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We derive constraints on a simple quintessential inflation model, based on a spontaneously broken �4

theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy
clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking
must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar
spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation of
state can evolve rapidly at recent times and hence can potentially be distinguished from a simple
cosmological constant in this parameter regime.
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I. INTRODUCTION

The inflationary scenario, in which the Universe under-
goes a phase of accelerated expansion in its very early
moments, provides an attractive solution to the flatness and
horizon puzzles of the standard big bang cosmology. In
addition, via quantum fluctuations, it naturally provides the
seed perturbations for later structure formation in the
Universe [1]. After inflation, reheating leads to a
radiation-dominated era, followed by a more recent epoch
in which the density is dominated by nonrelativistic matter.

However, there is now solid observational evidence from
Type Ia supernovae (SNIa) that the Universe is undergoing
another burst of accelerated expansion; in the context of
general relativity, this must be fuelled by an unknown
component with negative pressure, usually called dark
energy (DE) [2].

The simplest possibility for the DE is the cosmological
constant, �. Data from the cosmic microwave background
(CMB) [3], large-scale structure [4], and SNIa [5,6] are all
consistent with the �CDM model, a nearly flat Universe
with a cosmological constant and nearly scale-invariant
primordial perturbations. In the best-fit �CDM model,
the vacuum energy makes up 74% of the critical density,
and the remainder is nonrelativistic cold dark matter
(CDM, 22%) and baryonic matter (4%).

While the cosmological constant is compatible with the
current data, the recognition that the Universe appears to
have undergone more than one period of accelerated ex-
pansion points to the plausibility of alternative explana-
tions for the dark energy. In fact, there are no consensus
particle physics models for either primordial inflation or

the recent acceleration of the Universe. A first step out of
our ignorance is often taken by introducing simple models,
usually involving scalar fields. We can then proceed to test
these models against data and obtain constraints on pa-
rameters that we hope can be calculated from a more
fundamental theory. In this spirit, inflation and dark energy
are often modeled via scalar fields, called the inflaton and
the quintessence field.

In general, these two fields are treated as totally inde-
pendent. In Ref. [7], we introduced a simple, well-
motivated model that unifies these two fields into a single
complex scalar field. We briefly review this model below.

We start with the general, renormalizable Lagrangian
describing a complex scalar field �; with appropriate
choice of coupling constants, the associated global U�1�
symmetry is spontaneously broken at a high energy scale f
[8]. The broken symmetry generates a flat potential for the
phase of the complex field, ’, which at this stage is a
massless Nambu-Goldstone boson. At a much lower en-
ergy scale, M� f, instanton or other effects explicitly
break the residual symmetry, providing a small mass for ’,
now called a pseudo-Nambu Goldstone boson (PNGB).
The QCD axion, a by-product of a solution to the strong
CP problem, is an example of this phenomenon. PNGBs in
the more general context are also sometimes called axions,
a usage into which we shall lapse, but we emphasize that
we are not here considering the QCD axion.

The resulting low-energy effective Lagrangian is given
by:

 L � @��@��� � V��� �M4�cos�arg���� � 1	; (1)

with the renormalizable potential
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Writing the complex field � as

 � �
1���
2
p �ei’=f (3)

we identify the modular (�) and phase (’) parts of � with
the inflaton and the quintessence fields. A model in which
the quintessence is such an axionlike PNGB field was
introduced by Frieman et al. [9]. The model contains two
mass scales, f and M, and one dimensionless coupling
constant, �. As in the QCD case, we imagine that the lower
scale M is generated dynamically, by nonperturbative ef-
fects, leaving f as the only fundamental mass scale in the
theory. As is usually done, we have set the cosmological
constant to zero.

In order for ’ to serve as dark energy, it must have not
become dynamical until recently; otherwise, it would now
be oscillating on a timescale short compared to the current
Hubble time and would act instead as nonrelativistic dark
matter, as in the case of the standard QCD axion [9].
Therefore we must require _’=’ & m’, which together
with the Klein-Gordon equation for the field implies

 m’ �
M2

f
& 3H0 (4)

where H0 � 100h km=s=Mpc is the Hubble parameter to-
day. On the other hand, for the energy density in the ’ field
to have the correct order of magnitude to explain the
acceleration, we must have

 M4 ’ ��0�c �
3H2

0M
2
Pl

8�
: (5)

Combining these two requirements results in [9]:

 f >
MPl���������
24�
p ; M ’ 3
 10�3h1=2 eV; (6)

where the Planck mass MPl � 1:2
 1019 GeV.
This model was implemented in a hybrid inflation con-

text by Massó and Zsembinszki [10]. A model similar to
ours, in which the modulus field � is responsible for
inflation and the phase’ produces dark matter, was studied
in Ref. [11]. In models in which the axionlike field is the
dark matter, a high energy scale for the axion decay
constant f is also necessary, in order to suppress isocurva-
ture fluctuations to acceptable levels. In our case, however,
the axion field only becomes dynamical at such late times
that the bounds from isocurvature fluctuations do not apply
[12].

II. WMAP� SDSS CONSTRAINTS

The 3-year data set released by the WMAP collaboration
(WMAP3) [3] has been used by a number of authors to
constrain models of inflation [13–16]. Of special interest to

us are the reported limits on the scalar spectral index, ns,
and the ratio of tensor-to-scalar perturbations, r. Using
WMAP3 plus the large-scale power spectrum of
Luminous Red Galaxies (LRGs) in the Sloan Digital Sky
Survey (SDSS), Tegmark, et al. [17] derive the marginal-
ized constraints:

 ns � 0:967�0:022
�0:020; r < 0:33�@95%CL�: (7)

Note that the above constraints were obtained in the con-
text of the �CDM model, i.e., assuming that the dark
energy equation of state is w � �1, and also assuming
spatial flatness, massless neutrinos, and no running of the
scalar spectral index with spatial wavelength, but allowing
for nonzero tensor perturbations. Dropping one or more of
those assumptions would weaken the constraints.

As shown in Fig. 19 of [17] (reproduced below in Fig. 1),
under the assumptions above, a simple chaotic ��4 infla-
tionary model is marginally excluded at 95% CL by the
WMAP3� SDSS constraints. Since our proposed inflation
model approaches a ��4 potential at large values of�, one
might worry that it is also disfavored by current data. We
will see below that this is not the case in general; rather,

 

FIG. 1 (color online). Regions in the r vs ns plane excluded by
WMAP1 (in red), WMAP3 (in beige), and by WMAP3� SDSS
(in yellow), from [17]. The two contours in the white region
show those allowed at 68% and 95% CL. Regions occupied by
chaotic inflation models with �2, �4, and �6 potentials are
indicated. We have superimposed regions occupied by our model
in the large-field regime for f � 1, 3, and 5MPl (black, dashed)
and in the small-field regime for f � 2, 3, and 5MPl (green, dot-
dashed). Moving down these curves, the number of e-folds
before the end of inflation that the Hubble radius expands outside
the horizon varies from N � 50 to 60 (except for the �4 case, in
which N � 64 was used).
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values of the fundamental mass parameter f below a
certain level are excluded.

In this model, inflation is driven by the modulus field �,
since the potential energy associated with ’ is smaller by
�112 orders of magnitude. The potential V��� in Eq. (2)
in fact depends only on �,

 V��� �
�
4
��2 � f2�2: (8)

Working in the context of the slow-roll approximation,
where the field evolution is slow ( �� ’ 0, _� ’
�V 0=�3H�), we can define the usual slow-roll parameters
� and � [18]:

 ���� �
M2

Pl

16�

�
V 0���
V���

�
2
; (9)
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�
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�
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�
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Slow roll is a consistent approximation for V0, V 00 � V (in
Planck units) or equivalently for �, �� 1. In particular,
inflation ends when � ’ 1.

In our case we find

 ���� �
M2

Pl

�
�2

��2 � f2�2
; (11)

 ���� �
M2

Pl

2�
1

��2 � f2�
: (12)

Defining �e as the value of the field � at the end of
inflation, ���e� � 1 we find two possible solutions:

 ��e�
2 � f2 �

M2
Pl

2�
�1�

�������������������������������
1� 4�f2=M2

Pl

q
�: (13)

The solution with positive sign has j�ej> f and corre-
sponds to large-field inflation; that is, the field starts at
j�ij> j�ej> f and slowly rolls to values close to f until
inflation stops. The solution with negative sign has j�ej<
f and corresponds to small-field inflation: the field starts
near the local maximum at j�ij< j�ej< f and slowly
rolls to values closer to f until the end of inflation.

In both large and small-field cases, the number N of e-
folds remaining until the end of inflation in terms of the
value of the field�N required to accomplish this number of
e-folds is given by:

 N �

�������
4�
p

MPl

Z �N

�e

d�����������
����

p
�

�

M2
Pl

��2
N ��

2
e � f

2 ln��2
N=�

2
e��: (14)

There is a bound on the maximum number of e-folds
between the time that the present Hubble radius leaves the
horizon and the end of inflation. The bound derives from
limits on the gravitational wave background (provided that

the energy density of the Universe does not drop faster than
that of radiation after inflation) and is given roughly by
Nmax ’ 60 [19,20]. In the following we will use N � 50
and 60 for illustration and denote the corresponding field
value by �N .

Once we solve Eq. (14) for �N , we can immediately
compute the spectral index of perturbations, ns, and the
ratio of tensor-to-scalar perturbations, r [14]:

 ns;N � 1� 4���N� � 2���N� (15)

 rN � 16���N� (16)

In Table I, we show the resulting values for ns;N and rN
for different values of the symmetry-breaking scale f, for
the large-field case, j�ij> f. For f <MPl, we have �

f throughout inflation; in this limit, the potential of Eq. (8)
is close to that of a pure ��4 theory, and the resulting
values of ns and r are similar to those of the �4 model. For
larger values of f, �e=f is close to unity; in this regime,
one can expand the potential during inflation around � �
f and find that it is closer to quadratic than quartic.

Results for the case of small-field inflation, j�ij< f, are
shown in Table II. In this case, one can expand the potential
around � � 0, resulting in V��� / f4�1� 2�2=f2�. For
f & MPl, �60 is exponentially smaller than �e [21], which
is unnatural, especially since quantum fluctuations impose
a lower bound on the field amplitude. In fact, for f <
0:8MPl, we find no solutions to Eq. (14) in the small-field
case. In this regime, for �60 � f, one finds ns ’
M2

Pl=��f
2�. As f increases, there is a transition at f ’

MPl, where the scalar spectral index gets substantialy
closer to 1.

For f * MPl, Fig. 1 shows that the resulting values of ns
and r are consistent with the 68% CL limits from
WMAP3� SDSS LRG for values of N approaching 60
for both the large and small-field cases. At 95% CL the
parameter range f > 1MPl is still allowed by the current
data.

From Tables I and II and Eqs. (11) and (12), we see that
���N�, ���N� � 1 for most of the cases studied, validat-
ing the use of the slow-roll approximation.

TABLE I. Large-field Inflation: For different values of the
vacuum expectation value f, we show the value of the scalar
field ��50; �60� when the present Hubble radius crosses outside
the horizon and at the end (�e) of inflation, all in units of the
Planck mass. nN and rN denote the corresponding values of the
scalar spectral index and the tensor-to-scalar ratio.

f �e �50 �60 n50 n60 r50 r60

0.1 0.581 4.04 4.41 0.941 0.951 0.313 0.262
1.0 1.32 4.48 4.84 0.946 0.955 0.280 0.237
3.0 3.40 6.17 6.49 0.954 0.961 0.229 0.195
5.0 5.29 8.06 8.37 0.956 0.963 0.207 0.176
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The fact that the symmetry-breaking scale f must be
near MPl is potentially appealing from the theoretical point
of view, since the latter is a fundamental mass scale of
gravitational origin. However, the observational constraint
that f must be several times larger than the Planck mass
could raise concern about the validity of the semiclassical
field theory approach and about the possibility of large
gravitational corrections to the theory that could destroy
the requisite flatness of the scalar field potential. In this
context, we note that models with two [22] or more [23]
axions have been proposed, in which a linear combination
can result in an effective scale f larger than MPl while the
fundamental mass scales in the theory are below the Planck
mass.

III. THAWING THE QUINTESSENCE FIELD

In this section we will consider the possibility that the
quintessence field is not totally frozen. In this sense, the
limits derived in the previous section are not strictly appli-
cable, since they were obtained in the context of a �CDM
model. However, we do not expect that they will be sub-
stantially altered in the examples studied below. Hence, it
is interesting to study the consequences of constraints on
the symmetry-breaking energy scale f for the quintessence
PNGB field in our model, described by the Lagrangian

 L �
1

2
�@�’�2 �M4�1� cos�’=f�	: (17)

The quintessence behavior is determined by three parame-
ters, f, M, and the initial value ’i of the field when it was
dynamically frozen in the early Universe. Once we fix
values of two of the parameters, for instance f and M,
the value of ’i is determined by requiring that �’ ’ 0:7
today. Since ’ only became dynamical at late times, the
parameter M4 must be of the order of the critical density
today, cf. Eq. (5), or larger. The steepness of the quintes-
sence potential is measured by the mass of the ’ field,
m’ ’ M

2=f. The larger the mass of the field, the earlier it
can evolve, and therefore the larger the deviations of its
equation of state from that of a cosmological constant,w �
�1. We show this behavior in Fig. 2 by numerically solv-

ing the equations of motion for ’. We fix f � 5 MPl, in
keeping with the WMAP� SDSS constraints, and simul-
taneously vary M and ’i to keep �’ � 0:7 today, follow-
ing [24]. We see that the PNGB quintessence equation of
state w�z� can evolve significantly at recent times for large
values of M4, making it distinct from a simple cosmologi-
cal constant, as emphasized recently in the context of the
so-called see-saw cosmology [25]. For fixed f, the value of
M is bounded from below by the requirement that the
quintessence field energy be large enough to dominate
the Universe today and from above by the requirement
that it drive accelerated rather than decelerated expansion.
As pointed out in [9,25], one can achieve evolution of the
sort shown in Fig. 2 without fine-tuning the mass parame-
ters of the model. Such behavior is consistent with current
constraints on the evolution of w�z� (see, e.g., [26]) but
could be tested by future projects aimed at probing the dark
energy.

IV. CONCLUSIONS

In this paper, we have studied the constraints on a simple
model of quintessential inflation previously proposed by us
[7] that arise from the WMAP3 CMB and SDSS LRG data.
We find that the effective scale of symmetry breaking, f,
must be larger than about 3 MPl in order to satisfy the
constraints on the scalar spectral index and the tensor-to-
scalar ratio from inflation at the 68% CL. With these
constraints, the resulting quintessence equation of state
parameter w�z� can nevertheless evolve rapidly at recent
times, z & 1–2, depending on the value of the induced
explicit symmetry-breaking scale M, an example of a
‘‘thawing‘‘ dark energy model. Such models can be tested
by precision probes of the dark energy equation of state
expected over the coming decade.

 

1 2 3 4
z

– 0.99

– 0.98

– 0.97

– 0.96
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– 0.94

– 0.93
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FIG. 2. Evolution of the quintessence equation of state pa-
rameter w�z� as a function of redshift for f � 5 MPl, �’ �

0:7, and M4 � 10�5:4�, 30(3.2), 50(2.5), and 100(1.8) times ��0�c
(from bottom to top curves). The numbers in parentheses are the
initial values of the field ’i in Planck mass units for the
corresponding value of M.

TABLE II. Small-field Inflation: For different values of the
vacuum expectation value f, we show the value of the scalar
field ��50; �60� when the present Hubble radius crosses outside
the horizon and at the end (�e) of inflation, all in units of the
Planck mass. nN and rN denote the corresponding values of the
scalar spectral index and the tensor-to-scalar ratio.

f �e �50 �60 n50 n60 r50 r60

1.0 0.757 0.0002 0.00004 0.682 0.682 0.0 0.0
2.0 1.74 0.163 0.110 0.918 0.919 0.00862 0.00385
3.0 2.73 0.770 0.639 0.951 0.956 0.0428 0.0282
5.0 4.73 2.49 2.29 0.961 0.967 0.0893 0.0686
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