

By analyzing Tables 5 and 6, it can be verified that the solutions for Cases A1 and A2 present both higher 

investment and losses costs when they are evaluated with the considerations of Case A4. Besides that, although 

the voltage magnitude constraint is satisfied by both solutions, the current magnitude constraint is violated in 

branch 3-4, at load level 1, and therefore, both solutions are infeasible. It was only possible to obtain them by 

increasing the current capacity of the branches. ๠e integer variables of the solution for Case A3 are infeasible 

when they are fixed in the model of Case A4 because the minimum voltage magnitude in the system is lower than 

0.95 p.u. 

๠e importance of performing the simultaneous reconfiguration of feeders and allocation of capacitor 

banks is evidenced when these problems are solved sequentially. In both cases, for the test system presented, 

considering both constant power and voltage-dependent loads, it is not possible to obtain a feasible solution by 

solving either the reconfiguration and then the allocation or the allocation and then the reconfiguration problem. 

It should be noted that the conic constraint (5) was active on all branches, at all load levels, and in all test 

cases. Finally, the computational times for Cases A1–A4 were 242 s, 584 s, 550 s, and 391 s, respectively. ๠is 

indicates that the approach can be applied to larger instances. 
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Figure 4: Voltage profile in the 69-node system for (a) Case A1, (b) Case A2, (c) Case A3, and (d) Case A4 

Table 5: Values of decision variables for Cases A1, A2, and A3 fixed in the complete model of Case A4 

Results 
Cases 

A1 A2 A3 
Open  
switches 

5-6, 13-14, 57-58, 63-64, 13-21 5-6, 13-14, 54-55, 63-64, 13-21 5-6, 13-14, 57-58, 61-62, 13-21 

Capacitor 
banks’  
location/ 
operation 

Node 

Modules connected 
(reactive power injected [kVAr]) Node 

Modules connected 
(reactive power injected [kVAr]) Node 

Modules connected 
(reactive power injected [kVAr]) 

Level 1 Level 2 Level 3 Level1 Level 2 Level 3 Level 1 Level 2 Level 3 

6 
11 
50 
59 
61 
65 

2(557.82) 
3(870.30) 
3(949.93) 
3(864.30) 

6(1656.11) 
4(1109.95) 

2(556.07) 
3(850.57) 
3(884.24) 

0(0) 
5(1369.94) 

2(550.06) 

2(577.64) 
3(876.44) 
3(892.30) 

0(0) 
3(847.79) 
1(284.35) 

6 
11 
50 
59 
61 
64 

2(559.73) 
3(872.35) 
3(952.42) 

4(1160.35) 
6(1667.65) 
4(1107.33) 

2(557.17) 
3(851.77) 
3(887.21) 
1(282.39) 

5(1382.48) 
2(549.33) 

2(578.42) 
3(877.30) 
3(895.57) 
1(289.58) 
3(856.31) 
1(283.95) 

6 
11 
49 
61 
65 

2(552.32) 
2(574.53) 

6(1913.90) 
6(1626.92) 
4(1091.82) 

2(551.07) 
2(561.97) 
3(883.44) 

4(1083.90) 
2(543.61) 

2(572.67) 
2(579.28) 
2(593.35) 
3(844.87) 
1(281.56) 

Table 6: Operational results for Cases A1, A2, and A3 fixed in the complete model of Case A4 

Results 
Cases 

A1 A2 A3 

Investment cost (USD) 25,800.00 26,700.00 23,900.00 

Total losses cost (USD) 133,089.08 134,380.23 133,547.67 

Total cost (USD) 158,889.08 161,080.23 157,447.67 

Node - Min. voltage (p.u.)    

Load level 1 64 - 0.9564 64 - 0.9606 62 - 0.9471 

Load level 2 64 - 0.9545 64 - 0.9568 62 - 0.9482 

Load level 3 63 - 0.9705 64 - 0.9729 62 - 0.9663 

Power losses (kW)    

Load level 1 718.57 722.16 729.56 

Load level 2 207.50 209.93 207.44 

Load level 3 96.89 98.38 93.97 

Losses cost reduction (%) 47.43 46.92 47.25 
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An additional test was carried out to evaluate the possibility of solving the exact mixed-integer nonlinear 

programming problem obtained when constraint (5) is replaced by an equality, 𝑉քӴև
֎֌  is replaced by 𝑉քӴև

ϵ , and con-

straints (7)–(9) are removed from the model. ๠e optimization solver KNITRO was used in this test, and it was 

not able to obtain a feasible integer solution for the problem. ๠is result indicates that mixed-integer nonlinear 

programing problems are still a challenge to overcome, even for medium-sized systems. 

4.2 Validation of the Strategy to Reduce the Number of Candidate Nodes for Capacitor 
Banks Allocation 

Ideally, the reduction strategy should provide a set of candidate nodes for the installation of capacitor 

banks that does not exclude the optimal solution of the problem, i.e., a node at which a capacitor bank is installed 

when the model is solved without the reduction should be a candidate node. 

Since the optimal solution is only known after the complete model is solved, and very large systems may 

be difficult to solve with the current generation of optimization solvers and computational hardware, to evaluate 

the effectiveness of the reduction strategy, a test was carried out using the 69-node system. 

By applying the reduction strategy to the 69-node system with 𝑄∗ = 0, the set of candidate nodes for the 

installation of capacitor banks, Ωӵ
∗, is Ωӵ

∗ = {6, 11, 12, 49, 50, 59, 61, 64, 65}. It can be verified that the solutions 

for Cases A1–A4, obtained without the reduction strategy, have capacitor banks installed only at the candidate 

nodes obtained with the reduction strategy. ๠is indicates that the proposed reduction strategy did not exclude the 

optimal solution of the problem. 

4.3 2313-Node Real System 

In order to validate the scalability of the proposed formulations for large instances, results for a real sys-

tem based on a Colombian oil company are presented. ๠is system operates at 14.4 kV and is composed of 2305 

load nodes, 2335 branches, six substations of 15 MVA, and two distributed generation nodes, each one with a 

capacity of 10 MVA. ๠e total active and reactive loads are 59.579 MW and 28.855 MVAr, respectively. ๠e 

strategy to reduce the number of candidate nodes was applied to the system, and in this case, for 𝑄∗ = 0, 140 

nodes are classified as candidates for the installation of capacitor banks. Complete data for this system can be 

found in [47]. Two cases are considered: 

Case B1: Simultaneous reconfiguration of feeders and allocation of capacitor banks, considering both constant 

power loads and nominal reactive power injection by the capacitor banks (model M1); 

Case B2: Simultaneous reconfiguration of feeders and allocation of capacitor banks, considering both voltage-

dependent loads and voltage-dependent reactive power injection by the capacitor banks (model M2). 

Table 7 presents the initial operating state of the system, considering both constant power and voltage-
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dependent models for the loads. It can be verified that the operation is infeasible in both cases because the minimum 

voltage magnitude in the system is under the minimum limit of 0.95 p.u. 

Table 7: Initial state of the system 

Results Constant power load model Voltage-dependent load model

Open switches 
110-122, 175-139, 225-346, 250-1301, 366-272, 594-619, 646-602, 799-800, 815-816, 816-793, 919-853, 939-933, 961-946, 

989-1052, 969-1045, 962-966, 1079-1136, 1261-2297, 1284-1185, 1299-586, 1300-349, 1303-396, 186-71, 655-572, 332-1296, 
725-606, 1307-615

Total losses cost (USD) 889,188.31 863,011.67

Total generation cost (USD) 492,299.22 473,054.21

Total cost (USD) 1,381,487.53 1,336,065.89

Node - Min. voltage (p.u.) 

Load level 1 1890 - 0.8541 1890 - 0.8630

Load level 2 1890 - 0.8875 1890 - 0.8928

Power losses (kW) 

Load level 1 2107.47 2038.82

Load level 2 1276.05 1245.09

Tables 8 and 9 present the results for Cases B1, B2, and the operation obtained when the integer solution 

for Case B1 is fixed in the complete voltage-dependent model. 

Table 8: Values of decision variables for Cases B1 and B2 

Results 
Cases 

B1 B2 Case B1 fixed in the complete model

Open 
switches 

1301-1279, 192-961, 393-1046, 658-802, 
505-2297, 650-741, 940-2297, 149-146, 

646-816, 1308-644, 110-122, 225-346, 
366-272, 746-1853, 799-800, 919-853, 

989-1052, 962-966, 1079-1136, 1261-2297, 
1284-1185, 1299-586, 1300-349, 1303-396, 

186-71, 655-572, 725-606, 1307-615

1301-1279, 192- 961, 658- 802, 505-2297, 
650- 741, 940-2297, 149-146, 646- 816, 

1308- 644, 110 -122, 225 -346, 366 -272, 
746-1853, 799- 800, 919- 853, 989-1052, 

969-1045, 962- 966, 1079-1136, 1261-2297, 
1284-1185, 1299- 586, 1300- 349, 1303- 396, 

186-71, 655-572, 725- 606, 1307- 615

1301-1279, 192-961, 393-1046, 658-802, 
505-2297, 650-741, 940-2297, 149-146, 

646-816, 1308-644, 110-122, 225-346, 366-272, 
746-1853, 799-800, 919-853, 989-1052,

962-966, 1079-1136, 1261-2297, 1284-1185, 
1299-586, 1300-349, 1303-396, 186-71, 

655-572, 725-606, 1307-615

Capacitor 
banks’  
location/ 
operation 

Node Modules Type

Modules connected 
(reactive power 

injected [kVAr]) Node Modules Type

Modules connected 
(reactive power 

injected [kVAr]) Node Modules Type

Modules connected 
(reactive power 

injected [kVAr])

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2
1249
1381
1459
1498
1930
1931
2102
2259
2292
317
880

2
2
1
2
2
2
1
2
1
2
2

Switchable
Fixed
Fixed

Switchable
Switchable

Fixed
Fixed
Fixed
Fixed

Switchable
Switchable

2(1800)
2(1800)
1(900)

2(1800)
2(1800)
2(1800)
1(900)

2(1800)
1(900)

2(1800)
2(1800)

0(0)
2(1800)

1(900)
1(900)
1(900)

2(1800)
1(900)

2(1800)
1(900)
1(900)
1(900)

1249
1381
1459
1931
2102
2259
2292

272
317
681
808
880

2
2
1
2
1
2
1
2
2
1
2
2

Switchable
Fixed
Fixed

Switchable
Fixed
Fixed
Fixed

Switchable
Switchable

Fixed
Switchable
Switchable

2(1786.83)
2(1705.23)

1(852.65)
2(1657.56)

1(839.95)
2(1775.46)

1(840.91)
2(1669.92)
2(1634.85)

1(832.36)
2(1680.61)
2(1788.29)

0(0.00)
2(1749.46)

1(874.88)
1(825.75)
1(851.36)

2(1766.73)
1(856.88)
1(832.76)
1(816.76)
1(833.13)
1(839.72)
1(886.64)

1249
1381
1459
1498
1930
1931
2102
2259
2292

317
880

2 
2 
1 
2 
2 
2 
1 
2 
1 
2 
2 

Switchable
Fixed
Fixed

Switchable
Switchable

Fixed
Fixed
Fixed
Fixed

Switchable
Switchable

2(1786.83)
2(1705.22)

1(852.65)
2(1663.84)
2(1664.66)
2(1661.17)

1(836.98)
2(1775.45)

1(840.91)
2(1634.85)
2(1788.29)

0(0.00)
2(1749.46)

1(874.87)
1(830.42)
1(842.09)

2(1684.08)
1(849.02)

2(1766.73)
1(856.88)
1(816.76)
1(886.64)

Table 9: Operational results for Cases A3 and A4 

Results 
Cases 

B1 B2 Case B1 fixed in the complete model 

Investment cost (USD) 60,000.00 63,800.00 60,000.00 

Total losses cost (USD) 685,438.84 685,879.40 681,360.18 

Total generation cost (USD) 150,091.39 151,064.00 151,064.06 

Total cost (USD) 895,530.23 900,743.40 892,424.24 

Node - Min. voltage (p.u.)    

Load level 1 1874 - 0.9508 1874-0.9500 1874 - 0.9487 

Load level 2 1528 - 0.9522 1874-0.9511 1528 - 0.9517 

Power losses (kW)    

Load level 1 1611.83 1637.19 1600.58 

Load level 2 996.39 972.70 992.11 

Losses cost reduction (%) 22.91 21.05  

CPU time (s) 4666 42893 – 
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For Case B1, after the reconfiguration and capacitor banks allocation, with a total investment cost of 

60,000.00 USD (and their operation described in Table 8), the losses cost was reduced by 22.91%, to 685,438.84 

USD, and all the voltage magnitudes are, in this case, within the limits of 0.95 p.u. and 1.05 p.u. 

In Case B2, which considers voltage-dependent models, a similar reduction in the cost of losses in the 

system, of 19.92%, was obtained, when compared to Case B1. In this case, however, the topology of the system is 

different, and the investment in capacitor banks is larger (63,800.00 USD). It can be verified in the operation of 

the capacitor banks in Case B2 that the reactive power injections differ from the nominal values. Again, as for the 

69-node system, the integer solution for Case B1 is infeasible when it is fixed in Case B2, due to the voltage 

magnitude violation at some nodes. 

๠e computational times for the problem was 4666 s for Case B1 and 42893 s for Case B2, which is 

acceptable, since this is a large system and an operational planning problem. For all the tests performed for this 

system, it was verified that the conic constraint (5) was always active in the obtained solutions. 

4.4 Dimension of the Proposed Model 

๠e number of variables and constraints of the complete model for the reconfiguration of feeders and 

allocation of capacitor banks considering voltage-dependent models (M2) is presented in Table 10, where | ⋅ | 

represents the cardinality of the corresponding set, Ωӵ
∗ is the set of candidate nodes for the allocation of capacitor 

banks, and Ωգ
𝓈  is the set of branches directly connected to a substation node. 

Table 10: Dimension of the proposed formulation 

V
ar

ia
bl

es
 Continuous |Ωխ|[2|Ωկ | + 5|Ωգ| + 2|Ω𝓈| + |Ωӵ

∗|(|Ωդ | + 1) + 2|Ωեը|] 

Integer |Ωӵ
∗| 

Binary 2|Ωգ| + |Ωӵ
∗|(|Ωդ ||Ωխ| + 2) 

C
on

st
ra

in
ts

 Linear equality |Ωգ| + 2|Ωգ
𝓈 | + |Ωӵ| + |Ωխ|(2|Ωկ | + 2|Ωգ| + |Ωӵ

∗|) 

Linear inequality |Ωխ|[9|Ωգ| + 2|Ωӵ| + 2|Ωեը| + |Ωӵ
∗|(5|Ωդ | + 1)] + 1 

Quadratic (|Ω𝓈| + |Ωեը|)|Ωխ| 

Conic |Ωգ||Ωխ| 

๠e main difficulty of the model presented in this paper is related to the presence of discrete (binary and 

integer) variables. Table 10 shows that the number of integer variables in the problem is equal to |Ωӵ
∗| while the 

number of binary variables is 2|Ωգ| + |Ωӵ
∗|(|Ωդ ||Ωխ| + 2). ๠erefore, by reducing the number of candidate nodes 

for the installation of capacitor banks, the number of load levels, or the number of capacitor modules that can be 

installed at a node, the number of discrete variables is also reduced. As presented in the previous section, it was 

possible to find a solution for the 2313-node real system by performing the proposed strategy for defining candidate 

nodes for the installation of capacitor banks. 
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5. Discussion 

In the literature, most of the works use heuristic and metaheuristic strategies for solving the distribution 

feeders’ reconfiguration problem and the capacitor bank size and allocation problem, either considering only one 

problem or both problems simultaneously. Although heuristic-based strategies achieve good-quality solutions, 

these approaches cannot ensure convergence to optimality. In this work, a mixed-integer second-order cone pro-

gramming formulation, which guarantees convergence to the optimal solution, is proposed. Moreover, the results 

presented in Section 4, for the 69-node and the real 2313-node systems, demonstrate the effectiveness and the 

scalability of the proposed approach. On the other hand, the proposed strategy for the reduction of candidate nodes 

for capacitor banks allocation validates its effectiveness by obtaining a set of candidate nodes that includes all 

nodes where capacitor banks are installed when solving the complete model without reducing the search space, as 

shown in Section 4.2. ๠e results presented in Section 4.1 show the importance of considering voltage-dependent 

models for the loads and capacitors banks. Neglecting voltage-dependent formulations could lead to economic 

losses due to unnecessary or wrong investments or, even worse, compromising the system’s operation. ๠e im-

portance of performing the simultaneous reconfiguration of feeders and allocation of capacitor banks is evidenced 

when these problems are solved sequentially—it is not possible to obtain a feasible solution by solving either the 

reconfiguration and then the allocation of capacitor banks or the allocation of capacitor banks and then the recon-

figuration problem. 

6. Conclusion 

In this paper, a model for the simultaneous reconfiguration of feeders and allocation of capacitor banks in 

radial distribution systems was presented. ๠e mathematical model considers voltage dependence for capacitor 

banks and load models. ๠e optimization problem was addressed as a mixed-integer second-order cone program-

ming model that is convex and, therefore, guarantees convergence to optimality by using commercial solvers. A 

strategy to reduce the combinatorial search space of the problem by defining candidate nodes for the installation 

of capacitor banks was presented. ๠e proposed approach has been tested in a modified 69-node radial system for 

several study cases, combining different load and capacitor models, and in a 2313-node real distribution system, 

to demonstrate the scalability of the proposal. It is concluded that the load and capacitor modeling have a signifi-

cant impact on the investment plan. As presented in this work, not considering the voltage dependence model for 

loads and capacitor banks can lead to infeasible solutions when these solutions are evaluated in the complete model 
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with both voltage-dependent loads and capacitor banks models. According to the results, the simultaneous recon-

figuration of feeders and allocation of the capacitor banks can improve the voltage regulation and minimize the 

power losses by load relocation and control of the reactive power flow. It was also verified that trying to solve the 

reconfiguration problem and then the problem of the allocation of capacitor banks, sequentially, may lead to infea-

sible solutions. 
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