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s-wave approximation for asymmetry in nonmesonic decay of finite hypernuclei
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We establish the bridge between the commonly used Nabetani-Ogaito-Sato-Kishimoto (NOSK) formula for
the asymmetry parameter a� in the ��p → np emission of polarized hypernuclei, and the shell-model (SM)
formalism for finite hypernuclei. We demonstrate that the s-wave approximation leads to a SM formula for a�

that is as simple as the NOSK one and that reproduces the exact results for 5
�He and 12

�C better than initially
expected. The simplicity achieved here is indeed remarkable. The new formalism makes the theoretical evaluation
of a� more transparent and explains clearly why the one-meson exchange model is unable to account for the
experimental data of 5

�He.
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I. INTRODUCTION

Despite recent important developments in the �N → NN

nonmesonic weak decay (NMWD) [1], its reaction mechanism
is not fully understood. Indeed, an open problem concerns the
asymmetry parameter a� in the ��p → np emission of the
polarized hypernuclei 5

�
�He and 12

�
�C, which yields information

on the interference between parity-conserving (PC) and
parity-violating (PV) transitions. The measurements favour
a�(5

�
�He) > 0 and a�(12

�
�C) < 0 [2], whereas the calculations

yield almost the same negative value for both [1,3].
The intrinsic � asymmetry is usually evaluated from the

formula,

a� = 2
√

3
�[

ae∗ − b(c − √
2d)∗/

√
3 + f (

√
2c + d)∗

]
|a|2 + |b|2 + 3(|c|2 + |d|2 + |e|2 + |f |2)

,

(1.1)

where the two-body |�p; lSJ 〉 → |np; l′S ′J 〉 nonmesonic
p� → pn decay amplitudes

a = 〈1
S0

∣∣V̂ ∣∣1
S0

〉
, b = 〈3

P0

∣∣V̂ ∣∣1
S0

〉
, c = 〈3

S1

∣∣V̂ ∣∣3
S1

〉
,

(1.2)
d = 〈3

D1

∣∣V̂ ∣∣3
S1

〉
, e = 〈1

P1

∣∣V̂ ∣∣3
S1

〉
, f = 〈3

P1

∣∣V̂ ∣∣3
S1

〉
are the kinematical correspondents of the inverse reaction
pn → p�. Equation (1.1) was derived by Nabetani, Ogaito,
Sato, and Kishimoto (NOSK) [4] considering only the s-wave
production for the p� final states. This s-wave approximation
(s-WA) can be used for the NMWD straightforwardly only
in the context of the Fermi gas model (FGM), where the
�-hyperon is embedded in the infinite nuclear matter and is
taken to be always in a relative s-state with respect to any of
the nucleons within the hypernucleus [5].1 There are several
differences between the scattering states p� in the reaction

1Note that the FGM expression [5] Eq. (88)] for a� is incomplete
because it covers only the last term in the numerator of Eq. (1.1).

pn → p� and the shell-model (SM) description of the nuclear
bound states p�. In the SM the hyperon stays in the 1s1/2

orbital and, depending on the hypernucleus, the proton can
occupy the orbitals 1s1/2, 1p3/2, 1p1/2, · · ·. It is true that in the
case of 1s1/2-shell hypernuclei, the initial p� system can be
assumed to be in the relative s-wave state and therefore it is
sufficient to consider only the six matrix elements (1.2). In fact,
following the Block-Dalitz anzatz [6] for the employment of
the FGM in finite nuclei, one can use the Eq. (1.1) for 5

�He [7].
But in the case of 12

�C both the 1s1/2 and 1p3/2 single-particle
states contribute and, in addition to the relative s state, one has
to consider the relative p state as well [3,8–10].

Based on the above arguments, in our previous work [3],
we have derived a SM expression for a� that is valid for both
5
�He and 12

�C. The NOSK formula [Eq. (1.1)] has been used
there only for the sake of numerical comparison in the case of
5
�He. Here we go a step further, establishing a bridge between
the two formalisms. More specifically, we show that under
plausible assumptions, the s-WA can also be introduced in the
SM, yielding a NOSK-like formula, which can be used in the
finite hypernuclei 5

�He and 12
�C.

II. EXACT EXPRESSION FOR a�

To introduce the notation, we give here a short account of
the formalism we have developed for the calculation of a� in
Ref. [3], where more details can be found.

The mixed state of a hypernucleus having vector polar-
ization PV can be represented by the density matrix [ [11]
Eq. (9.29)]

ρ(JI ) = 1

2JI + 1

(
1 + 3

JI + 1
PV · J I

)
, (2.1)

where JI is the hypernuclear spin. The angular distribution of
primary protons emitted by such a hypernucleus is then given
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by

d�[ρ(JI ) → p̂2tp]

d�p2

=
∫

d�p1

∫
dF

∑
s1s2MF

∑
MI M

′
I

〈 p1s1tn p2s2tp νF JF MF |

×V |JIMI 〉〈JIMI |ρ(JI )|JIM
′
I 〉

× 〈JIM
′
I |V †| p1s1tn p2s2tp νF JF MF 〉, (2.2)

where V is the nonmesonic transition potential, p1s1tn ≡
−1/2 and p2s2tp ≡ +1/2 are the momenta and spin and
isospin projections of the emitted neutron and proton, re-
spectively, and |νF JF MF 〉 are the possible final states of the
residual nucleus, where νF specifies the remaining quantum
numbers in addition to those related to the nuclear spin.
Furthermore, we have introduced the compact notation∫

dF . . .

= 2π
∑
νF JF

∫
p2

2dp2

(2π )3

∫
p2

1dp1

(2π )3

× δ

(
p2

1

2MN

+ p2
2

2MN

+ | p1 + p2|2
2MR

− �νF JF

)
. . . , (2.3)

where the δ function enforces energy conservation, MR is mass
of the residual nucleus, and �νF JF

is the liberated energy.
It is possible to show that the Eq. (2.2) can be put in the

form

d�[ρ(JI ) → p̂2tp]

d�p2

= �p

4π
(1 + AV PV · p̂2), (2.4)

where �p is the full proton-induced decay rate and AV is the
vector hypernuclear asymmetry, given by

AV = 3

JI + 1

∑
MI

MIσ (JIMI )∑
MI

σ (JIMI )
. (2.5)

The new quantities introduced above are the decay strengths,

σ (JIMI ) =
∫

d�p1

∫
dF

∑
s1s2MF

|〈 p1s1tn p2s2tpνF JF MF |

×V |JIMI 〉p.h.f.|2, (2.6)

where the subscript p.h.f. indicates that the transition ampli-
tude must be computed in the proton helicity frame.

To proceed, one must write the transition amplitudes in
Eq. (2.6) in terms of the two-body matrix elements for
the elementary process �p → np occurring between the
appropriate bound �p states in the hypernucleus and the
allowed free final np states. To this end it is convenient to
work in the total spin (S,MS) and isospin (T ,MT ) basis and
to change the representation to relative and total momenta,
given, respectively, by p = ( p2 − p1)/2 and P = p1 + p2.

Dropping the MT = 0 labels, one obtains

σ (JIMI )

=
∫

d�p1

∫
dF

∑
SMSMF

∣∣∣∣∣∑
T

(−)T 〈 pPSMST νF JF MF |

×V |JIMI 〉p.h.f.

∣∣∣∣∣
2

. (2.7)

Next, we (i) expand the final state in terms of the relative (l)
and center-of-mass (L) partial waves of the emitted nucleons
[[8] (2.5)], (ii) drop the subscript p.h.f. due to the rotational
invariance of V , and (iii) integrate on the angle φp1 , to obtain

σ (JIMI ) = (4π )5

2

∫
d cos θp1

∫
dF

∑
SMSMF

×
∣∣∣∣ ∑
lLλJT

(−)T i−l−L[Yl(θp, π ) ⊗ YL(θP , 0)]λµ

× (λµSMS |JMJ )(JMJ JF MF |JIMI )

×〈plPLλSJT νF JF ; JI |V |JI 〉
∣∣∣∣2

, (2.8)

where λ = l + L and J = λ + S, and

4p2 = p2
1 + p2

2 − 2p1p2 cos θp1 ,

P 2 = p2
1 + p2

2 + 2p1p2 cos θp1 ,
(2.9)

cos θp = p2 − p1 cos θp1

2p
,

cos θP = p2 + p1 cos θp1

P
,

where θp1 is the angle that p1 makes with p2.
Afterward, we rewrite the Eq. (2.5) for AV in terms of the

decay moments

σ0(JI ) =
∑
MI

σ (JIMI ),

(2.10)
σ1(JI ) = 1√

JI (JI + 1)

∑
MI

MIσ (JIMI ),

as

AV = 3

√
JI

JI + 1

σ1(JI )

σ0(JI )
. (2.11)

We remark that the summations on MS,MF , and MI have
been explicitly performed in Ref. [3] [cf. Eqs. (21) and (27) in
that reference].

Moreover, we adopt here both (i) the weak-coupling
model (WCM), where for the A−1Z core ground state
|JC〉, the initial state is |JI 〉 ≡ |(j�JC)JI 〉 and (ii) the
extreme shell model (ESM), where |νF JF 〉 ≡ |(j−1

p JC)JF 〉.
j� ≡ n� l� j� and jp ≡ np lp jp are the single-particle states
for the � and proton, respectively. Under these circum-
stances, and when the single-proton subshells are completely
filled in |JC〉, as happens in the case of 5He and 12C,
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one gets:

〈plPLλSJT νF JF ; JI |V |JI 〉
= (−)JC−JF +jp Ĵ ĴF

{
JC JI j�

J jp JF

}
M(plPLλSJT ; �p)

(2.12)

with

M(plPLλSJT ; �p)

= 1
2

[
1 − (−)l+S+T

]
(−)T +1(plPLλSJT |V |j�jpJT ),

(2.13)

where the compact notation � ≡ j�, t� = −1/2, p ≡ jp, tp

has been used, and the isospin coupling |t�tp〉 = 1/
√

2(|T =
1,MT = 0〉 − |T = 0,MT = 0〉) has been carried out.

Within the above description, the liberated energies are
independent of JF , i.e. �νF JF

→ �jp = M� − MN + εj� +
εjp , where the ε’s are separation energies and M� is the hyperon
mass. Forthwith, we rewrite the integration in Eq. (2.8) as∫

d cos θp1

∫
dF . . . = 1

(2π )5

∑
jp

∫
dUjp

∑
JF

. . . ,

(2.14)

where∫
dUjp · · · =

∫
d cos θp1

∫
p2

2dp2

∫
p2

1dp1

× δ

(
p2

1

2MN

+ p2
2

2MN

+ |p1 + p2|2
2MR

− �jp

)
· · · , (2.15)

Putting all this together, and performing the summation on
JF , we end up with the decay moments σκ (JI ), given by
Ref. [3, Eq. (34)], that have a purely kinematical depen-
dence on the hypernuclear spin JI . This dependence can be
eliminated within the WCM by defining [12] the intrinsic
asymmetry parameter

a� =
{

AV for JI = JC + 1/2,

− JI +1
JI

AV for JI = JC − 1/2,
(2.16)

which in the formalism explained above takes the form [3]:

a� = ω1

ω0
, (2.17)

with the decay moments

ωκ = (−)κ
8√
2π

κ̂−1
∑

jp

∫
dUjpYκ0(θp, 0)

×
∑
T T ′

(−)T +T ′ ∑
LS

∑
lλJ

∑
l′λ′J ′

il−l′

× (−)λ+λ′+S+L+jp+ 1
2 l̂ l̂′λ̂λ̂′Ĵ 2Ĵ ′2(l0l′0|κ0)

×
{

κ 1/2 1/2
jp J J ′

}{
κ J ′ J

S λ λ′

} {
l′ l κ

λ λ′ L

}
×M(plPLλSJT ; �p)M∗(pl′PLλ′SJ ′T ′; �p),

(2.18)

where Ĵ = √
2J + 1, etc. We note that the moments ωκ do

not depend on the hypernuclear spin JI , and that L = 0 for the
1s1/2 state, and L = 0 and 1 for the 1p3/2 state.

To evaluate the matrix elements in Eq. (2.13) one has
to carry out the jj − LS recouping and the Moshinsky
transformation [13] on the ket |j�jpJT ) (see Ref. [8,
Eq. (2.14)]) to get

(plPLλSJT |V |j�jpJT )

= ĵ�ĵp

∑
λ′S ′nlNL

λ̂′Ŝ ′


l�

1
2 j�

lp
1
2 jp

λ′ S ′ J

 (PL|NL)

× (nlNLλ′|n�l�nplpλ′)(p, lLλSJ ; T |V |nlLλ′S ′J ; T ),

(2.19)

where (n · · · |n� · · ·) are the Moshinsky brackets [13]. Here,
l and L stand for the quantum numbers of the relative and
center-of-mass orbital angular momenta in the �N system.
Moreover,

(PL|NL) = δL,L

∫
R2dRjL(PR)RNL(R), (2.20)

is the overlap of the center-of-mass radial wave functions. One
is interested here in the jp = 1s1/2 state, for which is l = L = 0,
and in the jp = 1p3/2 state, for which both l = 0, L = 1, and
l = 1, L = 0 terms contribute.

III. APPROXIMATE EXPRESSION FOR a�

We start this section by neglecting the kinematical and
nonlocal effects on the NMWD introduced in Ref. [10], which,
as shown there and confirmed in Ref. [3], do not affect the
final results by more than 10–20%. Afterwards we write the
Eq. (2.18) in the form:

ωκ = 8√
π

∑
jp lL

∫
dUjpYκ0(θp, 0)O(P ; L)Iκ (p; jp l), (3.1)

where O(P ; L) ≡ (PL|1L)2 and

O(P ; 0) =
√

π

2
b3e−(Pb)2/2; O(P ; 1) = (bP )2

3
O(P ; 0),

(3.2)

with b being the oscillator length [8].
From Eqs. (2.18), (2.13), and (2.19) one sees that the

just-introduced quantities Iκ (p; jp l) are complicated function
of p, jp, and l. They involve several Racah coefficients and
many summations on different angular momenta and isospins.
However, after performing all the algebra analytically, we have
demonstrated that the nuclear amplitudes Iκ (p; jp l = 0) do not
depend on jp, i.e.

Iκ (p; jp = 1s1/2, 0) = Iκ (p; jp = 1p3/2, 0) ≡ Iκ (p; 0).

(3.3)

However, for l = 1 only the jp = 1p3/2 state contributes, and
one can write

Iκ (p; jp = 1p3/2, 1) ≡ Iκ (p; 1). (3.4)

054321-3
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The explicit expressions for the form quantities Iκ (p; l),
in the one-meson-exchange model (OMEM), that comprise
the (π, η,K, ρ, ω,K∗) mesons, are exhibited in Appendix A.
The κ = 0 pieces of Eq. (3.1), i.e. the Eqs. (A1) and (A3), have
already been derived in a previous work [8], where we have
also learned that the matrix elements contained within I0(p; 1)
represent the higher order contributions (HOC), when com-
pared with those contained within I0(p; 0). These HOC are
∼=2% for the PC transitions and ∼=15% for the PV transitions
(see also Ref. [14]). Here we have verified numerically that
the HOC contribute to ω1 in similar proportions, and therefore
their overall effect on a� is relatively small. Thus, the l = 1
contributions to 12

�C, will be omitted from now on, and we end
up with

ωκ = 8√
π

∑
jpL

∫
dUjpYκ0(θp, 0)O(P ; L)Iκ (p; 0), (3.5)

which, together with Eq. (2.17) is what we call the s-WA for
a� in finite hypernuclei. Needless to say that Eq. (3.5) is exact
for 5

�He and equivalent to Eq. (2.18). Note that the summation
on jp in Eq. (3.5) affects only the range of the integration as
indicated in Eq. (2.15).

Next we show that the amplitudesI0(p; l = 0) andI1(p; l =
0) exhibit the same combination of nuclear matrix elements as
the numerator and the denominator in Eq. (1.1). That is:

I0(p; 0) = |a|2 + |b|2 + 3(|c|2 + |d|2 + |e|2 + |f|2),

I1(p; 0) = 2�[
ae∗ − b(c −

√
2d)∗/

√
3 + f(

√
2c + d)∗

]
,

(3.6)

with

a = (p, 0001|V |0001)
.= 〈1S0|V̂ |1S0〉,

b = i(p, 1101|V |0001)
.= 〈3P0|V̂ |1S0〉,

c = (p, 0110|V |0110)
.= 〈3S1|V̂ |3S1〉,

(3.7)
d = −(p, 2110|V |0110)

.= 〈3D1|V̂ |3S1〉,
e = i(p, 1010|V |0110)

.= 〈1P1|V̂ |3S1〉,
f = −i(p, 1111|V |0111)

.= 〈3P1|V̂ |3S1〉,
where the short notation

(p, lSJT |V |0JJT )

≡ (p, lL = 0, λ = l, SJT |V |n = 1, l = L = λ′ = 0,

S ′ = J, JT ) (3.8)

has been used for the matrix elements in Eq. (2.19).
Relationships between the matrix elements

M(plPLλSJT ; �p), and the amplitudes a, b, c, d, e,
and f are shown in Appendix B. It can be seen that, although
the derivation of the Eq. (3.6) for the 1s1/2 orbital is mainly
based on the relation

M(plPL = 0, λ = lSJT ; �p)

= (−)T +1(P 0|10) (p, lSJ ; T | V |0JJ ; T ) , (3.9)

the one for the 1p3/2 orbital is much more involved. In fact,
in the latter case one has to consider all matrix elements
M(plPL = 1, λSJT ; �p) with l + 1 � λ � |l − 1|, each one

of them containing the center-of-mass matrix element (P 1|11)
and one or two transition amplitudes a, · · · , f.

When expressed in the framework of the OMEM, the SM
matrix elements read

a = 1√
2

[
C0

1 + C0
0 − 3

(
S0

1 + S0
0

)]
,

b = − 1√
2

(
P 10

π + P 10
K1

+ P 10
η + P 10

K0

) +
√

2
(
P̃ 10

K∗
1
+ P̃ 10

K∗
0

)
,

c = 1√
2

[
S0

0 + C0
0 − 3

(
S0

1 + C0
1

)]
,

(3.10)
d = 2

(
3T 20

1 − T 20
0

)
,

e = − 1√
6

[
3
(
P 10

π + P 10
K1

+ 2P̃ 10
K∗

1

) − P 10
η − P 10

K0
− 2P̃ 10

K∗
0

]
,

f = − 1√
3

[
P 10

π − P 10
K1

+ P 10
η − P 10

K0

]
.

The radial matrix elements S,C, T , P, P̃ are defined in
Appendix A and are related to those defined Ref. [8], namely,
S, C, T, P, P̃, as S = S(P 0|10), etc. As indicated in the same
appendix the subindices refer to isospin and the superindices
to angular momentum transitions.

Although the SM leads to a NOSK-like expression for a�

within the s-WA, both for 5
�He and 12

� C, there are several
differences between the SM matrix elements and those in the
NOSK formula, and this is the reason for the symbol

.= in
Eq. (3.7):

(i) The first ones depend on the relative momentum p, and
the second ones do not.

(ii) a, · · · , f in Eq. (1.1) are in units of MeV−2, whereas
a, · · · , f in Eq. (3.2) are in units of MeV−1/2. This is
due to the fact that the radial wave functions for the
initial states are different.

(iii) As pointed out in Ref. [10], they differ as well by the
phase factor (−)S+J i−l that appears in Eq. (3.7), where
the first correction is due to the change in ordering in
the Clebsch-Gordan couplings for the spins, and the
second one, to the fact that we do not include the phase
il in the final partial-wave radial function.

There are still two, at first glance, quite important differ-
ences between the NOSK formula [Eq. (1.1)] and our SM
result. They come from the presence of the spherical harmonic
and the integration in Eq. (3.5). Thus, to make them still more
similar with each other, a few further approximations, which
we feel are physically quite sound, are done:

(i) We assume that the ε’s do not play a significant
role in Eq. (2.15). Thus, the liberated energy �jp is
approximated by � = M� − MN , which means that in
Eq. (3.5) is dUs1/2 = dUp3/2 .

(ii) The decay is basically back to back; therefore θp
∼= 0,

and

Y1,0(θp, 0) ∼= Y1,0(0, 0) =
√

3/4π. (3.11)

(iii) The amplitudes Iκ (p; 0) can be computed at p ∼= p� =√
MN� (P ∼= 0) and factored out of the integrals. We
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end up with

ωκ = κ̂Iκ (p = p�; 0)
∑

L

JL, (3.12)

where

JL = 2MN

π

∫ P�

0
P 2

√
P 2

� − P 2O(P ; L)dP (3.13)

and P� = 2
√

MN� = 815 MeV. The essential point
here is that, as shown in Eq. (2.19), the center-of-
mass overlaps O(P ; L) have a Gaussian behavior in
the variable P , and consequently the phase-space

factors P 2
√

P 2
� − P 2O(P ; L) in Eq. (3.13) are rather

narrow peaks at ∼200 MeV. However, we have tested
numerically that the amplitudes Iκ (p; 0) have a very
smooth dependence on P in the range 0 � P � 300 MeV
(p� � p � 380 MeV).

Finally, the integrals
∑

L JL cancel out in the numerator
and the denominator in Eq. (2.17), and we obtain

a� =
√

3
I1(p = p�; 0)

I0(p = p�; 0)
, (3.14)

which is the NOSK-like formula that we have been searching
for.

We have also shown that

J0
∼= J1

∼= 2MNp�, (3.15)

which is consistent with the result [[8], Eq. (5.3)], and, together
with Eq. (3.3), reveals that within the s-WA:

ωκ (s1/2) ∼= ωκ (p3/2). (3.16)

That is, the s1/2 and p3/2 states contribute roughly by the same
amounts, for both the proton-induced decay rate �p ≡ ω0 and
the numerator ω1 in the Eq. (2.17). It is worth noting that this
is not valid in the case of the neutron-induced decay rate �n,
where, due to the Pauli principle, the 1s1/2-state contribution
is always larger [8] than that of the 1p3/2 state.

For the sake of consistence, the proton-induced decay rate
has to be evaluated from

�p ≡ ω0 =


2MNp�I0(p = p�; l = 0) for 5

�He

4MNp�I0(p = p�; l = 0) for 12
�C,

(3.17)

when the expression (3.14) is used for the asymmetry param-
eter. Note that the above result is a simple explanation for
why

�p

(12
�

C
) ∼= 2�p

(5
�

He
)
. (3.18)

We would like to stress that this is a purely kinematical result,
and therefore it does not depend on the dynamics involved in
the NMWD process.

As an application of the formalism developed here we
exhibit the results for a� within the simple one-pion exchange
model (OPEM) and within the π + K model. Employing
Eqs. (3.14), (A1), and (A2), we obtain, respectively:

aπ
� = − 2

[ (
2T 20

π − S0
π

)
P 10

π

]
18

(
T 20

π

)2 + (
P 10

π

)2 + 3
(
S0

π

)2 (3.19)

and

aπ+K
� = − 2

[
2
(
3T 20

1 − T 20
K0

)
P

10

π
− 3

(
P 10

π − P 10
K0

)
S0

1 − (
2P 10

π + 3P 10
K1

)
S0

K0

]
6
(
3T 20

1 − T 20
K0

)2 + 3
(
P 10

π

)2 + 2P 10
π

(
2P 10

K1
− P 10

K0

) + (
P 10

K0

)2 + 9
(
S0

1

)2 + 3
(
P 10

K1

)2 + 3
(
S0

K0

)2 , (3.20)

where T 20
1 = T 20

π + T 20
K1

and S0
1 = S0

π + S0
K1

. We remark that
these results are valid for both 5

�He and 12
� C.

IV. NUMERICAL RESULTS

In Tables I and II are compared the exact calculations for
the asymmetry parameter aexact

� , evaluated from Eqs. (2.17)
and (2.18), with the approximated ones a

approx
� , obtained from

Eq. (3.14). We see that the agreement between aexact
� and a

approx
�

is quite good for both 5
�He and 12

�C. It can be seen from
Table II that the relation (3.16) is fairly well fulfilled, which
in turn implies the validity of Eq. (3.18).

Next, we briefly discuss the results within the OPEM and
within the π + K model for the individual matrix elements
listed in Table III. It is seen from this table and Eq. (3.19) that
the contribution of the scalar matrix element S0

π is small when
compared with those coming from T 20

π and P 10
π . Thus, one

gets:

aπ
�

∼= − 4T 20
π P 10

π

18
(
T 20

π

)2 + (
P 10

π

)2 , (4.1)

TABLE I. Exact (aexact
� ) and approximate

(aapprox
� ) results for the asymmetry param-

eter a� in 5
�He. aexact

� is evaluated from
Eqs. (2.17) and (2.18), and a

approx
� from

Eq. (3.14).

OMEM aexact
� a

approx
�

π −0.4354 −0.4351
(π, η,K) −0.5652 −0.5852
π + ρ −0.2449 −0.2665
(π, η,K) +
(ρ, ω,K∗)

−0.5117 −0.5131

054321-5
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TABLE II. Exact (aexact
� ) and approximate (aapprox

� ) results for the asymmetry parameter a�

in 12
�C aexact

� is evaluated from Eqs. (2.17) and (2.18), and a
approx
� from Eq. (3.14). The HOC

are given in Eqs. (A3) and (A4).

Approximation ω0(1s1/2) ω0(1p3/2) ω1(1s1/2) ω1(1p3/2) aexact
� a

approx
�

π

With HOC 0.4111 0.4724 −0.1830 −0.1990 −0.4324
Without HOC 0.4111 0.4327 −0.1830 −0.1863 −0.4377 −0.4501
(π, η, K)
With HOC 0.2788 0.3161 −0.1580 −0.1707 −0.5526
Without HOC 0.2788 0.2811 −0.1580 −0.1569 −0.5624 −0.5860
π + ρ

With HOC 0.4138 0.4607 −0.0984 −0.1096 −0.2379
Without HO 0.4138 0.4220 −0.0984 −0.1020 −0.2398 −0.2554
(π, η, K) +
(ρ, ω, K∗)
With HOC 0.4391 0.4803 −0.2300 −0.2378 −0.5088
Without HO 0.4391 0.4477 −0.2300 −0.2271 −0.5154 −0.5306

which means that a� is large and negative in the OPEM, due
to the interplay between the PC tensor (T 20

π ) and PV dipole
(P 10

π ) matrix elements.

In the same way from Table III one can eas-
ily see that the Eq. (3.20) can be approximated
as:

aπ+K
�

∼= − 2
[
2
(
3T 20

1 − T 20
K0

)
P

10

π
− 3

(
P 10

π − P 10
K0

)
S0

1

]
6
(
3T 20

1 − T 20
K0

)2 + 3
(
P 10

π

)2 + 2P 10
π

(
2P 10

K1
− P 10

K0

) + (
P 10

K0

)2 + 9
(
S0

1

)2 . (4.2)

Thus the inclusion of the kaon modifies the above picture
to a great extent. The matrix element T 20

π goes now into
the significantly smaller term (T 20

1 − T 20
K0

/3), which would
increase a� by the factor T 20

π /(T 20
1 − T 20

K0
/3) ∼= 1.5. However,

as can be seen from Table III, this effect is counterbalanced to
a great extent by the large term 3(P 10

π )2 in the denominator,
which now becomes more relevant in comparison with the
tensor contribution. The kaon dipole and scalar contributions
are also appreciable and we end up with a aπ+K

� which is ∼=25%
larger than aπ

�. We note that, whereas the contribution of S0
π

was neglected in aπ
�, that of S0

1 is retained in aπ+K
� because of

the coherent contribution between S0
π and S0

K1
.

By employing Eqs. (A1) and (A2) similar discussions can
be performed for the exchanges of other mesons. In particular,
one sees from Tables I and II that only the ρ meson can
diminish the value of the intrinsic � asymmetry. From the
last table it is not difficult to figure out that this comes from
the destructive interference between the π and ρ mesons in
the numerator of Eq. (2.17).

V. SUMMARIZING CONCLUSIONS AND
FINAL REMARKS

In summary, by employing the s-WA and making use of
a few plausible assumptions, we have succeeded in shaping
the SM formalism for the asymmetry parameter a� into

NOSK-like formulas (3.5) and/or (3.14), which, in contrast to
Eq. (1.1), are valid for finite hypernuclei. The new formalism
(i) makes the theoretical evaluation of a� more transparent, (ii)
explains clearly why the one-meson exchange model is unable
to account for the experimental data of 5

�He, and (iii) helps to
advance knowledge of the NMWD in general.

TABLE III. Nuclear matrix elements in
units of MeV−1/2.

Matrix element 5
�He 12

� C

π

T 20
π −3.2402 −3.7132

P 10
π −8.0573 −10.0379

S0
π 0.3876 0.4088

aπ
� −0.4351 −0.4501

K

T 20
K0

0.4010 0.4313

T 20
K1

1.3438 1.4455

P 10
K0

4.8025 5.6107

P 10
K1

0.7388 0.8632

S0
K0

0.1571 0.2238

S0
K1

0.5265 0.7501

aπ+K
� −0.5389 −0.5500
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It is still an open problem whether the result (2.18), and
therefore the formulas (3.5), (3.14), (4.1), and (4.2), are of
general validity. Their derivation is based on the properties of
the single-proton spectroscopic amplitude between the core
state |JC〉 and the final states |JF 〉, which in the extreme SM,
adopted here, have the simple expression [3, Eq. (31)]:〈

JC

∣∣∣∣a†
jp
||JF

〉 = (−)JF +JC+jp ĴF .

This result allows us to perform the analytic summation on
JF , and a� becomes independent of the nuclear structure of
the final states [cf. Eq. (2.17)]. However, because of the Pauli
principle, it is only valid for hypernuclei with all single-particle
proton subshells totally full, such as happens in 5

�He and 12
�C.

That is, we still do not know whether the Eq. (2.17), and all the
developments presented here, can be used for other polarized
hypernuclei, such as 11

�B. Very likely it does, but this has to
be proved!

Quite recently, and after the present work had been basically
finished, the Barcelona group [15] has stated that a chirally
motivated 2π -exchange mechanism of D. Jido, E. Oset, and
J. E. Palomar [16] strongly affects the OMEM amplitudes a
and c in the Eq. (3.10), producing in this way results that are
consistent within the experimental data. Within the OMEM
these two amplitudes are negative and of similar magnitudes
due to the dominance of the central spin-isospin flipping
matrix element S0

1 in both of them. We feel that for a more
thorough discussion of the interplay between the two transition
mechanisms, it might be convenient to extend the formalism
developed here by incorporating the 2π exchanges into the
Eqs. (3.10) and (3.20).

Last but not least, the very simple form of Eqs. (3.5)
and (3.14) suggests that it might be possible to derive these
expressions by more elementary considerations, instead of
performing a very heavy Racah algebra, which has been done
here. This would be highly desirable, but so far we have not
been able to find such a simple argument.
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APPENDIX A: FORMULAE FOR Iκ ( p; l) WITHIN THE
OMEM

The transition amplitudes [Eqs. (3.3) and (3.4)] that appear
in Eq. (3.1) are:

I0(p; l = 0)

= 2[6
(
3T 20

1 − T 20
0

)2 + 3
(
S0

0

)2 + 9
(
S0

1

)2 + (
C0

0

)2

+ 7
(
C0

1

)2 − 4C0
0C0

1 + 12C0
1S0

1 − 6C0
0S0

1 − 6C0
1S0

0

+ 3
(
P 10

π

)2 + (
P 10

η

)2 + 3
(
P 10

K1

)2 + (
P 10

K0

)2 + 10
(
P̃ 10

K∗
1

)2

+ 2
(
P̃ 10

K∗
0

)2 − 2P 10
η P 10

K1
+ 2P 10

π

(
2P 10

K1
− P 10

K0

+ 4P̃ 10
K∗

1
− 2P̃ 10

K∗
0

) + 4P 10
K1

(
2P̃ 10

K∗
1
− P̃ 10

K∗
0

)
− 4P̃ 10

K∗
1

(
P 10

η + P 10
K0

+ P̃ 10
K∗

0

)]
, (A1)

I1(p; l = 0)

= 4√
3

[
3
(
P 10

π − P 10
K0

+ 2P̃ 10
K∗

1

)
S0

1 + (
2P 10

π − P 10
η

+ 3P 10
K1

+ 4P̃ 10
K∗

1
− 2P̃ 10

K∗
0

)
S0

0 + (
P 10

η − 3P 10
K1

− 2P 10
K0

+ 2P̃ 10
K∗

0

)
C0

1 − (
P 10

π − P 10
K0

+ 2P̃ 10
K∗

1

)
C0

0 − 2(P 10
π

+P 10
η − P̃ 10

K∗
1
− P̃ 10

K∗
0
)
(
3T 20

1 − T 20
0

)]
, (A2)

I0
(
p; l = 1

)
= 6

(
S1

0

)2 + 42
(
S1

1

)2 − 24S1
0S1

1 + 2
(
C1

0

)2 + 6
(
C1

1

)2

− 24C1
1S1

1 + 12C1
1S1

0 + 12C1
0S1

1 + 6
5

(
T 11

0 + T 11
1

)2

+ 54
5

(
T 31

0 + T 31
1

)2 + 14
(
P 21

π

)2 + 2
(
P 21

η

)2 + 8
(
P 21

K1

)2

+ 4
3

(
P 21

K0

)2 + 14
(
P̃ 21

K∗
1

)2 + 10
3

(
P̃ 21

K∗
0

)2 + 4P 21
η P 21

K1

− 4P 21
π

(
2P 21

η + 2P 21
K1

− P 21
K0

+ 4P̃ 21
K∗

1
− 2P̃ 21

K∗
0

)
+ 4P 21

K1

( − P 21
K0

− P̃ 21
K∗

1
+ P̃ 21

K∗
0

) + 4P̃ 21
K∗

1

(
2P 21

η + P 21
K0

− P̃ 21
K∗

0

) + 4
3P 21

K0
P̃ 21

K∗
0
+ 2

3

(
P 01

K0

)2 + 6
(
P 01

K1

)2 + 2
3

(
P̃ 01

K∗
0

)2

+ 6
(
P̃ 01

K∗
1

)2 − 4
3P 01

K1
P 01

K0
− 4

3 P̃ 01
K∗

0

(
P 01

K0
− 3P 01

K1
+ 3P̃ 01

K∗
1

)
+ 4P̃ 01

K∗
1

(
P 01

K0
− 3P 01

K1

)
, (A3)

and

I1(p; l = 1)

= 4

3
√

3

{(
9P 21

π + 6P 21
η + 3P 21

K1
+ 8P 21

K0
+ 15P̃ 21

K∗
1

+ 13P̃ 21
K∗

0

)
S1

1 − (
3P 21

η + 6P 21
K1

+ P 21
K0

+ 3P̃ 21
K∗

1

+ 5P̃ 21
K∗

0

)
S1

0 + 1

2

(
9P 21

π − 3P 21
η − 15P 21

K1
+ 5P 21

K0

+ 6P̃ 21
K∗

1
− 2P̃ 21

K∗
0

) [
1

2

(
C1

1 + C1
0

) + 2

5

(
T 11

1 + T 11
0

)]
− 27

5

(
3P 21

π − P 21
η − 3P̃ 21

K∗
1
+ P̃ 21

K∗
0

)(
T 31

1 + T 31
0

)
+ (

3P 01
K1

− P 01
K0

− 3P̃ 01
K∗

1
+ P̃ 01

K∗
0

)(
S1

1 + S1
0 + C1

1 + C1
0

− T 11
1 − T 11

0

)}
. (A4)

It should be noted that the formulas for I0(p; l) have been
presented before in Ref. [8, Eq. (4.19)], and only the results
for I1(p; l) are new. The radial matrix elements S,C, T , P, P̃

have the same meaning as the factors, S, C, T, P, P̃ in Ref. [8]
and are related to them as S = S(P 0|10), etc. Nevertheless, to
facilitate the reading of the article we repeat their definitions
also in the present work.

The parity conserving nuclear matrix elements are:

Cl
M (p) = B′

M (pl|fM |1l), for M = π, η,K, ρ, ω,K∗

S l
M (p) = BM

(
pl

∣∣f S
M

∣∣1l
) ×

{
1 for M = π, η,K

2 for M = ρ, ω,K∗ ,
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T ll
M (p) = BM

(
pl

∣∣f T
M

∣∣1l
) ×

{
1 for M = π, η,K

−1 for M = ρ, ω,K∗ .

and the parity-violating ones are:

P ll
M (p) = AM (pl|f (−)

M |1l),

Qll
M (p) = A′

M (pl|f (+)
M |1l).

The radial form factors (pl|fM |1l), (pl|f S
M |1l), (pl|f T

M |1l), and
(pl|f (±)

M |1l), and the coupling constantsAM,A′
M,BM , andB′

M

are given in Ref. [8].
The compact notations are also used:

τ = 0 τ = 1
C0 = Cω + CK0 ; C1 = Cρ + CK∗

1
,

S0 = Sη + Sω + SK0 + SK∗
0

; S1 = Sπ + Sρ + SK1 + SK∗
1
,

T0 = Tη + Tω + TK0 + TK∗
0

; T1 = Tπ + Tρ + TK1 + TK∗
1
,

for the isoscalar (τ = 0) and the isovector (τ = 1) matrix
elements, and

P̃η = Pη − QK∗
0
, P̃K0 = PK0 − Qω, P̃K∗

0
= PK∗

0
+ Pω,

P̃π = Pπ − QK∗
1
, P̃K1 = PK1 − Qρ, P̃K∗

1
= PK∗

1
+ Pρ.

APPENDIX B: RELATIONSHIP BETWEEN THE MATRIX
ELEMENTS M( pl P LλS J T ; �p), AND THE AMPLITUDES

a, b, c, d, e, AND f

A. For Iκ ( p; j p = 1s1/2, 0):

M(p0, P 0, 0001; �p) = a(p)(P 0|10),

iM(p1, P 0, 1101; �p) = b(p)(P 0|10),

M(p0, P 0, 0110; �p) = −c(p)(P 0|10),
(B1)

M(p2, P 0, 2110; �p) = d(p)(P 0|10),

iM(p1, P 0, 1010; �p) = −e(p)(P 0|10),

iM(p1, P 0, 1111; �p) = −f(p)(P 0|10).

B. For Iκ ( p; j p = 1 p3/2, 0):

M(p0, P 1, 1011; �p) = 1√
3

a(p)(P 1|11),

M(p0, P 1, 1110; �p) = − 1√
6

c(p)(P 1|11),

M(p0, P 1, 1120; �p) = − 1√
2

c(p)(P 1|11),

iM(p1, P 1, 0111; �p) = 1

3

(
b(p)√

3
− f(p)√

2

)
(P 1|11),

iM(p1, P 1, 1111; �p) =
(

b(p)

3
− f(p)

2
√

6

)
(P 1|11),

iM(p1, P 1, 2111; �p) =
√

5

3

(
b(p)√

3
+ f(p)

2
√

2

)
(P 1|11),

iM(p1, P 1, 1010; �p) = − 1√
6

e(p)(P 1|11), (B2)

iM(p1, P 1, 2020; �p) = − 1√
2

e(p)(P 1|11),

iM(p1, P 1, 1121; �p) = − 1

2
√

2
f(p)(P 1|11),

iM(p1, P 1, 2121; �p) = −
√

3

2
√

2
f(p)(P 1|11),

M(p2, P 1, 1110; �p) = 1

2
√

2
d(p)(P 1|11),

M(p2, P 1, 2110; �p) = 1

2
√

2
d(p)(P 1|11),

M(p2, P 1, 1120; �p) = 1

10
√

2
d(p)(P 1|11),

M(p2, P 1, 2120; �p) =
√

21

5
√

2
d(p)(P 1|11),

M(p2, P 1, 3120; �p) =
√

21

5
√

2
d(p)(P 1|11).
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