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We propose a new implementation of target mass corrections to nucleon structure functions which, unlike
existing treatments, has the correct kinematic threshold behavior at finite Q2 in the x → 1 limit. We illustrate the
differences between the new approach and existing prescriptions by considering specific examples for the F2 and
FL structure functions, and discuss the broader implications of our results, which call into question the notion of
universal parton distribution at finite Q2.
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I. INTRODUCTION

Deep inelastic lepton scattering is one of the most developed
tools with which to probe the quark and gluon structure
of hadrons. The theoretical framework within which the
experiments are analyzed is the operator product expansion
(OPE). This is well established in the Bjorken limit, which
is defined by the four-momentum transfer squared Q2 and
energy transfer ν being asymptotically large, with the ratio
x = Q2/2Mν (the Bjorken scaling variable) fixed, where M

is the target mass. Within this framework, global analyses of
deep inelastic scattering (DIS) and other experiments have
allowed a vast array of data to be described in terms of a
universal, process independent set of quark and gluon (or
parton) distributions.

On the other hand, there exists a large body of data at
lower energies, at Q2 <∼ 1 − 2 GeV2 (see, e.g., Ref. [1]),
where the use of the asymptotic, Bjorken limit formalism
may be more questionable. In addition to perturbative QCD
effects generated by gluon radiation, at low Q2 effects arising
from 1/Q2 power corrections become increasingly important.
These are typically generated by multiparton correlations,
and within the twist expansion are associated with higher
twists (in the OPE the twist of an operator is defined as
its dimension minus its spin). Since they characterize the
long-range nonperturbative interactions between quarks and
gluons, the higher twists contain information on confinement
dynamics, and are as such of intrinsic interest to study. Several
recent analyses of structure function data at low Q2 have
extracted matrix elements of the higher twist operators [2].

Before one can reliably extract information on the higher
twist contributions, it is important to remove from the data
corrections arising from purely kinematic effects associated
with finite values of Q2/ν2 = 4M2x2/Q2. These so-called
“target mass corrections” (TMCs) are formally related to twist-
two operators, and hence contain no additional information on
nonperturbative multiparton correlations. Indeed, they have
long been considered uninteresting and believed to be well
understood. In the literature there are well known prescriptions
for how to remove the TMC corrections [3,4].

The TMCs were first considered by Nachtmann [5], who
showed that one could arrange the OPE so as to ensure that at

a given order in 1/Q2 only operators of a given twist would
appear. At finite Q2 the natural scaling variable, defined as the
fraction of the nucleon’s light-front momentum (p) carried by
the parton (k), is then given by the Nachtmann scaling variable:

ξ (x,Q2) ≡ k0 + kz

p0 + pz
= 2x

1 +
√

1 + 4M2x2/Q2
. (1)

In the Nachtmann approach, one generalizes the Cornwall-
Norton (CN) moments of structure functions, derived in the
Bjorken limit, to finite Q2. A particular feature of these
Nachtmann moments is that they are supposed to factor out
the target mass dependence of the structure functions in a
way such that its moments would equal the moments of the
corresponding parton distributions.

Later Georgi and Politzer (GP) [3] calculated the CN
moments of the structure functions, taking into account the
trace terms which appear in the matrix elements of the
twist-two operators, but which are usually neglected in high
Q2 data analyses. While the leading, twist-two piece of the
structure function which enters at O(1) is related to matrix
elements of the quark bilinear ψ̄γ µψ , for example, the TMCs
arise from insertions of derivatives, ψ̄γ µDµ1 · · · Dµnψ , which
does not alter the twist. This procedure generates a series in
M2/Q2 when calculating the CN moments. Inverting these
moments using the inverse Mellin transform, one arrives at a
structure function depending on both x and M2/Q2 [3].

Problems with the GP implementation of TMCs were
soon identified, however, by a number of authors [6–10], in
particular the so-called “threshold problem.” This pertains to
the fact that if the parton distribution function is a scaling
function of ξ , then since the maximum kinematic value of ξ

at any finite Q2 is ξ0 ≡ ξ (x = 1) < 1, the parton distribution
is not defined in the unphysical region between the elastic
limit ξ = ξ0 and ξ = 1. De Rujula et al. [11] argued that the
problems can be resolved by considering in addition higher
twist operators. They note that there is a nonuniformity in
the limits as n → ∞ and Q2 → ∞, and the appearance
of higher twist effects proportional to nM2/Q2 for the nth
moment signals the breakdown of the entire approach at low
W (<∼2 GeV).
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Tung and collaborators [8,9] attempted to redress the
threshold problem by invoking an ansatz which smoothly
merges the perturbative QCD behavior of the moments at large
Q2 with the correct threshold behavior in the n → ∞ limit.
As they note, however, such a prescription is not unique, and
in fact agrees with the standard OPE expansion only in the
n → ∞ limit.

The proposed solution of De Rujula et al. [11] to the
threshold problem implies that higher twist effects play an
important role at low Q2. Recent experiments at Jefferson
Lab have shown, however, that the size of the higher twist
contributions is actually quite small for the proton F2 structure
function, down to relatively low Q2 values (Q2 ∼ 0.5 −
1 GeV2) [12]. The question which we address here is whether
a self-consistent formulation of TMCs can be made with
only twist-two contributions, without appealing to higher
twist effects. While not a proof, it seems plausible to us
that, at least from a purely theoretical perspective, it should
be possible to obtain an implementation of TMCs for a
hypothetical case of negligible higher twist effects, which
would demand a consistent resolution of the threshold problem
for the twist-two part alone. Such a view could be motivated
by observing that even though it is the same proton state
that the twist-two and higher twist terms originate from, in
principle the matrix elements of the local operators whose
matrix elements characterize the twist expansion are in fact
independent.

While interesting in its own right, the question of how
to implement TMCs is also of practical importance, given
the high quality electron-nucleon structure function data at
low and moderate Q2 which are being collected at Jefferson
Lab [12]. TMCs are also vital in analyzing neutrino scattering
data [13], much of which are taken at relatively low energies,
and must be understood if one is to extract reliable information
on neutrino oscillations for instance. For spin-dependent
scattering, TMCs have also been calculated for the g1 and
g2 structure functions [4], and recently for spin-1 targets such
as the deuteron [14].

The pertinent question is whether the Nachtmann mo-
ment of the twist-two part of the structure function is Q2

independent, as supposed in the original formulation [5]. In
Sec. II we review the standard derivation and results for
TMCs within the operator product expansion. We outline
the problems associated with the standard approach, and
suggest an alternative formulation designed to avoid the
unphysical threshold problem. Earlier work [10] did indeed
find that the Nachtmann moments do not account for all
possible (leading twist) M2/Q2 effects. However, we suggest a
prescription where the M2/Q2 dependence of the Nachtmann
moments of the structure functions does equal, to very
high accuracy, the M2/Q2 dependence of the moments of
the quark distributions, for all Q2. Numerical results are
presented in Sec. III, where we compare the x dependence
of the F2 and FL structure functions using the various TMC
prescriptions, and examine the onset of scaling in terms of the
Nachtmann moments of the structure functions. In Sec. IV we
summarize our findings and discuss the broader implications
of our results for the interpretation of parton distributions at
finite Q2.

II. OPERATOR PRODUCT EXPANSION

We begin this section by firstly reviewing the pioneering
work on target mass corrections as obtained by Georgi and
Politzer [3]. We will consider the case of unpolarized scattering
from a spin-1/2 nucleon, which is described by two structure
functions, F1(x,Q2) and F2(x,Q2) (or alternatively F2 and
the longitudinal structure function FL). We shall focus on the
F2 structure function, but later generalize the discussion to
include also FL.

The two standard moments of structure functions encoun-
tered in the literature are the Cornwall-Norton and Nachtmann
moments. The Cornwall-Norton moments of F2 are given by

Mn
2 (Q2) =

∫ 1

0
dx xn−2F2(x,Q2), (2)

and are appropriate for the region Q2 � M2. The Nachtmann
moments, on the other hand, take into account finite M2/Q2

corrections to the Bjorken limit, and are given by

µn
2(Q2) =

∫ 1

0
dx

ξn+1

x3

[
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

]

×F2(x,Q2), (3)

with r =
√

1 + 4x2M2/Q2. The essential difference between
the CN and Nachtmann moments comes from the trace terms
appearing in the matrix elements of operators of definite
spin, which are disregarded in the CN approach, but kept
in the Nachtmann approach. The Nachtmann moments are
constructed such that from the infinite set of operators of
twist-two and different spin contained in the trace terms, only
the operators of spin n contribute for the n − 2 moment of the
structure function.

The Nachtmann and CN moments can be related by
expanding the moments in powers of 1/Q2. Expanding µn

2
to O(1/Q6), one has

µn
2(Q2) = Mn

2 (Q2) − n(n − 1)

n + 2

M2

Q2
Mn+2

2 (Q2)

+ n(n2 − 1)

2(n + 3)

M4

Q4
Mn+4

2 (Q2)

− n(n2 − 1)

6

M6

Q6
Mn+6

2 + · · · . (4)

Note that there is a mixing between the lower and higher
moments. To this order we can also express the CN moments
in terms of the Nachtmann moments:

Mn
2 (Q2) = µn

2(Q2) + n(n − 1)

n + 2

M2

Q2
µn+2

2 (Q2)

+ n(n2 − 1)(n + 2)

2(n + 3)(n + 4)

M4

Q4
µn+4

2 (Q2)

+ n(n2 − 1)(n + 2)(n + 3)

6(n + 5)(n + 6)

M6

Q6
µn+6

2 + · · · . (5)

In the work of GP, the moment of the leading twist part of
the F2 structure function, corrected for target mass effects, can
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be written to order 1/Q6 as

MGP
n (Q2) = An + n(n − 1)

n + 2

M2

Q2
An+2

+ n(n2 − 1)(n + 2)

2(n + 3)(n + 4)

M4

Q4
An+4(Q2)

+ n(n2 − 1)(n + 2)(n + 3)

6(n + 5)(n + 6)

M6

Q6
An+6 + · · · , (6)

where An is the nth moment of a distribution function F (y):

An =
∫ y0

0
dyynF (y). (7)

Here the function F (y) is related to the usual quark distribution
q(y) by q(y) ≡ yF (y), and the upper limit of integration y0

is the maximum value at which the quark distribution has
physical support. Again in Eq. (6) there is a mixture between
lower and higher moments. Comparing Eqs. (5) and (6), one
can show that, at least to O(1/Q6), the Nachtmann moments
are equivalent to the moments of the distribution F (y):

µn
2 ≡ An. (8)

This reflects the fact that the Nachtmann moments are
constructed to protect the moments of the structure functions
from target mass effects, thereby allowing them to be identified
directly with the moments of the quark distributions.

The F2 structure function appearing in Eqs. (2) and (3)
must itself be corrected for target mass effects, and to this
end we will follow the procedure in GP [3], albeit with one
exception. While GP write the upper limit of integration in
Eq. (7) as y0 = 1, we will define the upper limit of the integrals
as the maximum value allowed by kinematics, y0 = y(x = 1).
Following GP, we can then rewrite Eq. (7) as [3]

An+2j

(n + 2j )(n + 2j − 1)
=

∫ y0

0
dy yn+2j−2G(y), (9)

with G(y) given by

G(y) =
∫ y0

y

dy ′H (y ′) =
∫ y0

y

dy ′
∫ y0

y ′
dy ′′F (y ′′). (10)

This result follows from the fact that∫ y0

0
dyyn+2j−2G(y) = yn+2j−1

n + 2j − 1
G(y)

∣∣∣∣
y0

0

−
∫ y0

0
dy

yn+2j−1

n + 2j − 1

∂G(y)

∂y
, (11)

and because G(0) = G(y0) = 0, one is left with the second
term only. Integrating the RHS of Eq. (11) again, we recover
Eq. (9). To obtain the x (or ξ ) dependence of the structure
functions, we can invert the moment as in GP, arriving at
same results but with a modified upper limit in the integrals.
Specifically, we recover for the F2 structure function [3]

F2(x,Q2) = ξ 2(1 − a2ξ 2)

(1 + a2ξ 2)3
F (ξ ) + 6a2 ξ 3(1 − a2ξ 2)

(1 + a2ξ 2)4
H (ξ )

+ 12a4 ξ 4(1 − a2ξ 2)

(1 + a2ξ 2)5
G(ξ ), (12)

where a ≡ M/Q. The CN moments of the target mass
corrected F2 structure function are then given by [3]

Mn
2 (Q2) =

∫ 1

0
dx xn−2F2(x,Q2)

=
∞∑

j=0

(
M2

Q2

)j
(n + j )!

j !(n − 2)!

An+2j

(n + 2j )(n + 2j − 1)
.

(13)

To calculate the Nachtmann moments, we rewrite Eq. (3) in
terms of ξ :

µn
2(Q2) =

∫ ξ0

0
dξ ξn−2 (1 + a2ξ 2)3

1 − a2ξ 2
F2(ξ,Q2)

×
[

1 − 3(r − 1)

r2(n + 2)
− 3(r − 1)2

r2(n + 3)

]
, (14)

with F2(ξ,Q2) given by Eq. (12), and

ξ0 = ξ (x = 1) = 2

1 +
√

1 + 4M2/Q2
. (15)

In the following section we will examine the extent to which the
Nachtmann moments of F2 correspond to the moments An of
the quark distribution function, for different functional forms
of F (ξ ), and quantify the effect of the kinematic thresholds.
Central will be the interpretation of the function F (ξ ) itself.

Before proceeding, for completeness we also give the
results for the longitudinal structure function, FL, and its
moments. In the Q2 → ∞ limit, FL = 0, while at finite Q2 the
TMCs render FL nonzero. Of course, higher order perturbative
QCD corrections which depend on αs also give rise to a
nonzero FL, as do higher twist effects. However, we artificially
set both of these to zero in order to isolate the effects of TMCs
on FL explicitly. Following a similar procedure as for F2 above,
we can write the longitudinal structure function as

FL(ξ,Q2) = 2a2ξ 2

(1 + a2ξ 2)2
H (ξ ) + 4a4ξ 3

(1 + a2ξ 2)3
G(ξ ), (16)

which clearly vanishes as a → 0 (or Q2 → ∞). The corre-
sponding Nachtmann moments are then given by

µn
L(Q2) =

∫ ξ0

0
dξ ξn−2(1 − a4ξ 4)

(
FL(ξ,Q2) + 4a2ξ 2

(1 − a2ξ 2)

× (n + 1)(1 − a2ξ 2) − 2(n + 2)

(n + 2)(n + 3)
F2(ξ,Q2)

)
.

(17)

Having derived analytic expressions for the F2 and FL structure
functions and their moments, in the next section we present
numerical results using several different prescriptions for the
ξ dependence of the quark distribution function.

III. TARGET MASS CORRECTIONS

The main purpose of this work is to analyze phenomeno-
logically what is the best procedure to incorporate TMCs
in the analysis of structure functions. More specifically, we
address the question of which procedure is most effective in
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rendering the moments of the leading twist structure functions
equal to the moments of the quark distributions at finite Q2.
We consider whether there is any sizable difference for the
moments when the upper limit of the integrals in G(y) and
H (y) is 1 or ξ0. In particular, since the twist-two part of the
deep inelastic cross section should be zero at x = 1 (ξ = ξ0),
we study the impact of a vanishing parton distribution at ξ0.

A. Prescriptions

To address these issues, in this section we present several
prescriptions for the implementation of target mass correc-
tions, and discuss their limitations and practical consequences.
We consider three scenarios:

(A) Integrate a quark distribution:

q(ξ ) = N ξ−1/2(1 − ξ )3 (18)

from 0 to 1 (specifically, in the integrals for An,H (ξ ) and
G(ξ )). Here the normalization N ensures that the distribution
integrates to unity. We denote this prescription the “standard
TMC” (sTMC).

(B) Integrate a modified distribution which vanishes for
ξ > ξ0, as implied by Eq. (7):1

q(ξ ) = N ξ−1/2(1 − ξ )3�(ξ − ξ0). (19)

We denote this prescription the “modified TMC” (mTMC).
(C) Use a “threshold dependent” (TD) quark distribution

which vanishes in the physical limit:

qTD(ξ ) = N ξ−1/2(ξ0 − ξ )3. (20)

Note that because of the upper limit in Eq. (7), An itself
will be M2/Q2 dependent for prescriptions B and C. The
results for the ratio µn

2/An of the n = 2 moments are displayed
in Fig. 1 for the three cases, with prescriptions A, B and

1We believe this was also the implication of De Rújula et al. [11].
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FIG. 1. Ratio of the n = 2 Nachtmann moment of the F2 structure
function and the n = 2 moment of the quark distribution, as a function
of Q2. The curves correspond to prescriptions A [“sTMC”] (dotted),
B [“mTMC”] (dashed) and C [“TD”] (solid).
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FIG. 2. Ratios of the n = 4 (upper graph) and n = 6 (lower
graph) Nachtmann moment of the F2 structure function and the
corresponding moments of the quark distribution, as a function of
Q2. The curves are as in Fig. 1.

C corresponding to the dotted, dashed and solid curves,
respectively. Comparing the sTMC and mTMC results, one can
see a reduced Q2 dependence when the integrals are restricted
to ξ < ξ0. However, a much more dramatic change occurs
when the quark distribution is constrained to vanish at ξ0. This
renders the Nachtmann moment almost equal to the moment of
the quark distribution for virtually all Q2 considered. Certainly
for Q2 > 1 GeV2 there is no visible deviation of the ratio from
unity. Even for very small Q2,Q2 ∼ 0.3 GeV2, the ratio differs
from unity by only ∼0.7% (of course the OPE itself may not
be valid at such low values of Q2).

Similarly, the ratios for the n = 4 and n = 6 moments are
shown in Fig. 2. The deviation of the ratio from unity for the
sTMC approach is between 10%–20% for Q2 <∼ 1 GeV2, while
that for the modified TMC with prescription B is of the order
of 5% over the same Q2 region. On the other hand, for the
threshold dependent prescription C, the deviation from unity
remains around 1% even at these low Q2 values.

A consequence of prescription C is that the moments of
the parton distribution are Q2 dependent. This seems to be
an inevitable consequence if the Nachtmann moments of the
structure function are to be equal to the moments of the parton
distribution for all Q2. Note that this Q2 dependence is not of
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higher twist or perturbative QCD origin, but arises solely from
kinematics. Nevertheless, this avoids the more serious prob-
lems which arise within the sTMC approach (prescription A),
where the Nachtmann moments below Q2 ∼ 1 GeV2 start
to deviate significantly from the moments of the quark
distributions. In addition, in the sTMC formulation one is
faced with the so-called “threshold problem.” Namely, if the
moments An of the quark distributions are Q2 independent,
then one should have∫ 1

0
dξξnF (ξ,Q2

1) =
∫ 1

0
dξξnF (ξ,Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ,Q2)
must vanish in the kinematically forbidden region ξ > ξ0, the
equality in Eq. (21) implies that the function must be zero for
both ξ > ξ0(Q2

1) and ξ > ξ0(Q2
2). If Q2

1 < Q2
2, in which case

ξ0(Q2
1) < ξ0(Q2

2), this implies that F (ξ,Q2
2) should vanish in

the range ξ0(Q2
1) < ξ < ξ0(Q2

2). However, there is no physical
reason for it to do so here, and this therefore leads to an
unphysical constraint.

De Rújula et al. [11] address this problem by pointing out
that higher twist contributions play an ever more important role
at low Q2, and their neglect makes any leading twist analysis
at large ξ incomplete. On the other hand, the philosophy
inherent in prescription C is that the equality (21) should not
be expected to hold, simply because the ξ dependence, and
also the normalization, of the quark distributions is M2/Q2

dependent:
∫ ξ0(Q2

1)

0
dξ ξnF (ξ,Q2

1) �=
∫ ξ0(Q2

2)

0
dξ ξnF (ξ,Q2

2). (22)

Another approach to dealing with the threshold problem,
as discussed in Ref. [14] for example, is to expand the TMC
corrected structure functions in Eqs. (12) and (16) in a power
series in 1/Q2. Keeping only the leading O(1/Q2) correction,
one finds that the corrected structure function vanishes in the
x → 1 limit, although in principle higher order corrections
will become more important as x → 1.

In the following section we will contrast the various pre-
scriptions by studying their effects on the structure functions
numerically.

B. Numerical results for structure functions

The effects of TMCs on the F2 structure function are
illustrated in Fig. 3 for Q2 = 1 and 5 GeV2 for the various
scenarios. Here the scaling function xq(x) (dotted curve) is
used as input in Eq. (12) to calculate the target mass corrected
function F2. To translate the results from ξ to x, we fix Q2

and extract the corresponding x for each (ξ,Q2) pair. For the
sTMC method (prescription A, dashed), in which the upper
limits of the integrals are set to unity, the corrected structure
function becomes smaller at intermediate x values, but larger
as x → 1. The corrected structure function for the mTMC
approach (prescription B, double-dot-dashed), where the ξ

integration is constrained by ξ < ξ0, display a similar behavior
as a function of x. In both cases F2 is clearly nonzero in the
x → 1 limit. The effects are sizable at Q2 = 1 GeV2, but

0 0.2 0.4 0.6 0.8 1
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0.2

0.3
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q
TD
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scaling

mTMC

TD

= 1 GeVQ2 2

F
2 (

x)

ξ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

x

q
TD

sTMC

scaling

mTMC

TD

= 5 GeVQ2 2

F
2 (

x)

ξ

FIG. 3. The x dependence of the F2 structure function at Q2 =
1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs on
the (input) scaling distribution (dotted curve) are illustrated for the
sTMC (dashed) and mTMC (double-dot-dashed) prescriptions, and
compared with the effects on the (input) TD-distribution ξqTD(ξ )
(dot-dashed) using the TD approach (prescription C, solid).

considerably smaller at Q2 = 5 GeV2, where the differences
between the scaling and target mass corrected functions
are more strongly suppressed. At lower Q2 values, Q2 ∼
0.5 GeV2 (not shown), the differences between the sTMC
and mTMC prescriptions are even more pronounced, so that
here it is important to take into account the correct kinematics,
especially at large x. Note that the sTMC and mTMC curves
in Fig. 3 were normalized such that the quark number at finite
Q2 is equal to the quark number at Q2 → ∞.

The effect of the threshold dependent prescription C is
dramatically different from the other prescriptions. Specif-
ically, the TD input distribution qTD (dot-dashed curve in
Fig. 3) produces a target mass corrected leading twist structure
function which is exactly zero at x = 1 (ξ = ξ0) for all Q2,
as required physically. Another important difference between
the sTMC and mTMC approaches, and the TD prescription,
is at intermediate x. Here the latter produces a corrected
structure function which is smaller than the input, in contrast
with the sTMC/mTMC methods, where the corrected F2 is
larger than the input scaling function. Such differences may
be very relevant in phenomenological determinations of the x

dependence of parton distributions at low Q2.
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FIG. 4. Nachtmann moments of the longitudinal structure func-
tion for n = 2 (upper) and n = 4 (lower) as a function of Q2.

How does the TD prescription C help in the practical
extraction of leading twist parton distributions? If we define

An ≡ ξ
−(n+3/2)
0 An(Q2), (23)

then since at high Q2 the moments of the quark distributions
become Q2 independent, so too are the Nachtmann moments
of the structure functions, as the multiplicative factor is
ξ independent. Other prescriptions would render a different
ξ0, but the important fact is that once µn

2(Q2) = An(Q2) for
any Q2, this equality may be set to its value at Q2 → ∞:

µn
2(finite Q2)

An(finite Q2)
= µn

2(Q2 → ∞)

An(Q2 → ∞)
= Mn

2

An

. (24)

This makes the approach in prescription C much more useful
for extracting quark distributions from structure function data
at low Q2.

A comparison of the different TMC prescriptions for the
longitudinal structure function moments is shown in Fig. 4,
for the n = 2 and n = 4 Nachtmann moments. Here we plot
the absolute value of the moments rather than a ratio, since
the moments in the scaling limit are identically zero. For the
sTMC prescription, the corrected moments are strongly Q2

dependent for Q2 <∼ 1 GeV2 and rise rapidly as Q2 decreases.
The Q2 dependence of the moments for the mTMC approach,
with the upper integration limit being ξ0 rather than unity, is

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

x

sTMC

mTMC

TD

= 1 GeVQ2 2

F
L
 (

x)

FIG. 5. Longitudinal structure function FL at Q2 = 1 GeV2 for
the sTMC (dashed), mTMC (double-dot-dashed) and TD-distribution
(solid) prescriptions. Note that the scaling longitudinal distribution is
zero.

somewhat weaker, but still quite strong at low Q2. On the
other hand, the moments for the TD prescription C display
significantly smaller Q2 dependence at low Q2.

Finally, for completion, we show in Fig. 5 the FL structure
function at Q2 = 1 GeV2 with TMCs applied according to
the three prescriptions above. Note that in the scaling limit,
the FL structure function is identically zero. For the sTMC
and mTMC prescriptions, the corrected structure function is
significantly larger in magnitude than for the TD prescription
at intermediate and large x. For the sTMC case in particular,
it is also seen to approach a nonzero value in the x → 1 limit.
This result suggests that the evaluation of the twist-two part
of the longitudinal structure function at low Q2 may also need
to be reassessed in phenomenological analyses, especially at
intermediate and large x.

IV. CONCLUSION

In this work we have revisited the long-standing problem
of target mass corrections to nucleon structure functions.
The standard procedure for implementing target mass effects
suffers from the well known threshold problem, in which the
corrected, leading twist structure function does not vanish
at x = 1. We have proposed a solution to this problem
by introducing a finite-Q2, “threshold dependent” parton
distribution function that explicitly depends on the kinematical
threshold ξ0, which is smooth in the entire physical region, and
approaches the ordinary, Q2-independent parton distribution in
the limit Q2 → ∞. Our prescription avoids any discontinuities
in the parton distributions and structure functions at finite Q2,
and produces vanishing structure functions as x → 1. This is
true for both the F2 and FL structure functions.

The Nachtmann moments µn
2 of the F2 structure function,

calculated with the threshold dependent distributions qTD,
agree with the moments An of qTD to within 1% for the
n = 2, 4 and 6 moments for Q2 as low as 1 GeV2 and even
lower. In contrast, the deviation for the standard or modified
TMC procedure (sTMC or mTMC prescriptions) is more than
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an order of magnitude larger at the same Q2 values, and grows
rapidly with increasing n. Furthermore, for Q2 > M2 one can
show analytically that, at least to O(1/Q6), the moments µn

2
and An are identical. Similarly, for the longitudinal structure
function FL, the Nachtmann moments µn

L with the threshold
dependent distribution are considerably smaller (i.e. closer to
the asymptotic value of zero) than the moments in the sTMC
or mTMC prescriptions.

A consequence of our formulation is that the moments
of the threshold dependent distributions will in general be
M2/Q2 dependent. This dependence is not associated with
either perturbative QCD effects or higher twists, but comes
entirely from the leading twist, target mass effects. Our
analysis suggests that it may be necessary to reassess the
interpretation of a parton distribution in the presence of the
finite M2/Q2, or ξ , corrections, as well as the implementation

of the qTD distributions in the Q2 evolution equations. We
will address these problems in future work [15]. At the
same time, our numerical results give impetus to investigating
the impact of TMCs on phenomenological fits to structure
functions at low Q2 [16] and the extraction of twist-two parton
distributions.
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