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“ To Summarise briefly: A white rabbit is pulled out of a top hat. Because
it is an extremely large rabbit, the trick takes many billions of years. All
mortals are born at the very tip of the rabbit’s fine hairs. where they are
in a position to wonder at the impossibility of the trick. But as they
grow older they work themselves even deeper into the fur. And there
they stay. They become so comfortable they never risk crawling back up
the fragile hairs again. Only philosophers embark on this perilous
expedition to the outermost reaches of language and existence. Some of
them fall off, but others cling on desperately and yell at the people
nestling deep in the snug softness, stuffing themselves with delicious
food and drink.

‘Ladies and gentlemen,’ they yell, ‘we are floating in space!’ but none of
the people down there care.

‘What a bunch of troublemakers!’ they say. And they keep on chatting:
Would you pass the butter, please? How much have our stocks risen
today? What is the price of tomatoes? Have you heard that Princes Di is
expecting again? ”

Jostein Gaarder, Sophie’s World
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Abstract

The mathematical modelling of infectious diseases is an extremely interdisciplinary
field, where we need to amalgamate different areas of expertise, cultures and
scientific backgrounds. Based on the available biological and epidemiological data,
compartmental models can be tailored to investigate different research questions
regarding a disease spread dynamics within a population. In our COVID-19 and
malaria modelling exercises, we used different model structures to address different
issues.
Through the CoMo model framework, we have produced a robust model to compare
non-pharmaceutical intervention scenarios and assess their relative effects on
reducing cases and deaths, during the COVID-19 pandemic. This model was broadly
applied to inform policy making at national and international levels. Taking into
account inter-household connectivity heterogeneities, we have also contributed
towards bridging the gap between population and household-level models for
communicable diseases, using insights from network percolation theory.
Within the COVID-19 modelling context, we have also developed other model
structures to address different research questions. Simplified age-structuring and
intervention implementations were used to explore and optimise the outcome of
single interventions (viz. school reopening and vaccination) or estimate
epidemiologically relevant parameters (viz. transmission rates for a new variant).
In the context of endemic malaria, we presented single-species models that can and
have been useful to inform health policymakers. Nevertheless, since multiple
species can coexist in some parts of the world, it is valuable to evaluate their
combined burden while taking into account their interactions. In this context, a
novel multi-species modelling framework is proposed and its applicability to weak
interaction regimes is proven analytically. Such framework provided theoretical
support for model structures already being applied to support health policy making.
Our contributions encompass both the development of theoretical methodologies to
support more robust models and the development of such models, aiming to support
health decision making.
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Resumo

A modelagem matemática de doenças infecciosas é um campo extremamente
interdisciplinar no qual se faz necessário combinar conhecimentos obtidos a partir
de diferentes especialidades, culturas e disciplinas científicas. Com base em dados
biológicos e epidemiológicos disponíveis, modelos compartimentais podem ser
construídos sob medida visando responder a diferentes questões científicas
referentes à dinâmica de propagação de uma doença dentro de uma dada população.
Em nossos modelos descrevendo a dinâmica de COVID-19 e malária aqui
apresentados, utilizamos diferentes estruturas para solucionar diferentes problemas.
Através da abordagem introduzida pelo modelo CoMo, produzimos um modelo
robusto para simular o efeito de diferentes cenários de intervenções
não-farmacêuticas na redução de casos e mortes, durante a pandemia de COVID-19.
Esse modelo foi utilizado para apoiar a implementação de políticas públicas a níveis
nacional e internacional. Levando em conta heterogeneidades na rede de contatos
entre domicílios, também contribuímos ao preencher a lacuna metodológica
existente entre modelos a nível populacional e domiciliar, usando idéias extraídas da
teoria de percolação em redes.
Ainda no contexto de modelos para COVID-19, desenvolvemos outras estruturas
visando responder diferentes questões científicas. Simplificações na estrutura etária
e na implementação de intervenções foram utilizadas para que se pudesse melhor
avaliar e otimizar o efeito de intervenções únicas (viz. reabertura de escolas e
vacinação) ou estimar parâmetros de relevância epidemiológica (viz.
transmissibilidade de novas variantes).
No contexto de malária endêmica, descrevemos modelos independentes para
diferentes espécies, que são atestadamente úteis para informar tomadas de decisão
no contexto de saúde pública. Visto que múltiplas espécies coexistem no meio
ambiente, também levamos em conta a avaliação de sua carga combinada e o efeito
de possíveis interações interespecíficas. Neste contexto, propusemos uma nova
abordagem metodológica que viabiliza o desenvolvimento de modelos incluindo
múltiplas espécies e provamos analiticamente sua validade em regimes de interações
fracas. Tal abordagem proporcionou o devido suporte teórico para estruturas de
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modelos já sendo adotadas para informar tomadas de decisão em saúde pública.
Nossas contribuições englobam tanto o desenvolvimento de metodologias teóricas
que fundamentam a construção de modelos mais robustos, quanto o
desenvolvimento de tais modelos visando apoiar tomadas de decisão em saúde
pública.

Palavras Chaves: modelos matemáticos; modelos compartimentais; doenças
infecciosas; SARS-CoV-2; malária.

Áreas do conhecimento: Física; Sistemas complexos; Biologia matemática.
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Preface

“I simply wish that, in a matter which so closely concerns the wellbeing of

the human race, no decision shall be made without all the knowledge which

a little analysis and calculation can provide.”

(Daniel Bernoulli, 1760)

Mathematical modelling can be described as a translation of a real-world problem
into a mathematical formulation with the aim to represent, analyse, make
predictions or gain insight onto the investigated phenomena. In the context of
infectious disease modelling, such formulations can be useful tools to understand
the underlying biological mechanisms, support public health decision-making or
forecast. A limitless variety of models can be developed and used to represent a
single epidemiological system, depending of the mathematical approach selected to
represent it.
Despite its usefulness and potential impact as a tool for stakeholders,
epidemiological models only started to be more systematically studied very recently.
Bernoulli’s 1760 analysis on the benefits of universal vaccination against smallpox
[16; 17] was an isolated early exception. After that, only at the beginning of the 20th
century Hamer and Ross would start investigating, respectively, measles and
malaria epidemiological dynamics through mathematical modelling [79; 128],
followed by Kermack and McKendrick analysis on the necessary conditions for an
epidemic to occur [89; 32].
Note that, even though these seminal models were able to elegantly explain some
observed epidemiological patterns, they carried many underlying assumptions
regarding the population affected, the disease spread and the recovery mechanisms.
Hence, the need to develop more complex models became swiftly prominent, either
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with the aim of relaxing some of the assumptions, or being more specific to the
biology of certain diseases.
“All models are wrong, some are useful” is a common maxim, generally attributed to
the statistician George Box. A corollary interpretation of this aphorism is that, even
though there is no right model, there are good modelling approaches. These are the
ones informed by our aims, research questions and available data. Simple models
can be useful if they provide relevant information for a particular purpose, but the
complexity of a model will increase together with the number of functions it
performs. The challenge lies in keeping a balance between biological realism and
model intricacy, since it might not always be worth adding extra degrees of freedom
if they come with additional uncertainties. In a global health context, useful models
are the ones validated by epidemiological data and able to inform decision-making.
Having worked closely with other experienced modellers, biologists, epidemiologist,
public health experts and policy makers, we have tailored each model framework
presented here to address specific public health issues or answer specific research
questions. Some of these questions questions were inspired by an eagerness to
better understand biological and epidemiological mechanisms, but most of them
were simply induced by demands to support health decision making. Note that this
thesis and many of the models hereby described have been written during the
COVID-19 pandemic, the yet most significant and disrupting health crisis seen in
the XXI century. Such shock has therefore reshaped this thesis outcomes and
impact, as well as it has shakensw the whole world.
Here, we broach a few case studies where compartmental models were developed to
address different research questions in the public health context. We structure the
content in 9 main chapters, divided in 3 independent parts: one introductory part
and two parts comprising scientific contributions where mathematical modelling
was used in the contexts of an emerging pandemic and an ongoing endemic. Parts II
and III contain their own introduction and closely follow the structure of our
published papers or manuscripts in preparation.
Part I provides a theoretical background on mathematical modelling of infectious
diseases. Chapter 1 introduces some key concepts and basic model compartmental
structures that we will later build on, when developing more complex models for
specific diseases. Chapter 2 reports our experience collecting and processing
epidemiological data, whilst also exploring a few of the general challenges involved
with data wrangling.
Part II describes our experience using mathematical models to inform decision
making at public health level in the context of the progressing COVID-19 pandemic.
Chapter 3 delineates some of the key events throughout the evolution of the
COVID-19 pandemics and reports the development participatory modelling
networks to support policy making in Brazil and other countries. Chapter 4 details
the theoretical framework we used to model the COVID-19 epidemiological
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dynamics, including our contribution in developing a modelling approach to bridge
the gap between compartmental and household-level models. Chapter 5 expands on
the applications of our mathematical models on informing policy-making in Brazil,
including the use of models to analyse the transmissibility of a new variant, school
reopening strategies and vaccination scenarios. We also include considerations
about lessons learned on model communication to stakeholders.
Part III describes the development of a multi-species malaria model. Chapter 6
contextualises the malaria endemic panorama in Brazil, which is concentrated in the
Amazon region. Chapter 7 introduces typical mathematical models to describe the
disease dynamics for the two most common species of Plasmodium, focusing on its
application to model malaria in the Brazilian Amazon region. Chapter 8 describes a
general theoretical framework developed to model multi-species epidemiological
dynamics, which is an approximation technique that can be used to simplify any
multi-species infectious disease dynamic model, including malaria.





Part I

Introduction
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1
Compartmental models for infectious diseases

In this chapter, we will introduce some of the building blocks used in mathematical
modelling of infectious diseases, including paradigmatic toy models that can be used
as a starting point for building more complex models, such as the ones presented in
parts II and III of this thesis.

Figure 1.1: Classic epidemic profile. (Source: Ferguson, N., Keeling, M., John Edmunds, W. et al. [66])

Looking at a typical epidemic curve (figure 1.1), we can identify a few distinctive
phases:

• Epidemic establishmentment: a small number of cases, subject to stochastic
fluctuations, is introduced in a fully susceptible population.

• Exponential growth: a rapid rise in the number of cases that can usually be
described by an exponential growth function.

• Depletion of susceptibles: with the a decreasing susceptible population pool,
the exponential description for the infected population growth is no longer
accurate.

7



8 Chapter 1. Compartmental models for infectious diseases

• Post-epidemic phase: after peaking, due to depletion of susceptibles, the
disease may disappear, become endemic or recur periodically.

At the onset of an epidemic, when a few infectious individuals are introduced into a
fully susceptible population, it is reasonable to assume that the disease spread is not
limited by the size of the pool of susceptible individuals. Hence, the number of
infectious cases can be approximately described by a linear ordinary differential
equation such as

dI

dt
= λI (1.1)

with solution
I = I0 exp

λt (1.2)

where I0 is the number of infected cases at t = 0 and λ is the transmission rate, a
quantity which can be written as a function of other system parameters, such as its
basic reproduction number (more on that in section 1.2).
Nonetheless, with the exhaustion of the susceptible population, such single-variable
exponential approximation becomes inaccurate whereas the interaction between
susceptible, infectious and recovered populations becomes increasingly relevant.
Hence, more complex models are required to represent the system dynamics. For
instance, one can use a susceptible-infected-removed (SIR) model, such as the one
described in section 1.1. This is an example of a compartmental model, where
sub-groups within a population are represented by model compartments. Each
compartment is translated, in mathematical terms, as a dynamical variable, which in
turn has its dynamics described by a differential equation.

1.1 SIR models

One of the simplest compartmental models one can write to simulate a disease
propagation is the susceptible-infected-removed (SIR) system, introduced by
Kermack and McKendrick [89]. Three variables (S, I and R) represent the status of
the individuals in the susceptible, infected and removed (which includes
recovered/immune to reinfection and deceased) sub-populations, referred as the
model’s compartments (figure 1.2).
The flow between compartments can be modelled by the multiplication between a
rate and the outcoming compartment state variable at time t. Each state variable
(compartment) can then be associated with a differential equation, where such flows
between compartments are encoded.
Note that, though this flow rates can be constants parameter, they can also be
functions of time. In dynamic models, the rate at which susceptible individuals
become infected (namely, the system’s force of infection, λ(t)) depends on the
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Figure 1.2: Diagram representing a susceptible-infected-recovered model compartments (S, I and
R) and flows between compartments. λ and ν represent the force of infection and the recovery rate,
respectively.

proportion of the population that is infected per unit time (I/N , N being the total
population).
We can write the following system of equations to represent a SIR system with
dynamic transmission:

dS

dt

= −λS (1.3)
dI

dt

= λS − νI (1.4)
dR

dt

= νI (1.5)

where
λ = β

I

N
(1.6)

is the system’s force of infection and N = S + I +R is the total population, assumed
constant. Here we also introduce β as the disease’s transmission rate and ν as its
recovery rate.
Inspecting equation 1.4, we can note that whenever (βS

N
− ν) < 0, the rate of change

of the the infected sub-population is negative [10]. At this point it is useful to define
a new quantity: the system’s basic reproduction number, R0 =

β
ν
, which will be

further discussed in the following section.

1.2 Basic reproduction number (R0)

An epidemic’s basic reproduction number (R0) is an important quantity that
translates how fast an epidemic develops within a population. It can be defined as
the average number of new infections that result from each single infection introduced
into a totally susceptible population. Mathematically, we can write

R0 = βTD , (1.7)
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where TD is the duration of infection and β is the effective contact rate per unit time,
an important quantity often referred as transmission rate.
In the case of contagious transmission (i.e., direct or indirect contact between an
infected person and a susceptible person is required for transmission), the
transmission rate can be written as

β = pc , (1.8)

where p is the probability of infection given a contact and c is the number of
contacts per unit time.
If we also introduce ν = 1/TD as the disease’s recovery rate, we can write, on the
one hand,

R0 =
β

ν
. (1.9)

On the other hand, we can also write the system’s transmission rate, λ, as

λ = β − ν . (1.10)

Hence,
λ = (R0 − 1)/TD (1.11)

and equation 1.2 becomes
I = I0 exp

(R0−1)/TDt . (1.12)

Note that R0, as defined in equation 1.7, explicitly depends on transmission rates
which can only be defined at populations level. Hence, R0, and therefore the
epidemic’s exponential growth rate, is not only defined by a disease’s biology, but
also by cultural and demographic characteristics of each specific population affected
by a disease.

1.3 Effective reproduction number (Rt)

As an epidemic unfolds and the proportion of susceptible individuals in a population
decreases, R0 can no longer represent the average number of new cases generated
by each previous infection. Therefore, we need to define a new quantity useful at
any stage during the epidemic. The effective reproduction number (Rt) is, hence,
defined as the average number of secondary cases per infectious case in a population

containing both susceptible and non-susceptible individuals and can be calculated as:

Rt = β(t)TD
S(t)

N
. (1.13)

Note that Rt is an implicit function of time, not only because S(t) is dynamic, but
also because we allow β(t) to change in time (which can happen when the disease’s
transmissibility changes in time, e.g. due to interventions).
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Finally, note that, at t = 0, S(0) = N and β(0) are constants. Hence,

R(0) = β(0)DS(0)/N = β(0)D , (1.14)

which is, by definition, R0. Furthermore, if we consider β(t) = β constant, we can
write

R(t) = R0
S(t)

N
. (1.15)

1.3.1 Herd Immunity Threshold

Rt is a useful definition because it indicates whether the incidence of infections is
increasing (Rt > 1) or decreasing (Rt < 1). Identifying when a population is under
each of these regimes it is essential for decision making. Moreover, it can be useful
to determine when the population switches between these two regimes (or when the
epidemic saturates).
Let x∗ be the critical proportion of susceptibles reached when Rt = 1. Thus, using
equation 1.15,

R0x
∗ = 1 =⇒ x∗ =

1

R0

. (1.16)

It can be even more critical to determine a threshold value for the proportion of
individuals that need to be immune before transmission drops to a level where
incidence starts decreasing. More strictly, the herd immunity threshold (HIT ) can be
defined as the critical proportion of non-susceptible individuals in a population so
that the epidemic saturates, being evaluated as

HIT = 1− 1

R0

. (1.17)

In one hand, if the epidemic develops naturally (no interventions) the population
would be protected from new outbreaks above the HIT . Yet a proportion of 1− 1

R0

of the individuals in the population would need to be infected or recovered to reach
this regime (note that the HIT is defined in terms of population susceptibility, not
strictly immunity). In the other hand, considering, for instance, a mass vaccination
scenario, this number can be used to inform the minimum number of individuals
that need to be immunised to control the spread of an epidemic.
Finally, note that the definition in equation 1.17 is only valid if we assume that
natural recovering leads to long-term immunity and that there is no antigenic
variation (which could lead to recurring outbreaks). This would imply that we are
assuming an underlying susceptible-infected-removed dynamics, which we will
explore in details in the following section.
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R0, HIT and stability analysis for the SIR model

For R0 as defined for the system 1.3-1.5, a major epidemic will only occur if
R0

S
N

≥ 1, which implies that the critical proportion of susceptibles, x∗ = S
N
, needs

to be
x∗ ≥ 1

R0

(1.18)

for the epidemic to occur; a result consistent with what we explored in section 1.3.1.
From the perspective of introducing a few infected individuals into a fully
susceptible population, i.e. S0 ≈ N , the condition for the epidemic to develop within
this fully susceptible population is simply

R0 > 1 . (1.19)

This result can also be obtained from a stability analysis of the system’s equilibria.
Note that this is a non-linear set of equations, as the dynamic definition for λ
introduces non-linear terms to the differential equations, but it is still simple enough
so it is possible to analytically perform a stability analysis. The system 1.3-1.5 has at
least two fixed point solutions. One of them represents a disease-free equilibrium,
i.e.

X1 = {S1, I1, R1} = {N, 0, 0} , (1.20)

The other one represents a state where the disease spread throughout the
population, so all individual got infected and recovered:

X2 = {S2, I2, R2} = {0, 0, N} . (1.21)

As R can always be obtained by N − S − I and equations for S and I do not depend
on R, we can analyse the system’s stability by looking at the two eigenvalues
obtained when the sub-system 1.3-1.4 is linearised, which are given by

λA = −βI

N
, (1.22)

λB =
βS

N
− ν . (1.23)

For the disease-free equilibrium, we have

λA|X1 = 0 , (1.24)
λB|X1 = β − ν , (1.25)

which means thatX1 is stable (though not asymptotically stable along the S axis) for
β − ν < 0, which is equivalent to the condition

R0 < 1. (1.26)
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For the fully recovered population equilibrium, we have

λA|X2 = 0 , (1.27)
λB|X2 = −ν , (1.28)

which is stable (but not asymptotically stable) for all values of ν.

1.3.1. Theorem (Threshold for SIR Epidemic). The disease-free steady state is stable

(but not asymptotically stable) if R0 < 1, so that the disease dies out; unstable if
R0 > 1, so that an epidemic may potentially occur [33].

Summarising, as presented in Britton [33], there are two potentially stable fixed
points and the steady-state solution will depend both on R0 and the initial
conditions.
The baseline disease dynamic represented by the system 1.3-1.5 is a depiction of
systems with a clear removed sub-population, like most childhood diseases, such as
measles [33]. Another way to represent recovery, when immunity usually does not
last (e.g. micro-parasitic infections like tuberculosis, meningitis or gonorrhoea),
would be through a susceptible-infected-susceptible (SIS) structure. In such a
system, the recovering flow (νI) leaves the infected compartment and enters the
susceptible compartment. In this case, R0 represents a threshold that determines
whether the disease dies out or becomes endemic. In other words, it determines
whether the disease-free or the endemic equilibrium will be stable.
If recovery or removal is not a relevant part of the disease’s dynamics (e.g. AIDS),
one can use a susceptible-infectious (SI) model, which has an even simpler structure.
It can be seen as a sub-model of the SIR model when ν = 0. Note that, in this case,
there is no recovery and the disease-free equilibrium is always unstable, so the
disease always spreads throughout a population once it has been introduced.
The discussed model structures can be further built on as more mechanisms become
relevant or assumptions need to be relaxed. For example, the closed population
assumption might not be good to represent an endemic disease, which is prevalent
in a population for an extended amount of time. In fact, it can be shown that adding
births and deaths to the SIR dynamics introduces a stable endemic (i.e., coexistence)
steady state with S∗ = N/R0 (where R0 =

β
ν+µ

, with µ being the death rate) to the
system [33]. Other useful model structure will be presented in the next section,
where we refine the baseline SIR model introducing extra flows and compartments.

1.4 SEIRS models

In this section, we will build on the original SIR model structure, so we can
represent a system with a latent period, waning immunity and population dynamics.
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It is appropriate to take a latent period into account when it takes a significant
amount of time for the initially inoculated pathogens to reproduce, before active
transmission occurs [88], i.e., there are individuals that are infected but not yet
infectious: the exposed sub-population. The addition of a exposed (E) compartment
to the model structure is equivalent to introducing a time delay that slows the
dynamics of a SIR system, with equivalent stability properties.
Another refinement to our model structure would be to consider waning immunity,
which means assuming that immunity lasts for a limited period of time before a
recovered individual is once again susceptible.
Finally, we will include human demographics terms, which are relevant when the
time-frame of the disease dynamics is comparable to that of human demographics.
This leads to a SEIRS model structure such as the one depicted in figure 1.3.

Figure 1.3: Diagram representing a susceptible-exposed-infected-recovered model compartments (S,
E, I and R) with waning immunity and human demographics (birth and death rates represented by
the rate µ). λ represents the force of infection, ν is the recovery rate, 1/σ is the latent period and ω is
the immunity-loss rate.

If β, λ and ν are defined as in the previous section, we can write a SEIRS dynamics
as:

dS

dt

= µN − λS + ωR− µS (1.29)
dI

dt

= λS − σE − µE (1.30)
dI

dt

= σE − νI − µI (1.31)
dR

dt

= νI − ωR− µR (1.32)

where
λ = β

I

N
(1.33)

is the system’s force of infection and N = S +E + I +R is assumed constant, as the
birth and death rates are assumed to be equal to µ. Note that here we also assume
no vertical transmission (as all newborns are enter the susceptible compartment). 1

σ
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is the latent period and ω is the rate at which immunity is lost. Note that the SEIRS
structure can be reduced to a SEIR if ω = 0 (no immunity loss) and waning
immunity does not affect the endemic steady state existence and stability, which can
be analysed analytically in this case.
From equations 1.29-1.30 and N = S + E + I +R, we can obtain that, for the
endemic equilibriumX∗ = {S∗, E∗, I∗, R} where I∗ ̸= 0,

S∗ =
N(ν + µ)(σ + µ)

βσ
≡ N

R0

, (1.34)

E∗ =
(µ+ ν)

σ
I∗ , (1.35)

I∗ =
Nσ(µ+ ω)(R0 − 1)

βσ + ωR0(ν + µ)
, (1.36)

R∗ = N − S∗ − E∗ − I∗ . (1.37)

Above, we have also introduced the expression for the basic reproduction number,
which is now

R0 =
βσ

(ν + µ)(σ + µ)
, (1.38)

as it represents the product between the transmission rate (β), duration of infection

( 1
ν+µ

) and probability of surviving the exposed stage ( σ
σ+µ

).
Note the steady state solutionX∗ only exists for R0 > 1. Another fixed point for the
system wold correspond to the trivial disease-free state: X0 = {N, 0, 0, 0}. Though
its existence does not depend on the value of R0, its stability will.

1.4.1. Theorem (Threshold for SEIRS Endemic). The disease-free steady state is

asymptotically stable if R0 ≤ 1, so that the disease dies out; unstable if R0 > 1. In the

latter case, the endemic steady state is feasible and asymptotically stable [88].

Once again, R0 acts as a determinant for the system’s steady state dynamics. Note
that the introduction of demographics into the model structure allows for existence
and stability of an endemic steady state.

1.5 Outputs of interest

After implementing a compartmental model to simulate a system of interest and
numerically integrating it, we can straight-forwardly output time-series for the
predicted number of susceptible, infectious and recovered individuals. However, in
an epidemiological context, such figures might not necessarily relate to quantities
measured in the real world, such as Prevalence and Incidence.
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One can define the “true” prevalence as the percentage of infectious individuals
among the total population at risk, i.e.,

Prev(t) = 100 · I
P

[%]. (1.39)

Nevertheless, it is not usually reasonable to assume that all infectious cases have
been detected and reported to the local health system. Hence, it might be more
useful to define a test positive prevalence, such as

Prevtest(t) = 100 · ρI
P

[%], (1.40)

where ρ is a parameter that can take into account reporting rates, testing rates
and/or their sensitivity.
Another epidemiological output of interest would be the disease’s incidence in a
population, which is a measure of the number of new cases reported within a
certain time range. For instance, the World Health Organization defines the malaria
case incidence as the number of cases per 1000 population at risk per year [158], i.e.,

Inc(t) = 1000 · ρI
P

[
cases / 1000 people

year

]
, (1.41)

where ρ is defined as above.

1.6 Conclusions

In this chapter we introduced a few relevant compartmental model structures used
to represent infectious disease dynamics, the qualitative analysis techniques that
can be applied to such systems and relevant quantities of interest.
We have shown that, evaluating the basic reproduction number for a disease
spreading in a particular population, it is possible to anticipate whether an epidemic
will occur in a population. Using stability analysis, we can determine whether an
endemic state exists and its corresponding prevalence level. Such approach can also
be helpful in determining whether disease eradication is possible.
The mathematical modelling frameworks presented here can be good simplifications
of real-life disease dynamics, as long as fact-based assumptions lead to the
development of a relevant model structure. Heterogeneities such as population
structuring and spatial aspects can be taken into account when relevant, pondering
the extra complexity added by additional degrees of freedom. For instance, we chose
to use a SEIR-based structure to represent the COVID-19 dynamics, explored in part
II of this thesis. For COVID-19, considering the latent period was essential, hence
we build on the SEIRS structure, adding age heterogeneities (which very
characteristics for SARS-CoV-2) and extra infectious compartments.
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Eradication, testing and other control strategies can also be included in such models,
for instance, by considering their effect onto the system’s force of infection or by
adding additional compartments for the treated sub-populations. In part III, we use a
SIRS-like model structure to represent the epidemiological dynamics of malaria, a
vector-borne disease. In that case, the force of infection is a function of parameters
related to the mosquito population dynamics and the vector control strategies. Extra
compartments are also included both to take into account asymptomatic and
undetectable individuals, but also to account for treated individuals.





2
Wrangling epidemiological data

“ Our key message is: test, test, test ”

(Tedros Adhanom Ghebreyesus
- World Health Organisation Director-General, 2020)

The word epidemiology comes from the Greek epi (upon), dēmos (people) and logos

(the study of). It literally means the study of what befalls upon a population. In the
public health context, it can be defined as “the study of the distribution and
determinants of health-related states or events in specified populations, and the
application of this study to control of health problems” [94].
Both in epidemiological modelling and epidemiology as a whole, we focus on
studying health-related conditions at population or society-level, as opposed to
individual-level. Being a quantitative discipline, epidemiology is concerned with
finding determinants and patterns of health events in a population using systematic
and data-driven approaches [36]. Hence, it is heavily dependent on data availability,
as facilitated by public health surveillance systems. Surveillance should be timely,
representative, sensitive and specific. This means that case definitions should be
clear, information should be accurate and notification responses should be fast and
frequent.
Notifiable diseases are conditions which reporting is required by law. For instance,
in Brazil, suspected cases of dengue and malaria in the amazon region should be
compulsorily reported on a weekly bases, whereas severe acute respiratory infection
cases, including SARS-CoV-2 cases, should be reported immediately (within 24h)
[105]. Nevertheless, even for such notifiable diseases we might encounter challenges
with data analysis and acquisition at population level.
Access to information is a fundamental right for Brazilian citizens [21] and all
information produced by the Brazilian State should be public [20], but most
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epidemiological databases are classified under passive transparency, requiring filling
of a formal request through the Serviço de Informação ao Cidadão (eSIC) [23]. This
represents a first challenge in the context of timely data acquisition, since each
request takes up to two months to be processed and responded to. Also, requests
need to be very specific, mentioning the data structure, variables and granularity
you expect. Hence, previous knowledge of the database structure is key.
Fortunately, during the the COVID-19 pandemic the OpenDataSUS [22] and
LocalizaSUS [24] platforms were created by the Brazilian Ministry of Health as a
response to academia and society’s pressure towards data openness. Such databases
comprehend information on coronavirus disease 2019 (COVID-19) and severe acute
respiratory infection (SARI), funding, infrastructure, hospital bed availability and
vaccination coverage [31]. Nevertheless, even in a scenario where there is access to
daily or weekly updated databases, reporting can still suffer from delays due to the
time lag between seeking treatment, testing, filling forms and reporting.
Another challenge is the quality and relevance of data. For instance, regarding
quality, active case detection is not a rule, even for notifiable diseases such as the
coronavirus disease 2019 (COVID-19) [28]. This means that reported cases only
account for clinically ill individuals that sought treatment through registered health
services, got tested and the test result was positive. Clearly, that only reflects a
portion of the actual infectious cases in the population. Regarding relevance of the
available data, we could mention the subjectivity involved in different possible case
definitions; some of them being very useful for surveillance, but not so much as
input for compartmental models.
In the next few sessions, we will discuss how to deal with these challenges while
preparing epidemiological data to be used in a mathematical modelling context.
Even though many times this part of the process is left-out for not being as
academically thought-provoking, it is an extremely important and strenuous part of
the modelling work, sometimes involving political issues and conflicts of interest.

2.1 Dealing with delayed reporting of notifiable
diseases

During an epidemic, the total case count generated by a health surveillance system
in the present underestimates the real number of infectious cases in a population due
to reporting delays and under-reporting. These two underestimation sources have
different causes and, hence, there are different ways to deal with them.
Reporting delays comprehend several stages, from seeking treatment, collecting
samples, processing a test, returning a positive result to reporting and uploading a
case into the relevant database. For instance, during the COVID-19 pandemic in
Brazil, the time lag comprising all these stages could add up to a several days
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between symptom onset and a confirmed case being effectively registered in the
Sistema de Informação de Vigilância Epidemiológica da Gripe (SIVEP-Gripe) database
[26; 127].
To correct for reporting delays, we can use techniques such as the Beyesian
nowcasting proposed by McGough et al. [103], which essentially estimates more
accurate real-time case counts of a disease by bringing forward future official
notifications by the mean time between symptom onset and hospitalisation.
Obtaining "nowcasted" time-series data is not only useful in terms of providing a
more accurate snapshot of the current epidemic situation, but it is also essential to
allow relevant and timely predictions (forecasting) for the disease’s incidence and
mortality.

Figure 2.1: Example of a system where a nowcasting algorithm was used to obtain timely case esti-
mates (black doted line, with 95% C.I in grey), improving the accuracy of the case count before the
database was consolidated. Weekly time-series of initially reported (red dashed line) and eventually
reported (solid black line) dengue cases in Rio de Janeiro, Brazil, between January 2011 and April 2012.
(Source: Bastos et al. [14])

For the case of under-reporting, the issue consists in part of the positive cases not
being registered due to insufficient testing kits, difficult access to health systems,
limited front-line health staff, lack of treatment seeking in case of mild symptoms or
even planned imperfect detection.
The solution for the under-reporting problem, at a public health policy level, would
be the implementation of extensive and accessible testing; not only to confirm mild
and severe clinical cases, but also to actively detect asymptomatic cases. If that is
not a viable option, corrected figures could be obtained if reporting rates estimates
are available.
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2.2 Processing epidemiological data sets

Given that one has access to a relevant epidemiological data set, a number of
processing steps need to be followed so that such data is presented in a format that
can be used for analysis and model fitting. In this context, it is usual to represent
incidence data as aggregated daily, weekly our yearly time-series. To be able do that,
we should be mindful about case definitions; relevant dates for case data
aggregation; epidemiological week/year definition for the relevant setting or health
system.
Deciding the best way to manipulate data will be informed both by its intended used
and information found in data dictionaries.

Case definitions

In a anonymised case-by-case epidemiological database, different variables might be
found defining varied case outcome or classification. For instance, a single database
might comprise both suspected, untested and confirmed cases within a disease; both
mild and severe (hospitalised) cases of a syndrome; different strains of one disease
or even different diseases. When aggregating time-series for use in epidemiological
data analysis, we need to be sure to be sub-setting the database for the clinical
outcome of interest (whether it is an specific strain, the sub-set of clinically severe
cases or only test-positive confirmed cases).

Date for case data aggregation

In such databases, one can also encounter different recorded dates referring to each
case and it can confusing to select which should be used when aggregating cases as
a time-series. We might usually have dates for symptom onset, testing, treatment
seeking and filling reported. The best practice is to aggregate cases by the date of
symptom onset (when such information can be attained), as using this procedure we
will not be accumulating systematic errors and delays.

Epidemiological week definitions

An epidemiological week is an standardised way to count weeks year after year, for
the purpose of epidemiological surveillance. The division of the 365 days of the year
in 52 or 53 epidemiological weeks (epiweeks) generates a calendar that is used as a
basis to group cases, deaths or other epidemiological events.
The World Health Organization (WHO) uses the following definition:
"epidemiological weeks start on a Sunday and end on a Saturday; the first

epidemiological week of the year ends, by definition, on the first Saturday of January,
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Figure 2.2: Historical time-series for SARI (SRAG) and COVID-19 cases in São Paulo city, as presented
in the Observatório COVID-19 BR website for the SIVEP-Gripe database from 15/11/2021. The blue
points represent reported cases, whereas red points represent case estimates, as predicted by a now-
casting algorithm [103]. The Observatório COVID-19 BR team maintains these plots updated as new
versions of the SIVEP-Gripe database become available. More details on the Observatório COVID-19
BR collaboration can be found in chapter 3. (Source: Observatório COVID-19 BR [3])

as long as it falls at least four days into the month, even if it means that this first week

starts in December" [157].
For the International Organization for Standardization (ISO), in the other hand, all
weeks in the ISO-8601 week-based calendar start on a Monday; "the first calendar week

of a calendar year includes up to three days from the previous calendar year; the last

calendar week of a calendar year includes up to three days from the following calendar

year" [84].
Each country’s Ministry of Health can have its own definition for the first
epidemiological day of the week or the first epidemiological day of the year, hence it
is worth checking which standard is the most relevant in each setting.

2.3 SARS-CoV-2 data

The severe SARS-CoV-2 case data used to calibrate the models described in part II of
this thesis comes from the SIVEP-Gripe database [26; 25; 127], which comprises all
severe acute respiratory infection (SARI) cases admitted in hospitals and reported in
the country. SARI is a notifiable clinical presentation caused by varied etiological
agents, including viruses (influenza viruses, adenovirus, hantavirus and
coronaviruses) and bacteria (pneumococi, leptospira, etc).
The Brazilian Ministry of Health considers as a SARI case any presentation
including fever over 38◦C, cough and dyspnea; with or without a sore throat and
gastrointestinal manifestations. The COVID-19 presentation can include some of
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these symptoms, hence severe hospitalised COVID-19 cases and deaths are reported
as SARI cases [31; 105].
When an antigen or any molecular biological test is performed on a SARS-CoV-2
hospitalised patient, the test result information is stored in the SIVEP-Gripe
database. Nevertheless, tests were scarce and SARS-CoV-2 testing protocols were
inconsistent throughout the first few months of the pandemic in Brazil, with not all
severe/hospitalised COVID-19 cases being tested [87]. Hence the reported numbers
for confirmed COVID-19 hospitalised cases and deaths could not be considered so
representative in Brazil. Complementary, the eSUS-VE database [27] comprises data
from localised contact tracing efforts and reported COVID-19 mild cases, which
though still technically notifiable [28], are far less representative as there was even
less testing.
As we consistently monitored databases for both SARS and confirmed COVID-19
cases (Figure 2.2), it was clear that SARS-CoV-2 severe cases comprised the great
majority of SARI notifications since the beginning of 2020, hence we decided to fit
our dynamic models to the totality of SARI cases and deaths. The data used
consisted on time series of hospitalisations and deaths of SARI in São Paulo, Brazil,
reported in the 2020 SIVEP-Gripe database [22] and openly made available in the
Observatório COVID-19 BR website repository [113].

2.4 Malaria data

Malaria is a notifiable disease with compulsory case reporting and data made
available under passive transparency, meaning the submission of a formal request
through the Serviço de Informação ao Cidadão (eSIC) [23] is required to access the
relevant databases.
Throughout the time, different notification systems and databases were used to
report malaria cases in Brazil. Up to 1995, all reported cases were registered in the
Sistema de Informação Série Histórica de Malária (SHM) [134]. After 1996, since the
majority of cases occurred in the Amazon region (see figure 2.3), reporting was
divided between the Brazilian Amazon (AC, AM, AP, MA, MT, PA, RO, RR and TO
states) and extra-Amazon (AL, BA, CE, DF, ES, GO, MG, MS, PB, PE, PI, PR, RJ, RN,
RS, SC, SE and SP states) regions.
Malaria cases reported in the Amazon region, between 1996 and 2002, were
registered in the Sistema de Informação do Programa Nacional de Controle da Malária

(SISMAL) and, from 2003 on, in the Sistema de Informação da Vigilância

Epidemiológica - Malária (Sivep-Malária). In the extra-Amazon region, cases
reported between 1996 and 2003 were registered in SISMAL and, from 2004 on, they
were registered in the Sistema de Informação de Agravos de Notificação (SINAN) [29].
For the modelling exercises presented in part III, individual case notification data
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Figure 2.3: Spatial distribution of P. falciparum (left) and P. vivax (right) confirmed cases in Brazil in
2017. (Source: WHO Global Health Observatory (GHO) data [155])

was obtained from the SISMAL, SINAN and SIVEP databases, comprising the period
between 1998 and 2018, being processed and aggregated as specie-specific daily and
weekly time-series by municipality and state. The outputted time-series were made
available in a online data repository [68].

2.5 Conclusions

Each epidemiological data set comes with its own particularities and challenges.
Different diseases have different testing and reporting protocols, depending on the
available knowledge and case definitions. Likewise, different states, municipalities
or health districts might have access different resource levels and follow their own
procedures, in a non homogeneous sensitivities to a disease’s real incidence [42].
These aspects can introduce not only uncertainties, but spatial heterogeneity and
biases to a data set.
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3
The SARS-CoV-2 pandemic

PANDEMIC An epidemic occurring worldwide, or over a very wide area,

crossing international boundaries, and usually affecting a large number of

people.

(John M. Last, A Dictionary of Epidemiology, 2001, p. 131)

On the 31st of December 2019 the World Health Organization (WHO) China
Country Office registered cases of a pneumonia of unknown etiology detected in
Wuhan City, Hubei Province. Patients were reported presenting fever, with a few of
them having difficulty in breathing, and chest radiographies showing invasive
lesions of both lungs[161]. From that date, cases rose continuously without having
their causal agent identified, until the first occurrences were linked with exposures
in one seafood marked in Wuhan City. At that time, a new type of coronavirus was
isolated, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [148],
causing the disease named coronavirus disease (COVID-19) [170]. On the 11th of
January 2020 the novel coronavirus was sequenced, on the same day the first related
death was reported[160]. A few days later, exported cases started being detected in
other Chinese provinces, as well as in Thailand, Japan and the Republic of Korea,
leading to the implementation of screening and track-and-trace measures. On the
30th of January 2020, with a total of 98 cases being reported in over 18 countries
outside China, the WHO’s Director-General declared the novel coronavirus
outbreak a public health emergency of international concern (PHEIC), WHO’s
highest level of alarm.
Though reverse real-time reverse transcriptase-polymerase chain reaction (RT-PCR)
tests were rapidly developed [148; 43; 45], in a matter of 3 months the coronavirus
disease (COVID-19) outbreaks were being reported all around the world, affecting
people of all ages, with alarming levels of spread and severity. WHO’s worldwide
recommendation was for countries to immediately activate the highest levels of

29
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national response protocols taking a whole-of-government, whole-of-society
approach.
On Wednesday the 11th of March the World Health Organization declared
COVID-19 a global pandemic, as the novel coronavirus had already been detected in
113 countries and territories outside China, with 118319 cases and 4292 deaths
confirmed globally [162; 94]. At the time, there were no pharmaceutical
interventions commercially available to treat the disease, prevent infection or curb
the epidemic. Testing rates were poor in many countries [159; 87; 85] across the
globe and, as control strategies, most countries relied on behaviour change and
non-pharmaceutical interventions (NPI) including self-isolation of symptomatic
individuals; increased hand hygiene; mask wearing; social distancing; working from
home where possible; and school closure amongst others. Containment efforts
primarily aimed at preventing infection and reducing onward transmission.
However, most countries were already experiencing locally acquired cases with
untraceable contacts, meaning that community transmission had been established.
Local authorities were hence mobilised towards mitigation strategies with the aim
of delaying the peak and flattening the epidemic curve to reduce the daily demand
on health care resources, thus preserving hospital capacity.
While borders where closed, schools were shut down and families were separated,
virus mutations arose as new variants of concern (VOC) started circulating, with
higher transmissibility or severity [53; 55; 54; 168], making stronger surveillance
and the scientific study of the VOC also priorities. Meanwhile, a global race towards
developing the first safe and effective vaccine or treatment was already going on and
on the 31st of December 2020 the first emergency use validation for a COVID-19
vaccine was released [120; 110; 164]. Other vaccines soon started to be validated and
produced in large scale to be distributed around the globe [9; 163; 147; 165; 130; 166],
while large collaborations accelerate its deployment and accessibility [111; 167].
As of the 24th August 2021, over 211 million cases and 4.4 million deaths had been
reported globally over 192 countries [169], still with millions of new cases being
reported each day. Four VOC had been circulating (Alpha, Beta, Gamma and Delta)
without much general consensus on the extent to which these mutations affect
disease severity and vaccine effectiveness [44]. Though a wide-reaching decrease in
disease morbidity and mortality was expected after mass vaccination efforts and
naturally acquired immunity, vaccine hesitancy and their uncertain effect against
new VOC are ongoing challenges. Even as higher percentages of the population
become immunised, COVID-19 related cases and deaths are still a major issue
worldwide (see the mortality curve in Fig. 3.1).
Furthermore, by the end of 2021, as this thesis is written, equitable access to
vaccination is still a challenge and outbreaks are still being registered worldwide,
either . In such scenario, granted plenty of access to treatment and prophylaxis, we
can start to glimpse a future where life finally resembles the longed "normality".
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Figure 3.1: COVID-19 cases reported weekly byWHO Region and global deaths, as of 22 August 2021.
(Source: World Health Organization [169])

3.1 Mathematical modelling during the COVID-19
pandemic

"The more certain someone is about covid-19, the less you should trust them", as
written by George Davey Smith, Michael Blastland and Marcus Munafo in October
2019 in a BMJ editorial [47]. Since the emergence of SARS-CoV-2, mathematical
modelling has become an important tool to support strategic planning towards
combating the spread of the disease and making decisions at public health level
[4; 5; 11; 116]. In this context, epidemiological mathematical models have played an
increasingly prominent role advising policymakers
[108; 72; 4; 5; 11; 116; 49; 65; 67; 124; 104; 129; 138; 146; 13; 40; 61; 112]. A
proliferation of SEIR-like compartmental models assessing the effect of different
intervention scenarios have been proposed [49; 65; 67], aiming to understand and
make predictions regarding spread of SARS-CoV-2. As simplified representations of
reality, these models come with assumptions regarding the nature of the underlying
network of interactions [124]. Each with its own strengths, they were more or less
fit to address different questions, depending on how they were designed.
As the first vaccines against COVID-19 started to be developed, similar models have
also been used to address questions regarding vaccine deployment strategies and
efficacy at populational level, specially because most vaccines require two doses to
reach peak efficacy [147; 120]. Using mathematical models to assess optimal
vaccination strategies in a context of limited supply was not a new idea, though.
Previously to SARS-CoV-2 emergence, this was done for a variety of communicable
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diseases [12; 56; 57; 75; 171]. For instance, a study on influenza viruses, Matrajt et al.
[101] had already explored how two different vaccination strategies (single dose or
two dose) could be integrated into pandemic control plans. The best strategy is
shown to be dependent on the level of partial protection introduced by each dose.
In the SARS-CoV-2 context, mass vaccination deployments have been the main
approach tackling the spread of the disease, whilst complementing or replacing
non-pharmaceutical interventions (NPIs). SIR-like models have pointed to the
possibility of securely relaxing NPIs months after vaccination campaigns, depending
on the rate of vaccination [91] but investigations regarding how to better distribute
the doses within a population were inherent.

3.2 Observatório COVID-19 BR and COVID-19
Modelling (CoMo) Consortium contributions

The SARS-CoV-2 pandemic has not only largely overwhelmed health systems, but it
has also created tremendous challenges for decision-makers, who have had to
implement highly disruptive containment measures with very little empirical
scientific evidence to support their decision-making process. Given this lack of data
[47; 46], predictive mathematical models have played an increasingly prominent role
[5; 173; 72; 4; 11; 116; 49; 65; 67; 112], even in low- and middle-income countries,
such as Brazil [5; 100; 44].
The need to inform policy making brought scientists to work together in broad
collaborative initiatives across the globe, increasing the pace at which such evidence
was published and communicated.
Two successful scientific collaborations that acted primarily on using mathematical
models towards informing public health decision making at national and
international level were Observatório COVID-19 BR [2] and COVID-19 Modelling

(CoMo) Consortium [1], respectively.
The Observatório COVID-19 BR started as an independent initiative between our
modelling group in the Institute of Theoretical Physics and close collaborators,
being founded in March 2021 by Professors Roberto Kraenkel (UNESP), Paulo Inácio
Prado (USP) e Renato Coutinho (UFABC) It then rapidly caught the attention of the
media [99; 39] and other scientists, rapidly growing into a collaboration consisting
of over 80 voluntary researchers throughout Brazil and abroad, aiming to contribute
to the dissemination of reliable information based on detailed data and scientifically
grounded analysis, both to the scientific community and the wider population
[70; 60; 59]. Simulating the outcomes of different NPI strategies scenarios, summed
with several other modelling and data analysis initiatives, we were able to
communicate with policymakers such as Health Secretaries or Funerary Services in
the state of São Paulo, being able to contribute in the decision making debate
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towards mitigating the spread of the disease. During this process we connected and
worked unprecedentedly closely with fellow modellers throughout Brazil and
abroad.
Part of our group has also joined forces with the COVID-19 Modelling (CoMo)
Consortium, an international group of infectious disease modellers and public
health experts funded by Prof. Lisa J. White (University of Oxford) that collaborated
on the creation of a modelling interface to help simulating the effect of different
non-pharmaceutical interventions on mitigating the epidemic [5; 173]. This
modelling interface has been used to support decision making in numerous
countries and it is continuously developing, whereas new information regarding the
SARS-CoV-2 dynamics is unveiled, new pharmaceutical interventions are developed
and new questions are raised.
In Chapters 4–5, we will present some of the modelling work we developed in
collaboration with Observatório COVID-19 BR and CoMo Consortium, to support
decision making and understanding SARS-CoV-2 spreading mechanisms. We have
developed different models to address different questions within different
epidemiological settings.
We introduce, in Chapter 4, the modelling framework resulting from CoMo’s
participatory approach to COVID-19 dynamics modelling, which aimed to
circumvent the modelling translational capacity gap between high and middle
income countries by developing an interactive modelling interface and regularly
meeting with in-country policy makers and health experts. The basis of such
framework has already been published in Aguas et al. [5] but it is continuously
developing, according to the needs of policy makers and as new interventions
become pertinent. For instance, it has been used to explore the outcomes of using
dexamethazone to reduce mortality in COVID-19 hospitalised patients in another
publication by Águas et al. [173] and consortium members. We then built on CoMo’s
original age-structured SEIR extended model as we adapted it to the Brazilian
hospital compartmentalisation system and proposed a correction to the household
contact matrices, using network percolation theory. This theoretical part of the
work has been published in Franco et al. [69].
In Chapter 5, we present some applications of the improved CoMo model and the
results of other modelling exercises using slightly different frameworks. The
modelling framework described in Chapter 4 is applied to investigate school
reopening scenarios in major urban centers in Brazil, their consequences and how a
proper contact tracing strategy could be used to mitigate transmission in the school
setting. This modelling work is resultant from a collaboration between the
Observatório COVID-19 BR modelling group and the CNPQ collaborative project
Modelling SARS-CoV-2 transmission dynamics in Brazil: Real time science to subside

evidence based policy making , coordinated by Prof. Cristiana Toscano (UFG). The
results from this collaboration have been documented as a manuscript which is
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currently accessible as a preprint in Borges et al. [19].
Loooking from a different and perhaps more theoretical perspective, we also
developed a simpler model to investigate optimal vaccination strategies in a limited
supply setting, such as Brazil. We use a SEIR model that includes a two-dose
vaccination schedule with a between-doses delay modelled through delay
differential equations and linear optimisation of vaccination rates, finding that the
best strategy depends on an trade-off between the vaccine production rate and the
relative efficacy of the first dose. This work resulted from a collaboration within
some of Observatório COVID-19 BR member, having been submitted for
peer-reviewing and being currently accessible as a preprint in Souto Ferreira et al.
[137].
Finally, since in November 2020 the P.1 SARS-CoV-2 variant of concern emerged in
the city of Manaus leading to a collapse of the local health system in early 2021, we
used another SEIR model to evaluate the transmissibility and reinfection rates of
this variant. In in Chapter 5 we show that, from our estimates, the P.1 VOC posed a
global threat due to its very high transmissibility, highlighting the need to urgently
monitor and contain its spread. These results have been published in Coutinho et al.
[44].
We conclude discussing the impact of our results and the challenges faced when
trying to communicate them to policymakers.



4
A COVID-19 pandemic modelling framework

The CoMo Consortium SARS-CoV-2 model builds on the SEIR model structure, as
presented in chapter 1. In the early stages of the pandemic, it became clear that
older individuals were disproportionately affected by severe disease and mortality
[62; 37], hence, introducing age-structuring in our modelling framework was
essential. Furthermore, with the aim to take into account the demand for hospital
resources, the preliminary infectious compartment was sub-divided into seven
infected compartments characterised by symptoms, severity and treatment seeking.
The progression of individuals through the infection life cycle is represented by the
diagram in Figure 4.1.
As individuals are infected, they transit through an incubation phase (or exposed
state, E), at the end of which they can display different symptomatology, with some

Figure 4.1: A diagram of the baseline CoMo model structure representing the unmitigated epidemic
spread scenario. (Source: Aguas et al. [5])

35
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never having any symptoms, while others require hospitalisation. We attribute
different flow rates between the exposed state and each of the possible infectious
states based on incidence data and previous clinical and epidemiological studies
[96; 90; 18; 106; 50; 143; 145; 62; 149; 118; 95; 126].
If a person is hospitalised, the model tracks their health care requirements (surge
care bed, ICU bed, ventilator). Disease-induced mortality rates are heavily
dependent on how severe the infection outcome is and whether individuals can
receive the appropriate treatment. The model assumes that those who recover from
infection will become immune.
Since early studies, it has been shown that COVID-19 severity and mortality is
strongly age dependent [145]. Hence, each model compartment is further stratified
by age classes, corresponding to each country’s demographic classifications.
Transmission between each pair of age classes is evaluated using contact matrices
estimated for different settings (school, work, home, and others) by Prem et al. [122].
Empirical social contact matrices data has always been scarce, with the exception is
the POLYMOD study, a extensive survey that described social mixing patterns in
eight European countries during 2005/2006, measuring contacts of more than 7000
participants across eight European countries [107]. Prem et al. [122] used this data
combined with health surveys and demographic data as input to a Bayesian
hierarchical model to project contact matrices for 144 other countries, including
Brazil.
The resulting CoMo model interface can be found in https://comomodel.net/ [1],
where publicly available country-specific data on cases and mortality for COVID-19
is used for visual calibration of model parameters to user-selected
non-pharmaceutical interventions scenarios. These scenarios include the
implementation of combinations of NPI that modify the contact matrices
proportionally to their respective coverage and efficacies. The initially implemented
interventions consisted of self-isolation, screening, social distancing, handwashing
and mask wearing, working from home, school closures, shielding the elderly, travel
ban, home quarantining and lockdown, and an extensive description of each of them
can be found in the Supplementary Material of Aguas et al. [5]. Since the
publication of this work, more interventions have been implemented into the
modelling interface, following a development workflow informed by the needs of
policy-makers and newly unfolded information about the disease spread dynamics
(Figure 4.2).
A detailed description of the mathematical structure underlying this modelling
framework will be featured in the following sections, where we thoroughly describe
two nested versions of this model adapted for modelling the SARS-CoV-2 pandemic
spread in Brazil, developed in a collaboration between CoMo Consortium and
Observatório COVID-19 BR. The standard version closely follows the CoMo original
model introduced in Aguas et al. [5], with a few modifications in the infected

https://comomodel.net/
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Figure 4.2: CoMo Consortium outlook and interaction flows. This diagram illustrates how the differ-
ent partners interact in order to digest policy questions into model simulations through the in-country
expert node and the development node and ultimately result in actionable predictions informing policy
decisions. CoMo, COVID-19 Modelling. (Source: Aguas et al. [5])

hospitalized compartments accounting for the Brazilian health system
particularities. In a second version (model with percolation), we implement a
correction that modulates the home contact matrices through a percolation
correction function, motivated by the fact that the mitigation strategies for
COVID-19 affect the connections between different households, which is not
explicitly taken into account in the standard model version.
Finally, we show that our model with percolation effects was better supported by
the data than the same model without such effects. By allowing a more reliable
assessment of the impact of NPIs, our improved model provides a better description
of the epidemiological dynamics.

4.1 Bridging the gap between population and
household-level models

As introduced in the previous chapter, mathematical modelling has become an
important tool for strategic planning since the emergence of COVID-19 outbreaks
around the world. Hence, many SEIR-like compartmental models started to be
developed, like CoMo model, described above. As simplified representations of
reality, all models come with assumptions regarding the nature of the underlying
network of interactions [124]. More explicitly, most SEIRS compartmental models
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assume that the population is homogeneously-mixed, meaning that every individual
in each compartment has the same probability of contacting others, regardless of
spatial distribution.
Though these underlying assumptions might be appropriate to make robust
predictions for well-mixed populations, they may not be suitable in a context with
significant contact network heterogeneity. Therefore, several methods have been
proposed to account for contact structure heterogeneities in compartmental models
[104; 129; 138]. Nevertheless, they usually consider static underlying network
structures, which are only good approximations for slow epidemic spreads, in which
contact rates do not change significantly over time [146; 13]. This is not the case in a
pandemic such as the one caused by SARS-CoV-2, where governments were
compelled to impose wide contact and movement restrictions that essentially caused
a broad reduction of connectivity between individuals. The need for a more flexible
and dynamic approach became evident, hence motivating the present study.
In this context, network theory provides a picture of a homogeneously mixed
population as a (highly connected) regular random network of individuals (vertices)
connected through possible disease transmission contacts (edges) with long-range
connectivity properties [13]. During an outbreak, the disease would spread across
these links. Social distancing non-pharmaceutical interventions (NPIs) could,
therefore, be thought of as modulators of the strength and even persistence of such
links. One of the main results of network theory is that, as contact networks become
more connected, a critical transition occurs, and a once fragmented and
disconnected (or weakly connected) set sub-networks becomes a highly connected
component. This phenomenon is known as percolation [40; 61], and the existence of
a critical percolation threshold in the mean number of contacts is established for
many kinds of networks. Across this threshold, even small changes in the number of
contacts can lead to large changes in the connectivity of the network.
In compartmental models, SARS-CoV-2 mitigation strategies are modelled by
altering contact rates, thus changing the force of infection. This can be done at
different degrees of granularity, depending on the level of detail of contact matrices.
For instance, many works [5; 112; 48] have used the categorisation employed by
Prem et al. [122], which divides contacts into four settings, namely home, work,
school, and other. In this way, the effectiveness of different NPIs are reflected in
reductions in the contact rates for each setting, depending on the nature of the
intervention – e.g. school closure reduces contact rates at school. Since the contact
matrix is a linear combination of the contact matrices for each setting, with
coefficients dependent on the NPIs’ coverages and efficacies, each NPI contributes
linearly to reduce the infection force. By itself, this change in contacts among
individuals does not affect the relationship between the mean number of contacts in
the underlying network and the force of infection of the compartmental model. This
is adequate if the structure of the network is not greatly affected. However, when
social distancing NPIs are applied with high coverages and connections between
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individuals are continuously being removed, this approximation is prone to break
down, and the compartmental model may no longer provide a satisfactory portrayal
of the epidemiological dynamics.
To account for this change in network structure and resultant reduction in the force
of infection, here we propose to modify how the effect of NPIs are modelled in
compartmental models. We integrate results from percolation theory into an
age-structured SEIRS model by using a non-linear correction between the strength
of NPIs and the resulting contact matrix, thus directly affecting the force of
infection. In the following sections, we build on the previously implemented and
widely used COVID-19 Modelling Consortium (CoMo) model [5], adapting its
compartmentalisation to the Brazilian hospital system. Then, we present a nested
model version that takes into account the loss of long-range connectivity
(percolation) effect. Finally, we fit both model versions to hospitalisation and
mortality data for SARS-CoV-2 during 2020 in São Paulo, Brazil, the country’s most
populous city, with over 12 million inhabitants, and the first to detect COVID-19
cases. Through model comparison using the Akaike Information Criteria (AIC) [34]
we find that the data strongly supports the model incorporating percolation effect.

4.2 Standard model structure

To model the epidemiological dynamics of COVID-19 in São Paulo, we apply an
age-structured SEIRS model with infected compartments stratified by severity of
symptoms, treatment requirement and accessibility to healthcare. The main
framework for this SARS-CoV-2 epidemic model was developed in collaboration
with the CoMo Consortium [5] with slightly different treatment seeking
compartments, an adaptation applied to better represent the Brazilian organisation
of hospital beds. The progression of individuals through the infection cycle, for this
version of the CoMo model, is represented by the diagram in Figure 8.1. Each model
compartment depicted in Figure 8.1 is divided into 19 sub-compartments, comprising
all 19 age classifications from the Brazilian Institute of Geography and Statistics
(IBGE) [81]. Transmission between each pair of age classes is therefore evaluated
based on the contact rates between them, which are the contact matrices estimated
for different settings (school, work, home, and others) in Brazil by Prem et al. [122].
Let us note here that this is already a limitation for this class of models, as these
matrices consist of country level projections, as will be discussed in section 4.6
We considered non-pharmaceutical intervention (NPI) scenarios including social
distancing, work from home, and school closure. Here, the effect of mitigation
strategies enter as linear corrections to the contact matrices, since these
interventions aim to reduce contact rates or the risk of contagious at each possible
contact (mask use, for example). For instance, a certain coverage on the school
closure NPI would decrease contacts between all age classes in the school setting,



40 Chapter 4. A COVID-19 pandemic modelling framework

Figure 4.3: A diagram of the baseline model structure for SARS-CoV-2 in Brazil, representing the
unmitigated epidemic spread scenario. The variables in the compartments represent individuals S:
susceptible, E: presymptomatic infectious, A: asymptomatic infectious, I: infectious with mild symp-
toms, X: infectious with mild symptoms and self-isolated, HC : infectious, requiring hospital treatment
but denied, H: infectious and hospitalised, ICU: infectious, receiving intensive care, ICUC : infectious,
requiring intensive care but denied, ICUH : infectious, requiring intensive care but being admitted in
regular hospital bed, R: Recovered, D: Deceased. All compartments are further subdivided into 5-year
age classes from 0 to 90+ years old. (Source: Franco et al. [69])

which is modelled as a proportional decrease in contact rates in school contact
matrices.

4.2.1 Model equations

The model consists in an expanded SEIRS model to account for asymptomatic
individuals and detailed structure of the Brazilian health system. We write such
epidemiological dynamics as the following system of 11 equations:
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dS

dt
= −λS+ ωR+ Āg · S+ µb − µdS (4.1)

dE

dt
= λS− γE+ Āg · E− µdE (4.2)

dA

dt
= γ(1− Pclin)(1− IHR)E− νiA+ Āg ·A− µdA (4.3)

dI

dt
= γPclin(1− Pselfis)(1− IHR)E− νiI+ Āg · I− µdI (4.4)

dX

dt
= γPselfisPclin(1− IHR)E− νiX+ Āg ·X− µdX (4.5)

dH

dt
= γIHR(1− Picu)(1−Hc)E− νsH+ Āg ·H− µdH (4.6)

dHC

dt
= γIHR(1− Picu)HcE− νscHC+ Āg ·HC− µdHC

dICU

dt
= γIHRPicu(1− ICUc)E− νicuICU+ Āg · ICU− µdICU (4.7)

dICUH

dt
= γIHR PicuICUc(1− ICU Hc)E− νicuhICUH (4.8)

+Āg · ICUH− µdICUH
dICUC

dt
= γIHR PicuICUcICU HcE− νicucICUC+ Āg · ICUC (4.9)

−µdICUC
dR

dt
= νiA− ωR+ νiX+ νiI+ Āg ·R− µdR (4.10)

+νs(1− PdIHFRh)H+ νicu(1− PdicuIHFRicu)ICU

+νicuc(1− PdicucIHFRicu)ICUC+ νsc(1− PdhcIHFRh)HC

+νicuh(1− PdicuhIHFRicu)ICUH

For the baseline scenario (no NPIs in place), the system’s force of infection can be
written:

λ = pĉ[ρE+A+ I+mean_imports+ ρs(H+ ICU+ ICUH)]/P

+ p(ĉhome + ĉother)(X+HC+ ICUC)/P, (4.11)

where ĉ represent the sum of each setting contact matrices (ĉhome, ĉwork, ĉschool and
ĉother). In the following subsections a full expression for λ, including the effect of all
NPIs, will be derived and all parameters will be defined. To represent the reporting
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dynamics, we can also write the cumulative cases and deaths, respectively, as:

dC

dt
= rγ(1− IHR)(1− Pclin)E+ rcγ(1− IHR)PclinE+ rhγIHRE (4.12)

dD

dt
= νsPdhIHFRhH+ νscPdhcIHFRhHC+ νicuPdicuIHFRicuICU(4.13)

+νicucPdicucIHFRicuICUC+ νicuhPdicuhIHFRicuICUH

+µd(H+HC+ ICU+ ICUC+ ICUH+ I+X)

where each of the dynamic variables (defined in Table 4.1) is further subdivided in
19 age classes consisting of 5 years age bins (0-4,5-9, up to 90+). Thereby, each of the
parameters written in the model, aside from A (ageing matrix), should be thought of
as diagonal matrices containing parameter values corresponding to each age class.
Take, as an example, the natural mortality rate, given by

µ̂d = diag(µd1, µd2, ..., µdD) = diag(µ⃗d). (4.14)

Code Equations Description
S S Susceptible population
E E Infected and presymptomatic population
I A Infected population, asymptomatic and not isolated
CL I Infected population, mildly symptomatic and not isolated
X X Infected population, mildly symptomatic and self-isolated at home
H H Infected population, hospitalized in simple bed.
HC HC Infected population that require hospital treatment but but are denied,

due to healthcare system overload
ICU ICU Infected population, hospitalised in Intensive Care Units (ICU).
ICUH ICUH Infected population that require ICU but are hospitalised in simple beds,

due to unavailability in ICU beds.
ICUC ICUC Infected population that require ICU but are denied both

an ICU or hospital simple bed, due to healthcare system overload.
R R Recovered population
C C Cumulative reported cases
CM D Cumulative reported deaths

Table 4.1: List of model variables definitions and notations both for the equations and the R code.

Note that, in the system of equations presented above, we suppress the hat or bold
from all diagonal matrices to avoid an overloaded notation, but we choose to keep
all dynamic variables in bold as a reminder that each of them actually represents a
vector of dimension D = 19. Hence, the dimension of the ordinary differential
equation system that needs to be solved is D · 11, where 11 is the number of
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Code Equation Description Value Source

lam λ force of infection Variable Eq. (4.28)
mort µd natural mortality (days−1) Age dependent Instituto Brasileiro de Geografia e Estatística [82]
ageing Āg speed of population ageing (days−1) - -
birth µb birth rate (days−1) - Instituto Brasileiro de Geografia e Estatística [83]
gamma γ Inverse of incubation period (days−1) 1/5.8 Wei et al. [153]
ihr IHR Infection hospitalisation rate Age dependent Salje et al. [131]

omega ω
Rate of which recovered people become
susceptible again (days−1) 0 Assumed

rho ρ Relative infectiousness of presymptomatic individuals 0.105 Wei et al. [152]

rhos ρs
Relative infectiousness of hospitalised individuals
(reduced due to hospitalisation) 0.10 Assumed

pclin Pclin Proportion of symptomatic individuals
0.30 (0-19)
0.56 (20-59)
0.69 (60+)

SMSSP
Sun et al. [140]
Sun et al. [140]

selfis Pselfis
Proportion of symptomatic individuals
who self-isolate Variable Assumed

prob_icu Picu
Proportion of hospitalised individuals
who need ICU beds Age dependent SIVEP [22]

critH Hc
Proportion of hospitalised individuals
who have not received attendance Variable Section 4.2.2

critICU ICUc

Proportion of hospitalised individuals
who need ICU beds and
have not received one

Variable Section 4.2.2

critICUH ICUh

Proportion of hospitalised individuals
who need ICU beds and have not
received one and also not have received
simple beds

Variable Section 4.2.2

nui νi
Recovery rate of mild
symptomatic/asymptomatic individuals (days−1) 1/9 Cevik et al. [38]

nus νs
Recovery/death rate of hospitalised
individuals (days−1) 1/8.3 SIVEP [22]

nusc νsc

Recovery/death rate of hospitalised
individuals who have not received
attendance (days−1)

1/11 Assumed

nu_icu νicu
Recovery/death rate of hospitalised
individuals in ICU beds (days−1) 1/14.7 SIVEP [22]

nu_icuh νicuh

Recovery/death rate of hospitalised
individuals who need ICU beds
but received simple beds (days−1)

1/11 Assumed

nu_icuc νicuc

Recovery/death rate of hospitalised
individuals who need ICU beds and
have not received attendance (days−1)

1/11 Assumed

ifr[,3] IHFRicu In hospital fatality rate (ICU required) Age dependent Portella et al. [121]
ifr[,4] IHFRh In hospital fatality rate (common bed) Age dependent Portella et al. [121]

pdeath_h Pd
Maximum probability of death for
a hospitalised infection requiring common bed 45.9 SIVEP [22]

pdeath_icu Pdicu
Maximum probability of death for
a hospitalised infection requiring ICU 69 SIVEP [22]

pdeath_hc Pdhc

Maximum probability of death for
a hospitalised infection requiring common bed
but not receiving attendance

80 Assumed

pdeath_icuh Pdicuh

Maximum probability of death for
a hospitalised infection requiring ICU
but receiving common bed attendance

97 Assumed

pdeath_icuc Pdicuc

Maximum probability of death for
a hospitalised infection requiring ICU
but not receiving attendance

99 Assumed

report r Report rate of asymptomatic cases 0.00 Assumed
reportc rc Report rate of symptomatic cases 0.01 Assumed
reporth rh Report rate of hospitalized cases 0.95 Assumed
give q Threshold of occupancy for loss of health system efficiency 0.65 Assumed

Table 4.2: List of baseline model parameters used in the system 4.1-4.10.
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compartments in the system. A description of each parameter from the model is
available at table 4.2.
The full model has over 200 equations, but the main mechanisms regarding infection
and non-pharmaceutical intervention (NPI) effects are encoded in its force of
infection, λ. The implemented NPI, their effect on contact matrices and, finally, their
effect on λ will be described in the following subsections.

Non-pharmaceutical interventions

We have implemented a varied set of NPI that affected the age-dependent contact
rates encoded by the setting-specific contact matrices. Here we describe each of the
seven NPI implemented in our model:

• Self-Isolation: Symptomatic individuals that do not require hospitalization
voluntarily isolate themselves during the time of infection and reduce the
chance of infecting others. The beginning and end period of this intervention
is defined by θselfis(t) and represents the days t when the population adheres
to this behavior. The impact of this NPI depends on its adherence to
self-isolation selfiscov and estimated reduction in contacts by self-isolation
selfiseff values, where

Pselfis = selfiscov(t)selfiseffθselfis(t) (4.15)

• Social Distancing: the population avoids or reduces contacts in the community
setting (ĉcom). This intervention comprises reduction of contacts on churches,
markets, social events and gatherings, shopping activities, gyms, and others.
The beginning and end period of this intervention is defined by θdist(t). The
impact of this NPI depends on its adherence to social distancing at community
level (distcov) and reduction of contacts in the community among those
adhering to social distancing (disteff ) values, where:

dist(t) = distcov(t)disteffθdist(t); (4.16)

• Use of masks: This intervention comprises individual protection measures,
given by the adoption of mask usage. The beginning and end period of this
intervention is defined by θmask(t). The impact of this NPI depends on its
adherence to mask usage (maskcov) and effectiveness (maskeff ), where

mask(t) = maskcov(t)maskeffθmask(t); (4.17)

• Work from home: This intervention reduces contacts in the work environment
(ĉwork) as workers perform their activities from their home. The beginning
and end period of this intervention is defined by θwork(t). The impact of this
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NPI depends on the adherence to home-office (workcov) and reduction of
contacts at work among those adhering to home-office (workeff ), where:

work(t) = workcov(t)workeffθwork(t); (4.18)

• School closure: This intervention reduces the contacts in the school setting
(ĉschool) due to limitation of in-school activities or school closures. The
beginning and end period of this intervention is defined by θschool(t). The
effectiveness of this NPI depends on the adherence to online (not in-person)
school activities (schoolcov) and the reduction of contacts in school upon
school closure (schooleff ), where:

school(t) = schoolcov(t)schooleffθschool(t); (4.19)
Note that in the main text, schoolcov is also referred as PCS (potential
contacts in school).

• Cocoon elderly: This intervention reduces the contacts to a proportion of the
older adult population, given a minimum age D†. The beginning and end
period of this intervention is defined by θcocoon(t).The effectiveness of this NPI
depends on the adherence to cocooning of older adults (cocooncov) and
reduction of contacts with older adults in all settings as a results of cocooning
older adults (cocooneff ).

• Travel ban: This intervention models the interruption of travel flow from
outside the city and the isolation of cases coming from outside, which reduces
or eliminate import cases. This intervention is given by:

imports = (1− traveleff )mean_imports (4.20)
where (mean_imports) is the mean value of imported cases, traveleff the
effectiveness of this intervention, and imports the number of new cases that
are added to the population per day.

A thorough description of the NPI related parameters can be found in tables 4.3 and
4.4 (with table 4.4 presenting values valid for standard and percolation model values,
while table 4.5 has values valid for a third model version with increase NPI coverge,
as described in section 4.4.2). Figure 4.4 shows coverages (NPIcovθNPI(t)),
efficiencies (NPIeff ) and their corresponding product NPIcovNPIeffθNPI(t) over
time (valid for the standard and percolation model versions).

Effect of NPI on contact matrixes

Assuming that a Susceptible individual in the n-th age class, Sn, can be in contact
with any of the infected groups among all age classes, we have that

dSn

dt
∝ −Sn

∑
j

cn,j(a
A
j Aj + aEj Ej + aIjIj + ...) (4.21)
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Code Equation Description Value Source

mask_cov maskcov Adherence to mask usage See Table 4.4 [74; 141; 144]
mask_eff maskeff Estimated reduction of contact due to mask use 0.85 Chu et al. [41]
selfis_cov selfiscov Adherence to self-isolation See Table 4.4 [74; 141; 144]
selfis_eff selfiseff Estimated reduction of contact due to self-isolation if symptomatic 0.80 Assumed
dist_cov distcov Adherence to social distancing in community level See Table 4.4 [74; 141; 144]

dist_eff disteff
Reduction of contacts in the community among those
adhering to social distancing 0.95 Assumed

work_cov workcov Adherence to work from home policies See Table 4.4 [74; 141; 144]

work_eff workeff
Reduction of contacts at work among those adhering to
work from home policies 0.95 Assumed

school_cov schoolcov Adherence to online (not in-person) school activities See Table 4.4 [74; 141; 144]
school_eff schooleff Reduction of contacts in school upon school closure 1.00 Assumed
cocoon_cov cocooncov Adherence to cocooning of older adults See Table 4.4 [74; 141; 144]

cocoon_eff cocooneff
Reduction of contacts with older adults in all settings
as a result of cocooning older adults 0.95 Assumed

travel_eff traveleff Effectiveness of travel interruption policies See Table 4.4 Assumed
mean_imports mean_imports Mean number of infected individuals that travel to the study site 0.2 Assumed

Table 4.3: Brief description of intervention parameters, together with values (if not time-dependent)
and sources. In the case of time-dependent parameters, we supply additional tables with dates of
interventions for the models standard and percolation (Table 4.4) and standard +30% NPIs (Table 4.5).

Parameter Start date End date Value
selfiscov 2020-03-24 2020-08-31 0.70
distcov 2020-03-18 2020-05-31 0.70
distcov 2020-06-01 2020-06-30 0.59
distcov 2020-07-01 2020-08-31 0.45
schoolcov 2020-03-21 2020-08-31 0.95
maskcov 2020-03-19 2020-05-31 0.20
maskcov 2020-06-01 2020-06-30 0.35
maskcov 2020-07-01 2020-08-31 0.42
workcov 2020-03-16 2020-05-31 0.60
workcov 2020-06-01 2020-06-30 0.48
workcov 2020-07-01 2020-08-31 0.36
cocooncov 2020-03-14 2020-05-31 0.10
cocooncov 2020-06-01 2020-06-30 0.40
cocooncov 2020-07-01 2020-07-31 0.50
cocooncov 2020-08-01 2020-08-31 0.60
traveleff 2020-02-19 2020-03-18 0.00
traveleff 2020-03-19 2020-08-31 0.70

Table 4.4: Values of time-dependent interventions used for model fitting in the case of Standard and
Percolation model. The patterns observed in [74; 141; 144] were used as qualitative proxies for inter-
vention coverage values.
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Parameter Start date End date Value
selfiscov 2020-03-24 2020-08-31 0.910
distcov 2020-03-18 2020-05-31 0.910
distcov 2020-06-01 2020-06-30 0.767
distcov 2020-07-01 2020-08-31 0.585
schoolcov 2020-03-21 2020-08-31 1.000
maskcov 2020-03-19 2020-05-31 0.258
maskcov 2020-06-01 2020-06-30 0.458
maskcov 2020-07-01 2020-08-31 0.552
workcov 2020-03-16 2020-05-31 0.780
workcov 2020-06-01 2020-06-30 0.624
workcov 2020-07-01 2020-08-31 0.468
cocooncov 2020-03-14 2020-05-31 0.130
cocooncov 2020-06-01 2020-06-30 0.520
cocooncov 2020-07-01 2020-07-31 0.650
cocooncov 2020-08-01 2020-08-31 0.780
mean_imports 2020-02-19 2020-08-31 0.140
traveleff 2020-02-19 2020-03-18 0.000
traveleff 2020-03-19 2020-08-31 0.700

Table 4.5: Values of time dependent interventions used for model fitting with stronger interventions
(Standard model + 30% NPIs). Here we created an hypothetical intervention scenario with adherence
30% higher than the ones described in Table 4.4.

where cn,j measures the contact strength between people of n-th and j-th age
classes, forming the contact matrix ĉ, of dimension D ×D. The aAj , aEj , aIj , ...
measures how infectious these different model compartments are. For example,
asymptomatic people,A, may be more infectious than the symptomatic ones, I,
since they may not be isolating themselves, given they are unaware of their
infectious state. The NPIs are considered as modifications on both ĉ, reducing
contacts between people, and also on the different aAj , aIj , .., accounting for
behavioural aspects, such as increased hand hygiene.
Given the definitions above, we are finally able to breakdown the general structure
of ĉ. It is mainly composed of 4 matrices, ĉhome - which measures the amount of
contacts of people at home, ĉwork - for contacts at work, ĉschool - for contacts at
school and ĉother - for other kinds of human interactions, such as going to
restaurants, movies and churches. Therefore, in absence of any NPIs, the resultant
contacts matrix would be simply

ĉ = ĉhome + ĉwork + ĉschool + ĉother. (4.22)
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Figure 4.4: Diagram of adherence, efficiency (estimated reduction of contact due to each NPI) and
their product over time (NPIcovNPIeffθwork(t)), for each of the non-pharmaceutical interventions
considered both in the standard model and the model with percolation. The diagrams for the model
with 30% more NPI adherence are similar, only with 30% higher values for adherence and the product.
(Source: Franco et al. [69])

As NPIs are inserted, the contact matrix is modified. Suppose the simple case of
home-office policies, that is, people should work at home for a period of workdur
weeks. A fraction workcov of the population is able to adhere to such policies, and
they have an effectiveness workeff in reducing this kind of contact, then we have
that the contact matrix becomes

ĉ = ĉhome + (1− workcovworkeffθwork(t))ĉwork + ĉschool + ĉother. (4.23)
Here, θwork(t) is a function that measures if either home office policies are being
applied or not, and is usually a step function, being 1 during the period workdur,
defined by starting and finishing dates of such policies, and 0 out of said period. We
could apply this same mathematical form for other interventions, such as school
closing, commerce and restaurants functioning in reduced periods or not
functioning at all, and many other NPIs we have seen being tried out in order to
contain virus spread. We would get

ĉ = ĉhome + (4.24)
(1− workcovworkeffθwork(t))ĉwork +

(1− schoolcovschooleffθschool(t))ĉschool +

(1− distcovdisteffθdist(t))ĉother

With this final form of contact matrix we can add yet another possible NPI,
cocooning the elderly. That means they are more isolated and protected, since they
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are one of the most vulnerable to COVID-19 death. When cocooning is applied, the
contacts of people above a certain age, let’s say agecocoon, are reduced in
cocooncovcocooneff , implying that ĉ values from the D† to D lines and rows must be
reduced. Here, D† is the index from which cocooning starts, for example, if
cocooning is applied in people over 65 years old, then D† = 13. Defining
η = 1− cocooncovcocooneffθcocoon(t) we write

ĝD†(η) = diag(⃗1D† , η1⃗D−D†) (4.25)

and with it, make the final contacts matrix

c = ĝD†(η)ĉĝD†(η) (4.26)

Note that

ĝD†(η)ĉĝD†(η) =



c1,1 c1,2 ... c1,D†−1 ηc1,D† ... ηc1,D
c2,1 c2,2 ... c1,D†−1 ηc1,D† ... ηc1,D
... ... . . . ... ...
... ... . . . ... ...

ηcD†,1 ηcD†,2 ... ηcD†,D†−1 η2cD†,D† ... η2cD†,D
... ... ... ... . . . ...

ηcD,1 ηcD,2 ... ηcD,D†−1 η2cD,D† ... η2cD,D


(4.27)

so the elderly are more isolated among themselves, since η < 1 =⇒ η2 < η, whilst
still having reduced contacts with the other age classes.
Note that, in the above implementation, we are assuming it to be reasonable for the
contact rates to decrease linearly with increasing adherence to mitigating strategies
in schools, workplaces or other settings. Nevertheless, owing to the fact that
SEIR-like models assume underlying homogeneously mixed populations, this
assumption might not hold for household settings as their connectivity structure is
dynamically affected by NPIs in a non-homogeneous fashion. In section 4.3, we
discuss an alternative model structure that takes into account such an effect at
househol-level.
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Force of infection

Taking into account that Self-Isolated (X) individuals are only able to infect through
home and “other" matrices, we can wrap everything in a force of infection given by:

λ = (1− hand(t))pc[ρE+A+ I+ imports+ ρs(H+ ICU+ ICUH)]/P

+ (1− hand(t))p(chome + cother)(X+HC+ ICUC)/P (4.28)

where hand(t) = handcovhandeffθhand(t).

4.2.2 Hospital burden

We have slightly changed the way hospital burden is implemented, compared to
Aguas et al. [5]. We assume that, if the occupation of beds is under some threshold
value the health system infrastructure is able to handle correctly any new entrance
to the hospital. After this threshold q, some of the patients might not find the needed
support due to hospital overload, until full capacity, where patients are not accepted
anymore. This is modelled to estimate HC and ICUC by the following function:

f(x) =


0, if x ≤ q,

1− (x(b− ax) + c), if q ≤ x ≤ 1

1, if x > 1

(4.29)

Where x is the ratio between number of patients and available beds and a, b, c are
computed in a way to ensure continuity of the function and its first derivative:

a =
1

2q(q − 1) + (q2 − 1)
(4.30)

b = 2aq (4.31)
c = a− b (4.32)

With this definition, we have ICUc being computed using
x ≡ ICU/number of ICU beds, Hc computed using
x ≡ (ICUH+H)/number of common beds (as ICUH uses common beds).
Finally, to model priority of common beds to ICU needing individuals compared to
H we simply assume that ICUh = H2

c , since these values are between 0 and 1,
therefore ICUh ≤ Hc. Figure 4.5 shows these values assuming that q = 0.65.

4.2.3 Basic Reproduction Number

To calculate the Basic Reproduction Number (R0) through the Next Generation
Matrix (NGM) Method [6, Chapter 6] we need to redefine the model as a system of
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differential equations subdivided into two groups: the infected one,
y = (E,A, I,X,H,HC, ICU, ICUH, ICUC)T , and the non-infected one,
z = (S,R,D)T . We can then write the system as

ẏ = F (y, z)−G(y, z) (4.33)
ż = J(y, z) , (4.34)

where F stands for the transition of Susceptible individuals, S, into infected ones, y,
whilst G accounts for transitions within infected classes, from exposed to all other
classes in y, as well as recoveries and deceases. The function J accounts for the
counterparts of these same effects into the z equations. Then, to calculate R0, we
linearize the system around disease free equilibrium, where y ≈ 0 and
z ≈ (P(t = 0),0,0)T , where P(t) is the population age distribution at time t. That
way, the y equation becomes

ẏ = (F̂ − Ĝ)y , (4.35)

where F̂ and Ĝ are the linearized matrices that come from the functions F and G,
respectively. Noticing that the only entrance of new infected comes from the λS
terms in the exposed classes, E. That way, only the first D lines/rows of F̂ are not
null. That way, defining

σ̂ = diag(S) c̄ diag(P(t = 0))−1 (4.36)
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and

σ̂ho = diag(S) (c̄home + c̄other) diag(P(t = 0))−1 (4.37)

allow us to write

F̂ = (1− hand(t))p


ρσ̂ σ̂ σ̂ σ̂ho ρsσ σ̂ho ρsσ ρsσ σ̂ho

08D,9D

 (4.38)

The matrix Ĝ will have its first D columns as terms of exposed, E, becoming the
other infected compartments considered, that is,
(A, I,X,H,HC, ICU, ICUH, ICUC). It’s diagonal blocks are terms of recovery,
decease and ageing effects. For the sake of simplifying notation, let
ϕ̂j = νj − Āg + µd, for j = i, s, sc, icu, icuh, icuc , so that the full form of Ĝ can
be given by

Ĝ =



γ − Āg + µd 0 . . . 0
−(1− Pclin)(1− IHR)γ ϕ̂i

−Pclin(1− Pselfis)(1− IHR)γ 0 ϕ̂i

−PclinPselfis(1− IHR)γ ϕ̂i

. . .
...

−IHR(1− Picu)(1−Hc)γ ϕ̂s

−IHR(1− Picu)Hcγ
...

. . . ϕ̂sc

−IHR Picu(1− ICUc)γ ϕ̂icu

−IHR PicuICUc(1− ICUHc)γ ϕ̂icuh 0
−IHR PicuICUcICUHcγ 0 . . . 0 ϕ̂icuc


(4.39)

Finally, we can define the NGM as in chapter 6 of Allen et al. [6], M̂NGM = F̂ Ĝ−1.
With that, R0 is defined as the spectral radius of M̂NGM , which in the simplest cases
is just its dominant eigenvalue, here calculated with rARPACK R package.

4.3 Percolation model structure

The system described in the previous section introduced a phenomenological
implementation that models the NPI mitigating effect through a proportional
reduction of the rates in the contact matrices. However, this approach failed to show
a substantial decrease the transmission even when considering high coverages of
NPIs. For instance, at hypothetical coverages and efficacies of 100% for school
closure, work from home, and social distancing, the infection rate would still not go
down immediately. Consequently, we found that data fitting was challenging when
trying to simulate NPI coverages as closely as possible to the patterns seen in real
life.
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Moreover, NPIs affected all contact matrices in the standard model, with the
exception of the household matrix (which accounts for both contacts within and
between households, indistinguishably), implying that the dynamics among
households persisted as fully well-mixed, even under high coverage of NPIs. In
reality, however, the contact network among households should become more
sparse as connecting pathways are removed, in such a way that the “effective”
contact rates should be considerably reduced. We draw a comparison with
percolation theory to address the fact that, above a certain threshold value of
combined NPI adherence, inter-household contacts are much less common.
In a non-NPI scenario, we could picture the whole population as a collection of
households assigned as vertices with links between households (created due to
interactions at work, schools, or other places) represented by edges. This highly
connected network would form one giant connected component, which could
therefore be approximated as a homogeneously mixed population [13]. However, by
introducing social distancing measures and increasing their coverages, we break
connections in the network until long-range connectivity is lost. The critical value
of number of connections (or edge density) where this transition happens is the
so-called percolation threshold [61]. Above the percolation threshold of contact loss,
i.e., in a high coverage social distancing scenario, we would expect to see the
emergence of small household clusters that, though well connected within
themselves, would be poorly connected between them.
Here we model the percolation effect on home contact matrices assuming that,
while contacts outside households are kept above the percolation threshold, the
effect of mitigation strategies is less apparent in home settings. On the other hand,
the probability of infection of a susceptible individual drops drastically when its
mean number of contacts goes below a threshold [117]. Mathematically, we modify
the overall contact matrix defined in Equation 4.24, ĉ, by multiplying the home
contact matrix, ĉhome, by a modulating factor dependetn on all NPI. The resultant
contact matrix can be written

ĉ = (1− fperc)ĉhome + (4.40)
(1− workcovworkeffθwork(t))ĉwork +

(1− schoolcovschooleffθschool(t))ĉschool +

(1− distcovdisteffθdist(t))ĉother,

where fperc is the percolation correction function, which is dependent on all NPI
coverages and efficacies, and satisfies the following requirements:

• 0 ≤ fperc ≤ 1;

• fperc → 0 as NPI are completely lifted; for low adherence to NPI, no
connectivity loss should be noticed since different households would still be
strongly connected;
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• 1− fperc ≪ 1 for high effectiveness of NPI; as connections between different
households are widely severed, so fperc approaches its maximum value.

A hyperbolic functional form, as follows, is proposed to model this effect:

fperc =
heff

2
[1 + tanh (hsteep(WNPI − Tperc))] (4.41)

where 0 < heff < 1 is the maximum reduction in contacts, a limit introduced due to
the percolation effect; 0 < Tperc < 1 is the percolation threshold, i.e., the fraction of
connections we need to remove so that the network no longer percolates; and hsteep

is the steepness of the percolation correction function determining how fast the
network percolates: a large hsteep implies fperc changing abruptly from 0 to heff

whenWNPI ≈ Tperc (see Figure 4.6).
Finally,WNPI is defined as the combined NPI adherence, where the resulting
reduction of contacts due to each type of intervention are weighted by the age and
contact structure of the population they are applied to, namely

WNPI = pworkawork(t) + pschoolaschool(t) + potheradist(t) (4.42)

where, for instance, work adherence (awork) can be written as the product of the
respective effectiveness (workeff ), coverage (workcov) and duration of home-office
strategies (translated as the step function θwork(t)):

awork(t) = workeffworkcovθwork(t), (4.43)

The same holds for school and dist, forming the set {aj(t)}, for
j = {work, school, dist}, which throughout the text will be referenced as
adherences. The weights pj , j = {work, school, other}, are calculated as

pj =
P(t = 0)ĉjP

T (t = 0)

P(t = 0)(ĉwork + ĉschool + ĉother)PT (t = 0)
, (4.44)

where P(t = 0) is the initial age distribution of the population and cj the contact
matrices in each setting.
Now, clearly 0 < WNPI(t) < 1. Note also thatWNPI(t) has this specific form to
consider population structure, accounting for how much each of these NPIs
effectively reduce contacts in each age-class. Moreover,WNPI(t) can vary according
to the current implemented interventions, adding flexibility to the model.
Finally, considering all effects due to NPIs and percolation, the effective contact
matrix, ĉ, is written as

ĉ = (1− fperc(t))ĉhome + (4.45)
(1− awork(t))ĉwork +

(1− aschool(t))ĉschool +

(1− adist(t))ĉother.
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Figure 4.6: Percolation correction as a function of the combined adherence to interventions. We plot
the resultant curve for different values of hsteep, which is the steepness of the hyperbolic tangent in
the definition of fperc (Eq. 4.41). Here we used Tperc = 0.6 for the percolation threshold, which is
indicated as the curve’s inflexion point. Note that changing its value simply dislocates the curve along
the x-axis. For low WNPI , fperc → 0, meaning no connectivity is lost at low adherence levels. Near
WNPI = Tperc, fperc grows rapidly. At the high WNPI regime, where more connections are lost,
fperc → heff ≈ 1. (Source: Franco et al. [69])

This resultant matrix can, therefore, be used to simulate the overall contact rates
between age groups, throughout all settings. In the simulations presented here, the
populations and setting-specific contact matrices for Brazil were obtained from
publicly available data [81; 122]; all aj are estimated based on the effect of
mitigation strategies adopted by the city of São Paulo [144; 141; 74]; whereas hsteep

and Tperc are obtained through fitting to epidemiological data.

4.4 Model comparison

Aiming to systematically compare the data representativeness of each of the
previously described nested model structure, we have defined the following three
scenarios:

• Standard model: derived from the CoMo model [5], without including the
percolation effect, which in practice meant setting Tperc = hsteep = heff = 0
and fitting only p and startdate to the data.

• Standard model + 30% NPI adherence: the model equations and parameters
are the same as before, but we consider a much greater (30%) adherence to all
NPIs. This potentially unrealistic instance was included here to show that an
underestimated NPI adherence in the standard version would not by itself
favour the model with percolation – given that we already know that it
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always reduces the contact rates.

• Model with percolation: derived from standard model, including the
percolation effect, where Tperc, hsteep, p and startdate were fitted to the data.

4.4.1 Fitting models to data

We used a Levenberg-Marquardt non-linear least square regression fitting algorithm
[58] to minimise the squared residuals of the predicted number of weekly cases with
to the observed values. This is equivalent to maximising the likelihood of the model
under the assumption that the data point errors are normally distributed (details in
SM Section III). With that, we obtained the maximum likelihood estimates (mle) for
p, startdate, hsteep and Tperc. This procedure was applied to test the three version of
th model, as described above.

Fitting algorithm

To perform a nonlinear least squares fitting of the free parameters (p, Tperc, hsteep,
startdate) to the data, we used the Levenberg-Marquardt algorithm implemented in
the minpack.lm R package [58].
In order to fit both new cases (C) and new deaths (D), we had to account for
residuals in different scales. One way to do that was by normalising each of the
variables in respect to their total sum. The resulting residual (R) is, therefore:

R =

∑
(Cmodel − Cobserved)∑

Cobserved

+

∑
(Dmodel −Dobserved)∑

Dobserved

(4.46)

The algorithm minimise the square of this quantity, while evaluating the respective
negative log-likelihood and minimising it.
To perform this kind of non-linear optimisation, we need to input the algorithm
with a series of initial guesses. We tested a wide range of startdate values (from
2020− 01− 10 to 2020− 02− 24) and for each one we ran the fitting algorithm
using several reasonable initial guesses for the other free parameters. Hence, this
method gives us fitted p, Tperc and hsteep for each startdate considered.
With the goal to find a probability distribution for the fitted parameters [34], we
selected the run which returned the lowest residual for each startdate, with its
respective (p, Tperc, hsteep) set. We then computed the negative log-likelihood for
each start date, Lt:

Lt = N ln

(
1

N

N∑
i=1

R2
i,t,

)
+

N

2 ln (2π)
(4.47)
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from which we can therefore derive the probability for each startdate, given by

Pt =
exp(−Lt +min({Lt}))∑
t exp(−Lt +min({Lt}))

. (4.48)

Note that equations 4.47-4.48 are valid under the simplifying assumption that the
data follows a normal distribution.
Finally, maximising the probability (equivalent to minimising the negative
log-likelihood), we find sets of best fitted parameters for each of the model versions
considered (See Table 4.6).

Data sources

The data used consisted on time-series of total hospitalisations and deaths for severe
acute respiratory illness (SARI) in São Paulo, Brazil, reported in the 2020
SIVEP-Gripe database [22], independently of antigen or molecular biological test
results. Filtering the data only for test positive cases was not reasonable because, as
discussed in section 2.3, testing protocols were inconsistent and COVID-19 cases
represented the absolute majority of SARI cases reported in the period. To be certain
records had already been consolidated, i.e. did not suffer from delayed reporting
(which can be a significant issue in the Brazilian SARI notification system,
demanding corrections that take into account delay distributions [103]), we
restricted the data to weekly aggregate data points comprising the first 23 weeks of
the pandemic in the city, from 15 March to 31 August 2020.
Based on the current literature and proxy data for mobility and coverage of NPIs
[74; 144; 141], we set values for all parameters using reasonable data sources or
proxies (see SM Tables III-V for all parameter values and references). Thus, there
were just a few parameters that could not be inferred from the literature and
therefore required to be fitted to epidemiological data. These fitted parameters were
the probability of infection given a contact (p), start date of community transmission
(startdate), and both hsteep and Tperc from Eq. 4.41 for the model that takes
percolation into account.

4.4.2 Comparing model fitness

As the model with percolation simply introduces two extra parameters onto the
standard model, maintaining its structure, we can consider them nested models and
therefore compare the quality of the fittings using the Akaike Information Criteria
(AIC) [63].
Using the results from the best fitting to data, for each nested model version i, we
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calculated the respective the AICi as

AICi = 2NLLmin + 2npar (4.49)

where NLLmin is the minimum negative log-likelihood obtained from fitting each
model, and npar is the number of fitted parameters (two free parameters for the
standard models and four for the model with percolation).
The AIC estimates the loss of information in data of each model, and thus the
model with the lowest AIC is the best supported by the data. To compare the
models we thus use ∆AIC :

∆AICi = AICi − AICmin (4.50)

where AICmin is the minimum over all AIC values obtained.
The resultant AIC and ∆AIC obtained for each model version can be found in
Table 4.7.

Model Parameter Mean SD Quantile 2.5% Quantile 50% Quantile 97.5%

Percolation startdate 2020-01-30 - 2020-01-30 2020-01-30 2020-01-30
Percolation p 0.0461 0.0002 0.0461 0.0461 0.0462
Percolation Tperc 0.516 0.003 0.513 0.516 0.520
Percolation hsteep 4.83 0.02 4.81 4.83 4.84
Standard startdate 2020-01-15 - 2020-01-15 2020-01-15 2020-01-15
Standard p 0.0294 ≈ 0 0.0294 0.0294 0.0294
Standard + 30% NPIs startdate 2020-01-30 - 2020-01-30 2020-01-30 2020-02-01
Standard + 30% NPIs p 0.0402 0.0003 0.0401 0.0401 0.0411

Table 4.6: List of parameters values for the three models with mean, standard deviation (SD), and
2.5th, 50th and 97.5th percentiles.

4.5 Results

A good way to compare the two model implementations, i.e. with and without
considering the percolation effect, is by calculating an NPI-dependent basic

reproduction number (R0(WNPI)), using the next generation matrix (NGM) method
described in section 4.2.3. This resultant R0(WNPI) would represent the epidemic
basic reproduction number in a hypothetical fully susceptible population under the
NPI corresponding toWNPI .
In fact, the basic reproduction number is a quantity determined by the population
affected by a pathogen in a specific environment, rather than a variable that is
exclusively determined by the biology of a pathogen. Hence, we can interpret this
R0(WNPI) as an indicator of the pathogen’s transmissibility in an environment
subjected to the combined NPI adherenceWNPI .
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From Fig. 4.7, we can see that R0(WNPI) diverges among the two model versions
(standard model and model with percolation) as the combined NPI adherence
approaches the fitted percolation threshold (indicated as Tperc). Percolation implies
considerably lowerR0 values for greater NPI adherence, which is consistent with the
sharp decrease in the effect of NPIs near the percolation threshold modelled by the
percolation correction function (Eq. 4.41). In summary, this result shows that, near
to and abovethe percolation threshold (Tperc), i.e. for high combined NPI adherence
and effectiveness, the standard model will always overestimate transmission rates.
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Figure 4.7: NPI-dependent epidemic basic reproduction number (R0(WNPI)) as a function of the com-
binedNPI adherence for bothmodel versions. Note the sharp divergence near the percolation threshold
(Tperc = 0.514, as a result of fitting the model with percolation to data). (Source: Franco et al. [69])

After implementing both model versions with equivalent fixed parameter sets, and
also with increased NPIs in one scenario (see Tables III-V in the SM), we fitted the
free parameters (among Tperc, hsteep, p and startdate) in each model to weekly new
cases and new deaths from SARI data for São Paulo during 2020.
Fig. 4.8 shows the resulting curves for all fitted models, with confidence intervals
assuming that fitted parameters follow a multivariate normal distribution. These
confidence intervals are estimated by parametric bootstrap using the covariance
matrix from the Levenberg-Marquardt algorithm (details in SM Section III). The
comparison between the two standard model curves shows that increasing
intervention coverages (even to the point of assuming unrealistic values) can
modulate the epidemic curve to a certain extent, but still does not result in a good fit
to data.
From the computed AIC for each model version (table 4.7) we conclude that, even
though in figure 4.8 the curves for the standard model + 30% NPI and the model with

percolation might look somewhat close, the AIC clearly shows a much higher level
of empirical support for the model version with percolation.
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Figure 4.8: Results from simultaneousmodel fitting to SARI new cases and new deaths data, for each of
the proposed model versions: the model with percolation (blue) and the standard model (green), using
the same parameter sets, apart from the fitted parameters (p, startdate, Tperc, hsteep), and the standard
model version with additional 30% adherence to all NPIs (red) (also fitted to data); dots represent data
points from the SIVEP-Gripe database (15 March to 31 August 2020) [22]; and shaded areas represent
bootstrapped confidence intervals based on parameter uncertainty from the fitting (too thin to see for
the green curve). (Source: Franco et al. [69])

Model p startdate hsteep Tperc AIC ∆AIC
Standard 0.0294 2020-01-15 - - -756 191
Standard + 30% NPI adherence 0.0401 2020-01-30 - - -793 154
Percolation 0.0461 2020-01-30 4.83 0.516 -947 0

Table 4.7: Fitted parameter values and AIC evaluated for each of the model versions, as they were
fitted to the same dataset of weekly SARI cases and deaths for São Paulo, which consisted of 23 data
points. ∆AIC is the difference between the AIC for each model and the minimum overall AIC.

4.6 Conclusion

Modelling the ongoing COVID-19 pandemic represented an unprecedented
challenge, as we attempted to make urgent recommendations and predictions based
on scarce information about the underlying biology of the virus, its main
mechanisms of spread, severity and fatality rates [46].
Known unknowns during the emergence of COVID-19 presented extra challenges
and limitations to the models [47], as the lack of individual-level data on mobility
patterns to effect of NPIs on individual behaviour and the non-existence of
population-based contact diaries data for countries like Brazil. Even the projected
contact matrices that existed [122] were estimated as averages per country, whereas
we were making simulations at municipality level (which is an important limitation
in a country with such extensive sociodemographic heterogeneities as Brazil).
Considering these extra layers of uncertainty to model predictions, our job was to
make the most out of the information we had in hand to create new methodologies
and communicate results and uncertainties in a fair way.
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Although previous studies considered heterogeneous contact structures in
epidemiological models [104; 129; 138], and many others accounted for the effects of
NPIs on transmissibility [49; 65; 67; 4; 5; 11; 116; 71], few to none of them made the
connection between both phenomena. Strictly speaking, NPIs can affect the
underlying network structure over time due to large-scale social distancing
interventions. In this context, we identified a demand for more flexible and dynamic
modelling approaches taking into account the non-linear phenomena emerging
from social distancing NPIs.
In the case of the COVID-19 pandemic, governments enforced restrictions on
movement and contacts, which essentially aimed to remove connections among
individuals. To take into account the structural heterogeneities introduced by these
social distancing measures on a population’s contact network, we proposed an
optional improvement to compartmental models that only depends on quantities
already computed when modelling NPIs, without the addition of an excessive
number of parameters which could lead to model over-fitting.
The effect of our proposed implementation of an NPI-induced percolation effect was
clearly shown by the evaluation of the NPI-dependent basic reproduction number,
which resulted in a distinctive discrepancy in the transmissibility when comparing
model versions with and without percolation. We determined that for high
combined NPI adherence, the model without percolation highly overestimates
transmission rates. Using the AIC we found a ∆AIC = 191, between the model
versions with and without the percolation effect (Table 4.7), which is orders of
magnitude higher than the conventional threshold of ∆AIC ≤ 2 to consider both
models equally plausible [63]. That is, the model with percolation correction had
support from the data analysed. It should be noted that the AIC takes into account
biases caused by over-fitting [8]. Therefore, the stronger support of the percolation
model cannot be attributed to a spurious effect caused by a few additional
parameters.
One alternative solution to the data fitting difficulty would consist of adjusting other
model parameters. However, with further exploration of the parameter space, even
considering less realistic parameter sets (e.g. tampering with the coverage
parameters of NPIs), we could not obtain a good fit to data. For instance, a 30%
increase in NPI adherence in the standard model (red curve in Fig. 4.8) did not result
in better model fitness, compared to the model version including percolation.
These results highlight the importance of implementing this non-linear response to
NPIs in compartmental models to obtain a better representation of the effect of
those interventions on a large population.
The proposed improvement to an age-structured SEIR compartmental model
described here, although motivated by the need to better represent the dynamics of
how COVID-19 spreads, was inspired by network theory and general individual
level considerations that could be applied to any population whose underlying
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network structure has been affected by similar fragmentation processes.
We implemented the effect of individuals’ behavioural changes on a population’s
macroscopic dynamics without drastically increasing the number of fitted
parameters in our compartmental model. Specifically, only two parameters were
added to the equations governing the dynamic model and these were fitted to
epidemiological data. Hence, the increased model fitness obtained would not imply
additional efforts for decision-makers in terms of data collection.
The usefulness of incorporating this fragmentation process into our SARS-CoV-2
epidemiological compartmental model was evident, but it should also be noted that
its flexible implementation also permits it to be applied when modelling the
transmission dynamics of other communicable diseases under similarly high NPI
coverage regimes.
Therefore, our framework may be applied to any compartmental models trying to
represent the dynamics of a homogeneously mixed population suffering drastic
changes in its connectivity patterns during an epidemic. This result contributes to a
more accurate epidemic modelling, potentially implying better control and
prevention policy recommendations at a public health level.
The description of the CoMo Consortium framework has been published by Aguas
et al. [5] and the theoretical description of the model including percolation is under
peer-review and has been made available as a preprint by Franco et al. [69].



5
Further applications and communication of

mathematical models for COVID-19

“The single biggest problem in communication is the illusion that it has

taken place.”

(George Bernard Shaw, 1856-1950)

Since the beginning of the pandemic, health policymakers around the world have
struggled with the lack of clear data and definitive scientific evidence to support
decision making. The pandemic not only overwhelmed health systems, but also
changed how scientific evidence is shared and consumed by scientists, policymakers
and the wider public.
In Brazil, the unprecedented national health crisis has also aggravated previously
existing health structure and health system inequities in the country. Political
challenges also arouse, including uncoordinated actions, variability of public health
response among the various states, delayed and insufficient implementation of
non-pharmaceutical interventions (NPIs) and a lack of preparedness.
In this context, the Observatório COVID-19 modelling group engaged in a varied
modelling exercises to inform the public, the scientific community and health policy
makers. We have worked directly with health secretaries, funerary services and
larger policy facing scientific collaborations to inform decision making through
mathematical modelling. In the following sections, we will present some of
outcomes of these efforts and discuss the communication challenges involved with
conveying their meaning to policymakers and the wider public.
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5.1 Effects of different COVID-19 mitigation
strategies in school settings

Among the various non-pharmaceutical interventions implemented in response to
the COVID-19 pandemic in Brazil in 2020, school closure was among the first
measures implemented throughout the 27 states of the country aiming to mitigate
the disease spread. By the end of 2020, however, planning the best timing for school
closure and reopening was a crucial debate, since the short and long-term impacts of
prolonged suspension of in-person classes arose as a major concern. In this context,
it was also relevant to come up with ways to assess the actual impact of school
closure on the disease transmission dynamics, as well as its effectiveness when
considered in association with other mitigation strategies, such as contact tracing.
To assess the impact of school reopening and contact tracing strategies upon
decreasing COVID-19 cases and deaths, we have established a collaboration with the
group lead by infectious diseases expert Prof. Cristiana Toscano (UFG) on a CNPq
funded project entitled Modelling SARS-CoV-2 transmission dynamics in Brazil:
Real time science to subside evidence based policy making. We have applied the
modelling framework described in chapter 4 with an expanded compartmental
structure. Mechanisms of contact tracing and quarantining where implemented to
access their effect of such strategies in the epidemic dynamics upon school
reopening (see the expanded model diagram in figure 5.1.

Figure 5.1: Diagram representing the model for school reopening and quarantining dynamics. H
comprises all hospitalized compartments (H, ICU, ICUh), and C comprises all critical compartments
(Hc, ICUc) who have not received attendance. Solid black arrows describe the infection pathways in
the model, as in figure 4.3. Solid grey arrows describe individuals who are quarantined through contact
tracing. Dashed grey arrows describe individuals who are isolated/quarantined because of positive
testing in an asymptomatic individual. Dotted gray arrows describe the pathway of individuals after
the quarantine period. Source: Borges et al. [19].
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Figure 5.2: Epidemiological dynamics for different scenarios of increase in the percentage of potential
contacts in school for three Brazilian capitals: São Paulo, Porto Alegre, and Goiânia. Colours represent
the percentage of potential contacts of individuals in the school setting after reopening schools on
February 1st, and dots represent the hospitalisation and death data from the SIVEP database. Source:
Borges et al. [19].

After fitting epidemiological and demographic data, we have simulated scenarios
with increasing school transmission due to school reopening in 3 large urban
centres in Brazil: São Paulo, Porto Alegre and Goiânia (figure 5.2). Due to their
different epidemiological environments (transmission patterns and timing for
implementing mitigation strategies), the impact of school reopening in new cases
and deaths varied among these cities. In settings with declining trends in Covid-19
incidence, small impacts were projected after school reopening (as observed in São
Paulo), whereas in settings with increasing trends, the magnitude of the projected
impact was significant (as projected in Goiânia).
Our model shows that schools reopening results in a non-linear increase of reported
COVID-19 cases and deaths (figure 5.3, being highly dependent on infection and
disease incidence at the time of reopening. While low rates of within-school
transmission resulted in small effects on disease incidence (cases/100,000 pop),
intermediate or high rates can severely impact disease trends resulting in escalating
rates of new cases even if other interventions remain unchanged. When contact
tracing and quarantining are restricted to school and home settings, a large number
of daily tests is required to produce significant effects of reducing the total number
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Figure 5.3: Effects of implementing case isolation, contact tracing, and quarantining contacts in
schools on the cumulative incidence of Covid-19 cases and deaths, by the daily number of tests avail-
able and scenarios of school reopening (percentage of potential contacts in schools). The projected
cumulative incidence of cases and deaths presented is for the period from school reopening (February
1st, 2021) to the end of 2021 (December 31, 2021). Source: Borges et al. [19].

of hospitalisations and deaths.
Our results suggest that policymakers should carefully consider the epidemiological
context and timing regarding the implementation of school closure and return of
in-person school activities. Also, although contact tracing strategies are essential to
prevent new infections and outbreaks within school environments, our data suggest
that they are alone not sufficient to avoid significant impacts on community
transmission in the context of school reopening in settings with high and sustained
transmission rates.
A more detailed description of the model and its results can be found as preprint in
[19].

5.2 Simulating the burden of new SARS-CoV-2
variants of concern

The SARS-CoV-2 variant of concern (VOC) P.1 (Gamma variant) emerged in the
Amazonas State, Brazil, in November 2020 [64; 109], having been detected in 36
countries, with local transmission in at least 5 of those. A range of mutations are
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seen in P.1, ten of them in the spike protein. It shares mutations with VOCs
previously detected in the United Kingdom (B.1.1.7, Alpha variant) and South Africa
(B.1.351, Beta variant). At the beginning of 2021, the consequences of these
mutations on SARS-CoV-2 P.1 pathogenicity were still uncertain.
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Figure 5.4: Diagram representing the model for SARS-CoV-2 P.1 dynamics. The model compart-
ments and the respective connections between them are summarised in this diagram, and they are
named as S: Susceptible, E: Exposed (pre-symptomatic), H: Hospitalized (severe infected individuals),
I: Infected (symptomatic individuals, not hospitalized), A: Asymptomatic. D: Deceased, R: Recovered.
Compartments are subdivided into 3 age categories, not represented here for simplicity. Compart-
ments with subindex 1 represent the wild-type variant, subindex 2 refers to the VOC P.1. Continuous
lines represent flux between each compartment; dashed lines, infection pathways. Small arrows in-
dicate force of reinfection and transmissibility. λ =force of infection. β =relative transmission rate.
pr =relative force of reinfection. γ =average time between being infectious and presenting symp-
toms. σ =proportion of severe cases that require hospitalization. α =proportion of asymptomatic
cases. νs =average time between being infectious and recovering for severe cases. νi =average time
between being infectious and recovering for mild/asymptomatic cases. µ =in hospital mortality ratio.
Source: Coutinho et al. [44].

We have analyzed Brazilian national health surveillance data on COVID-19
hospitalizations [22] and the frequency of P.1 among sequences from residents of
Manaus city [64; 125] using an extended SEIR compartmental model (figure 5.4 to
estimate the relative transmissibility in comparison to the previous local variant(s),
and relative force of reinfection of the P.1 variant, i.e., the ratio between the force of
infection by P.1 on previously infected individuals (reinfections) and the force of
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infection by P.1 on susceptible ones (new infections). Fitting the surveillance data to
our model, we were able to estimate that the P.1 variant is about 2.6 times more
transmissible (95% Confidence Interval: 2.4–2.8) than previous circulating variant(s),
and 28% of Manaus cases in the period were due to reinfections.
Our estimates ranked P.1 as one of the most transmissible among the SARS-CoV-2
VOCs identified, and potentially as transmissible as the posteriorly detected VOC
B.1.617.2 (Delta variant), posing a serious threat and requiring measures to control
its global spread.
The full model description have been published by Coutinho et al. [44] and a
thorough discussion of its implications on health policy making is presented in
Marquitti et al. [100].

5.3 Optimizing COVID-19 vaccines roll-out in a
limited supply context

While rising cases and new variants were still an ongoing concern, by the end of
2020, COVID-19 vaccines started to become available around the world.
Nevertheless, production and distribution of doses was a major concern, given the
high demand scenario. Hence, optimal vaccination strategies were an important
topic for investigation.
We used a different SEIR mathematical model, with simplified age classification,
compared to the model in chapter 4, but with the addition of a two-dose vaccination
schedule, including the between-doses delay modelled through delay differential
equations and linear optimisation of vaccination rates (figure 5.5). Simulations for
each time window and for different types of vaccines and production rates were run
to find the optimal time window between doses, which we define as the one that
minimises the number of deaths.
We found that the best strategy depends on an interplay between the vaccine
production rate and the relative efficacy of the first dose. In the scenario of low
first-dose efficacy, it was always better to apply the second dose as soon as possible,
while for high first-dose efficacy, the optimal window depends on the production
rate and also on second-dose efficacy provided by each type of vaccine. We also
found that the rate of spread of the infection does not affect significantly the
thresholds of the optimal window, but is an important factor in the absolute number
of total deaths. These conclusions point to the need to carefully take into account
both vaccine characteristics and roll-out speed to optimize the outcome of
vaccination strategies.
The full model description and detailed results have been published in
Souto Ferreira et al. [137].
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Figure 5.5: Diagram representing the vaccination model structure. Subscripts v and w indicate the
first- and second-dose vaccinated classes, respectively. Black arrows indicate transitions between epi-
demiological stages, green arrows indicate vaccination. All classes pictured inside the grey box are
infectious. Because epidemiological progressions happen at time-scales shorter than those related to
vaccine effects, infectious classes are not vaccinated in the model. Source: Souto Ferreira et al. [137].

5.4 Communicating model results

The use of mathematical models to compare intervention scenarios, understand
aspects of a disease transmission dynamics or optimise the implementation of
interventions can be seen as a great way to inform decision making, allowing for
evidence-based policies. Policy decisions that do not incorporate current knowledge
are invariably weakened [154], so why not always use mathematical models as
policy making tools?
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Conveying relevant scientific results into policy recommendations is essential.
Nevertheless, it can be challenging either due to timing or underlying uncertainties.
Rigorous analysis might be produced in a slower pace compared to the demanded by
policymakers, specially during an emergency situation like the COVID-19
pandemic. Additionally, in the case of mathematical modelling, communicating the
lack of evidence that results either in wide statistical confidence intervals (e.g. when
predicting case figures or parameter values) or analysis with only qualitative results
(e.g. scenario comparison) is a challenge by itself [47].
With the mathematical models presented in this chapter, we tried to address
burning issues regarding to the evolution and spread of SARS-CoV-2 pandemic in
the most rigorous, yet timely, way possible. The scientific news press frequently
provided a good media through which scientifically accurate synthesis were
produced [39; 99; 60; 59], as well as some dedicated newspaper columns [70].
Notwithstanding, we have always encountered challenges to effectively
communicate the impacts of our findings to policy makers.
The issue might be two-fold: in one hand, academics need to be prepared to
translate their rigorous original papers into well synthesised policy briefs; in the
other hand, policy makers need to become more open to evidence-based decision
making. This might required training, actions towards integrating research and
governmental institutions, and a cultural transformation in both sides, but it would
be a step towards a society better prepared for the health emergenciess of the future.
As the medical historian Mark Honigsbaum wrote on his book The Pandemic

Century: “The only thing that is certain is that there will be new plagues and new
pandemics. It is not a question of if, but when.” [80].



Part III

Modelling towards elimination of an
endemic disease
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6
The malaria endemic in Brazilian Amazon

Malaria is an acute febrile-illness disease that produced an estimated 229 million
cases and 409,000 deaths worldwide in 2018 [158]. It is caused by five different
species of Plasmodium parasites (Plasmodium falciparum, Plasmodium malariae,
Plasmodium vivax, Plasmodium ovale and Plasmodium knowlesi) [35], of which at
least four are present in the Americas [114]. The malaria parasites are transmitted to
people through the bites of infected female Anopheles mosquitoes, with P.
falciparum and P. vivax species posing the greatest threat worldwide.
Following The World Health Organization World malaria report 2020 [158], in 2019
nearly half of the world’s population was at risk of malaria. Most malaria cases and
deaths occurred in sub-Saharan Africa. However, South-East Asia, Eastern
Mediterranean, Western Pacific, and the Americas were also at risk. P. vivax is the
predominant parasite in the American continent, representing 75% of malaria cases,
though P. falciparum and P. malariae are also consistently present.
In Brazil, 90% of malaria is caused by P. vivax and most of the other cases are caused
by P. falciparum [115; 155]. Currently, more than 99% of the Brazilian malaria cases
are concentrated within the Amazon region [135], where climatic conditions and
lack of strategic allocation of resources perpetuates the challenge to move from an
ongoing endemic state to an elimination pathway.

6.1 Malaria epidemiological cycle

The life cycle of malaria parasites involves humans and the female Anopheles
mosquitoes as hosts. The mosquitoes lay their eggs in a variety of bodies of water,
having their larvae hatching rate and longevity dependent on climate variables,
such as rainfall, temperature and humidity.
The within-host cycle can be slightly different among Plasmodium species. Namely,
P. vivax, the most common species in Brazil, has an additional parasite dormant
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stage (hypnozoite) that can persist in a patients liver and causes relapses if
untreated. Also, P. vivax tends to cause less severe disease and deaths, compared to
P. falciparum, which is predominant in Sub-Saharan Africa. The diagram in figure

Figure 6.1: The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected
female Anopheles mosquito inoculates sporozoites into the human host (1) . Sporozoites infect liver
cells (2) and mature into schizonts (3), which rupture and release merozoites (4). (Of note, in P. vivax
and P. ovale a dormant stage [hypnozoites] can persist in the liver (if untreated) and cause relapses
by invading the bloodstream weeks, or even years later.) After this initial replication in the liver
(exo-erythrocytic schizogony (A)), the parasites undergo asexual multiplication in the erythrocytes
(erythrocytic schizogony (B)). Merozoites infect red blood cells (5). The ring stage trophozoites ma-
ture into schizonts, which rupture releasing merozoites (5). Some parasites differentiate into sexual
erythrocytic stages (gametocytes) (7). Blood stage parasites are responsible for the clinical manifes-
tations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes),
are ingested by an Anopheles mosquito during a blood meal (8). The parasites’ multiplication in the
mosquito is known as the sporogonic cycle (C). While in the mosquito’s stomach, the microgametes
penetrate the macrogametes generating zygotes (9). The zygotes in turn become motile and elongated
(ookinetes) (1) which invade themidgut wall of the mosquito where they develop into oocysts (11). The
oocysts grow, rupture, and release sporozoites (12), which make their way to the mosquito’s salivary
glands. Inoculation of the sporozoites (1) into a new human host perpetuates the malaria life cycle.
(Figure and caption reproduced from CDC [35])



6.2. Current treatment protocol 75

7.1, reproduced from the Center for Disease Control and Prevention (CDC) website
[35], explains the parasite dual-host life cycle in detail.

6.2 Current treatment protocol

The World Health Organization recommends a single dose of primaquine as a
treatment for P. falciparum. For P. vivax, radical control is recommended with 7 (or
14) days of chloroquine + primaquine [155].
In Brazil, the treatment for confirmed non-complicated P. vivax infections consists
in a 7 day therapy combining cloroquine and primaquine. In the case of confirmed P.
falciparum, a 6 days combination therapy is recommended using quinine,
doxicicline and primaquine. For mixed infections (P. falciparum and P. vivax),
mefloquine and primaquine are recommended, durinf a 7 days therapy. The
recommendation for P. malariae is a 3 day cloroquine therapy [30].

6.3 Malaria in Brazil

The history of malaria in Brazil began in the XVI century, with the introduction of
Plasmodium falciparum by African slaves, which were brought to Brazil by European
colonizers [76]. Throughout the colonial period, slaves, Amerindians and colonizers
became malarious. Yet the biggest drivers for the spread of malaria throughout the
country were the rubber industry and railroad construction, responsible for an
increasing flux of migrants to the Amazon region in the XIX century.
With the abolition of slavery in 1888 and consequent interruption of agricultural
activities in São Paulo (SP) and Rio de Janeiro (RJ), many plains were left susceptible
as mosquito breeding sites, introducing highly malarious areas in the Southeast
region. By 1891, the increasing number of malaria cases emerged as an important
national issue and the first anti-malaria commissions were created.
At 1903 the mosquito Anopheles cruzi was pinpointed as the disease vector by the
Adolpho Lutz, from the Bacteriological Institute of São Paulo. Though, people would
still take some time before acknowledging that malaria was not an "infection of the
home", therefore effective vector control would only start in the 1940s with the
creation of the Northeastern Malaria Service and the National Malaria Service
(SNM).
Carlos Chagas, who worked with Oswaldo Cruz, was assigned to deal with highly
malarious regions in the 1900s and applied "offensive" prevention methods such as
killing mosquitoes and larvae breeding sites home by home, regularly administering
quinine to workers and advising contractors to fire people who would not take the
medicine or were chronically infected.
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Many attempts to establish a nationwide malaria control program occurred
throughout the XX century with more or less success rates. In the early years,
malaria was spread all over the country but by the end of the XX century, it was
mainly restricted to the Amazon region. One of the biggest efforts to control the
epidemic was adopted by the Malaria Eradication Campaign (CEM), guided by
World Health Organization (WHO) recommendations: DDT spraying and
distribution of antimalarial were apllied widely. Though it was effective at first, the
wide distribution of chloroquinine (CQ) rapidly culminated in P. falciparum

resistance (P. vivax would not show resistance before 2007).
Other drugs were sought as potential substitutions to CQ. Sulphadoxine
pyrimethamine started on trials on the 1960s but by 1972 resistance had already been
reported and by 1989 90% of parasites were sulfadoxine-pyrimethamine-resistant. At
this point, other options were quinine-tetracycline followed by quinine +
doxycycline and mefloquine + primaquine as secondary drugs.
With the introduction of the Program for the Intensification of Malaria Control
(PIACM) in 1999, a more politically engaged program, P. falciparum malaria cases
drastically decayed. Advances from other parts like the National Health Foundation
(FUNASA) and Program for Malaria Prevention and Control (PNCM) also continued.
By 2002 rapid detection methods were implemented and the diagnostic could be
obtained within 24 h. By 2005 the Malaria Epidemiological Surveillance Information
System was created.
More recently, the Amazon still accounts for more than 99% of the Brazilian malaria
cases. By 2010, the Global Fund funded a Ministry of Health project to strengthen
public health capacity in the Amazon region, which apparently led to some decrease
in cases between 2010-2013 [155].
Table 6.1 shows a timeline of important events that affected the spread of malaria in
Brazil, leading to it current endemic state. Right now, the challenge is to continue
the efforts towards elimination, perhaps focusing in more effective ways to deliver
treatment and prophylaxis.

6.4 Conclusion

Strategic decisions informed by mathematical modelling and data analysis have
been proved to be a valuable tool to overcome such challenging predicaments
[133; 139; 5; 100; 44]. There have been many successful endeavours to inform health
policy making using mathematical models in Africa [133], which carries 94% of the
current malaria burden [142; 135], and Asia, where antimalarial drug resistance is a
recurring issue [139; 7].
In spite of that, there haven’t been many efforts directed towards using
mathematical analysis to inform health policy makers in the Americas, where
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765,000 cases and 340 deaths were reported in 2018 [114]. These relevant numbers
show the importance and urgency of the development of effective modelling tools,
built with the aim to communicate with and support policy making, not only in the
Brazilian Amazon, but throughout all malaria affected regions in the Americas.
Elimination of this lethal disease is a realistic goal for the region, but only if multiple
interventions are combined to address the various Plasmodium species that infect
humans. The most recent modelling activity commissioned by the Global Fund to
Fight Aids, Tuberculosis and Malaria focuses on the Guyana Shield region, which
encompasses Suriname, Guyana, French Guiana, Venezuela, and the Brazilian states
of Amapá, Pará, and Roraima.
In the following chapters, we propose the use of mathematical models to simulate
the malaria dynamics both from a theoretical and an applied point of view. In
chapter 7 we propose two independent model structures for P. falciparum and P.

vivax parametrising them consistently with the malaria dynamics in Brazilian
Amazon. In chapter 8, we develop a theoretical framework to allow interspecific
interactions to be taken into account in multi-species models, giving examples of its
applications in modelling malaria elimination strategies in Asia-Pacific and Guyana
Shield regions.
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Table 6.1: Timeline for malaria in Brazil. Summarised from from Griffing et al. [76].

1500 · · · · · ·• Colonisation.

1560 · · · · · ·• Possible introduction of P. falciparum by African slaves.

1587 · · · · · ·• 1st report: Tupinamba Indians.

1610 · · · · · ·• Possible introduction of P. vivax from an European strain.

1815 · · · · · ·• End of colonial period.

1870 · · · · · ·• Rubber industry railroad construction / great flux of immigrants to
Amazon.

1888 · · · · · ·• Abolition of slavery / SP and RJ with highly malarious regions.

1891 · · · · · ·• First anti-malaria commissions.

1900 · · · · · ·• At this point, half of the population (6 million) was malarious.

1903 · · · · · ·• An. cruzi identified as a vector by Adolpho Lutz.

1905 · · · · · ·• Carlos Chagas surveyed Itatinga-SP and started "offensive" prevention methods:
gave quinine to workers, killed mosquitoes and larvae.

1907 · · · · · ·• First report of quinine resistance.

1910 · · · · · ·• House screens and bed nets started being used.

1912 · · · · · ·• Oswaldo Cruz creates a plan to sanitizing Amazon region but finds many
challenges due to the scattered population.

1920 · · · · · ·• National Department of Public Health (DNSP) was created to deal with Chagas
disease, hookworn and malaria.

1928 · · · · · ·• Introduction of the African vector An. gambiae and large outbreak of malaria in the
Northeastern region.

1939 · · · · · ·• Creation of the Northeastern Malaria Service: fumigation of post on
outgoing roads, homes, boats and planes were sprayed with insecticide.

1940 · · · · · ·• Cases begin to diminish / More than 50% were outside Amazon.

1941 · · · · · ·• The National Malaria Service (SNM) is created and starts fighting "Bromeliad
malaria".

1942 · · · · · ·• Foundation of the Special Public Health Service in Amazon (SESP), created to
provide sanitation and provide training for health staff.

1945 · · · · · ·• Introduction of DDT spraying as profilaxy and chloroquine (CQ) tablets as
treatment.

1957 · · · · · ·•
In response to the WHO establishment of the Global Eradication of
Malaria, SNM changed to the Malaria Eradication Campaign (CEM), which
decided to put CQ in table salt in areas where DDT was difficult to apply
(which migh have encouraged early parasite resistance).
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1960 · · · · · ·• CEM sprays SP houses with DDT every six months, tested population every year
and treated patients / Sulphadoxine pyrimethamine starts being used in trials.

1965 · · · · · ·• The government adopts the CEM model recommended by the WHO: DDT
spraying and antimalarial distribution.

1968 · · · · · ·• 68% of the population lived in a malaria-free zone, with 31% living in the
consolidation phase / Mild resistance to pyrimethamine alone is reported.

1970 · · · · · ·• CEM was suspended due to the fewer cases and concerns over DDT / Malaria had
been reduced to 1% of its incidence in 1950.

1970 · · · · · ·• The Superintendent of Public Campaigns of Brasil (SUCAM) integrated the
malaria eradication program.

1972 · · · · · ·• First report for sulfadoxine-pyrimethamine resistance.

1974 · · · · · ·• All Brazilian malaria regions had been through the attack phase.

1975 · · · · · ·• DDT resistance reported in Brazil and Colombia.

1976 · · · · · ·• Malaria under control in S, SE, NE ans Central-W, but transmission was increasing
due to the flux to Amazon.

1980 · · · · · ·•
Due to Amazon forests deforestation, - encouraged by Agrarian reform, agriculture,
construction of roads and hydroelectric plants - the population in Amazon Region
rose and 96% of all cases occurred there.

1980 · · · · · ·•
SUCAM focused efforts on Amazonian malaria control with new
techniques: outdoor ultra-low-volume nebulisation, mass treatment,
impregnated curtains ans new insecticides / Cases are still increasing due to
migration between regions / CQ resistance is reported throughout Brazil.

1989 · · · · · ·•
The Amazon Basin Malaria Control Project (PCMAM) is created / 90% of parasites
were Sulfadoxine-pyrimethamine resistant / quinine-tetracycline starts being used,
followed by quinine + doxycycline and mefloquine + primaquine as a secondary
drug.

1996 · · · · · ·• With depleted funding of PCMAM, malaria resurges and malaria control plans are
now administered by the National Health Foundation (FUNASA).

1999 · · · · · ·• Introduction of the Program for the Intensification of Malaria Control (PIACM).

2001 · · · · · ·• By 2001, cases were almost halved. P. falciparum cases were reduced by 35% and P.
vivax by 41%.

2002 · · · · · ·• FUNASA implements rapid detection methods where a case could be diagnosed
within 24h.

2005 · · · · · ·•
Malaria control is undertaken by the Program for Malaria Prevention and Control
(PNCM), which created the Malaria Epidemiological Surveillance Information
System.

2007 · · · · · ·• P. vivax start showing resistance to CQ in Manaus.

2010 · · · · · ·• Global Fund funds a Ministry of Health Project to strengthen public health
capacity in the Amazon.





7
Single-species models for malaria in Brazilian

Amazon

Here we illustrate how mechanistic models can be used to study the effect of the
available interventions on the malaria dynamics, based on historic information,
clinical literature and data. We present two separate compartmental models
describing Plasmodium vivax and Plasmodium falciparum dynamics, with relevant
interventions being implemented, namely, early detection and treatment (EDAT)
and vector control (VC). We parametrise both models to represent the dynamics in
Brazilian Amazon, based on available incidence data and the timeline of
implementation of interventions.

7.1 Single-species malaria models

7.1.1 Model for P. falciparum

For the baseline model structure, we have adopted an extended SEIRS model
structure with demography, including sub-populations of individuals that are
susceptible (S); infectious and clinically ill (IC); infectious and asymptomatic (IA);
infectious, asymptomatic and undetectable (by rapid tests or blood smear
microscopy) (IU ); and recovered and (partially) immune (R).
Natural recovery occurs as symptomatic individuals become asymptomatic (at rate
νC), followed by undetectable (at rate νA) and then recovered (at rate νU ). We
assume that immunity can be lost at a rate ω and individuals can be re-infected even
while infectious (super-infection) or recovered, with lower re-infection probability
in the latter case.
Finally, the total population P is assumed constant, as individuals die and emigrate
at the rate µOUT and are substituted at the same rate µ+ µC + µA + µU = µOUT due
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to new births or immigration.
As transmission depends on mosquito population dynamics, the baseline
transmission rate, β̃, is evaluated as

β̃ = Seas(t)
bϵhbhϵm

P (bhϵh + δm)
(

γm
γm+δm

) (7.1)

where b is the per mosquito biting rate, ϵh is the human per bite probability of
infection, bh is the per human biting rate, ϵm is the mosquito per bite probability of
infection, δm is the mosquito death rate and γm is the mosquito transition rate from
latent to infectious. Note that the factor 1/ (bhϵh + δm) represents the duration of a
mosquito infectious period and γm

γm+δm
accounts for the probability for each

mosquito to survive through its latent stage, before becoming infectious. Finally,
Seas(t) is an optional seasonality factor with amplitude α and phase ϕ written as

Seas(t) = (1 + α cos(2πt− ϕ)) . (7.2)

Note that, with the above definition of β̃, we are assuming the mosquito population
dynamics has reached a asymptotic stationary state, with oscillations exclusively
caused by environmental seasonality.

Treatment for P. falciparum

To implement treatment as an intervention in the model, we assume that all
symptomatic cases are eventually tended, though treatment seeking might be
delayed (which is reasonable for the Brazilian Amazon region, where treatment is
free and fairly easily accessible). The number of untreated people decays
exponentially with time at the rate ωT , which also defines the rate at which people
seek treatment. After receiving treatment, people can comply or not. The adherent
fraction is considered to be protected from new infections for a limited period.
This mechanism is taken into account by adding two extra compartments in the
model: sub-population of individuals under treatment (T ) and recovered but still
under the effect of antimalarial drugs (hence completely immune) (RD).
For both species of Plasmodium, we have considered that the business-as-usual
treatment protocol, as described in section 6.2, was applied.
Figure 7.1 depicts the model compartments and flows among them, including the
baseline dynamics and treatment.

Vector control

The vector control interventions most commonly adopted against malaria in the
Brazilian Amazon region are indoor residual spraying (IRS) and insecticide treated
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Figure 7.1: P. falciparum malaria model diagram. The variables in the compartments represent indi-
viduals that are S: susceptible, IC : infectious (symptomatic), IA: asymptomatic infectious, IU : asymp-
tomatic infectious and undetectable, R: recovered and immune, T: under treatment, and RD : recovered
after treatment and still under the effect of drugs. Black lines represent infection, green lines repre-
sent natural recovery, orange lines represent flows related to treatment interventions and grey lines
represent demographic flows (births, migration and non disease-related deaths).

nets (ITN). These intervention is taken into account as a reduction of the effective
contact rate, as previously defined in equation 7.1, lead by a decrease in the total
mosquito population.
Considering IRS and ITN are applied, β can be written as β = β̃

∏
i

[1− ϵici], or

β = Seas(t)
bϵhbhϵm

P (bhϵh + δm)
(

γm
γm+δm

) [1− ϵIRScIRS][1− ϵITNcITN ] , (7.3)

where ϵi and ci represent, respectively, effectiveness and coverage for intervention i
( i = {IRS, ITN}).
The following equations represent the full P. falciparum model, including treatment
and vector control intervention dynamics.
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dS

dt
= µP − µOUTS + ωR− λS (7.4)

dIC
dt

= µCP − µOUT IC + pSλS + pRλR + pRλIU + pRλIA (7.5)
−νCIC−ωT IC

dIA
dt

= µAP − µOUT IA + (1− pS)λS + (1− pR)λR + (1− pR)λIU (7.6)

−pRλIA + νCIC − νAIA+(1− τ)νTT

dIU
dt

= µUP − µOUT IU − λIU − νUIU + νAIA (7.7)
dR

dt
= −µOUTR− ωR− λR + νUIU+ωDRD (7.8)

dT

dt
= −µOUTT − νTT + ωT IC (7.9)

dRD

dt
= −µOUTRD + τνTT − ωDRD (7.10)

where the total population P = S + IC + IA + IU +R+ T +RD is constant and the
system’s force of infection is written

λ =
β

P
(IC + ρAIA + ρUIU) (7.11)

with ρA and ρU being the relative infectivity i=of asymptomatic and undetectable
individuals, respectively. The transmission rate, β, is defined as in equation 7.3.
Note that treatment related terms are represented by the orange terms in the
system. Compliance and delayed treatment are taken into account.

7.1.2 Model for P. vivax

A very similar model structure can be adopted to model P. vivax dynamics, with the
addition of a hypnozoite dormant state compartment (H). This means that an
infected asymptomatic individual can either recover (with probability 1− h) or go
into a dormant liver stage (with probability h), which is asymptomatic but can be
both re-infected (rate λ) and suffer relapses (rate ωR), if the liver parasites reach
bloodstream. Figure 7.2 depicts P. vivax model structure and the flows between
compartments.
The full set of equation for this model is presented below, where terms related to the
latent hypnozoite liver state, which arises from an unsuccessful natural recovery,
are included in blue:
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dS

dt
= µP − µOUTS + ωR− λS (7.12)

dIC
dt

= µCP − µOUT IC + pSλS + pRλR + pRλIU + pRλIA − νCIC (7.13)

−ωT IC+pH(ωR + λ)H

dIA
dt

= µAP − µOUT IA + (1− pS)λS + (1− pR)λR (7.14)

+(1− pR)λIU − pRλIA + νCIC − νAIA+(1− pH)(ωR + λ)H

dIU
dt

= µUP − µOUT IU − λIU − νUIU + νAIA (7.15)
dR

dt
= −µOUTR− ωR− λR + (1− h)νUIU+ωDRD (7.16)

+(1− τ)(1− h)νTT

dT

dt
= −µOUTT − νTT + ωT IC (7.17)

dRD

dt
= −µOUTRD + τνTT − ωDRD (7.18)

dH

dt
= µHP − µOUTH + hνUIU − (ωR + λ)H + (1− τ)hνTT (7.19)

where again the total population P = S + IC + IA + IU +R + T +RD +H is
constant and the system’s force of infection is

λ = β (IC + ρAIA + ρUIU)/P , (7.20)

with the equation for beta is given by 7.3.

7.2 Data sources and parametrisation

In Chapter 2 we have introduced the Brazilian data bases that can be used for
malaria case data acquisition and some of the work behind data processing and
aggregation [68]. Here we used historical time-series, together with parameters
values informed by clinical literature, vector control and treatment seeking data
available in World Health Organisation reports [155; 158]. Values and sources for
parameter values are included in table 7.1.

7.2.1 Single-species model results

Vector control for P. falciparum

To qualitatively illustrate the resulting model dynamics, simulations were run using
the parameters specified in table 7.1 for the P. falciparum malaria model (equations
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Figure 7.2: P. vivax malaria model diagram. The variables in the compartments represent individuals
that are S: susceptible, IC : infectious (symptomatic), IA: asymptomatic infectious, IU : asymptomatic
infectious and undetectable, R: recovered and immune, T: under treatment, RD : recovered after treat-
ment and still under the effect of drugs, and H: hypnozoite latent. Black lines represent infection, green
lines represent natural recovery, orange lines represent flows related to treatment interventions, grey
lines represent demographic flows (births, migration and non disease-related deaths) and purple lines
represent relapses and flows affected by the existence of hypnozoites.

7.4-7.10) with and without vector control interventions. No seasonality was
included, for simplicity, since it does not affect the dynamics and here we are just
going to focus on the qualitative behaviour of the system under this different
intervention scenarios.
As expected for a SEIRS-like model with demographic dynamics, an endemic state is
reached in a hypothetical scenario where no interventions are applied (figure 7.3).
The effect of the introducing a continuous and highly effective vector control
intervention can be seen in figure 7.4, where it is clear that, being an intervention
that directly affects the system’s transmission rate, it can be very successful if
applied widely.
The qualitative behaviour of the P. vivax malaria model (equations 7.12-7.19) is
equivalent, since it is still based on a SEIRS-like structure (H can be seen as an extra
recovered compartment), and the vector control interventions affect the force of
infection in the exact same way.
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Table 7.1: Parameter values and sources for P. falciparum and P. vivax malaria models.

Symbol Definition Value Range Units Source
µ net birth and death rate 1/50 year−1 [156]

µOUT rate of death + emigration 1/50 year−1 *
ω rate of immunity loss 1/2 year−1 †
b per mosquito biting rate 365/3 year−1 †
bh per human biting rate 11/(1 + α) year−1 †
ϵh human per bite probability 23/100 0-1 - †

of infection
ϵm mosquito per bite probability 50/100 0-1 - †

of infection
δm mosquito death rate 365/14 year−1 [15; 86]
γm mosquito transition rate from 365/10 year−1 [102]

latent to infectious
α relative amplitude of seasonality 0 0-1 - -
ϕ phase angle of seasonality π 0-1 rad -

ϵV C vector control effectiveness (V C = IRS or ITN ) 0.5 0-1 - †
cV C coverage of vector control 0.7 0-1 - [155]
ρA relative infectivity of IA 0.55 0-1 - [136]

(compared to IC )
ρA relative infectivity of IU 0.17 0-1 - [136]

(compared to IC )
µC rate of importation of IC cases 1/1000 year−1 †
µA rate of importation of IA cases 1/1000 year−1 †
µU rate of importation of IU cases 1/1000 year−1 †
µH rate of importation of IH cases 1/1000 year−1 †
pS proportion of all non-immune new IC 90/100 0-1 - [151]
pR proportion of all immune new IC 20/100 0-1 - [150]
νC rate of relief of clinical symptoms 365/3 year−1 [93]

in the absence of any treatment
νA rate of transition from IA to IU 365/60 year−1 [151]
νU rate of transition from IU to R state 365/100 year−1 [51]
νT rate of transition from T to RD state P.f.: 365/1 year−1 [155]

P.v.: 365/7
ϵT coverage of EDAT 55 0-1 - [135]
cT compliance to treatment 86 0-1 - [135]
ωT rate of treatment seeking 365/10 year−1 †
τ adherence to treatment 86/100 - [155]
ωD rate of loss of protection by drug 365/10 year−1 †
h proportion of non-treated cases 0.7 0-1 †

becoming latent (H)
ωR relapse rate 12/8 year−1 †
pH index of clinical recurrences 365/10 year−1 †

* Calculated within the model.
† Assumed.
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Figure 7.3: Baseline P. falciparum model dynamics showing that, if no interventions are made, the
disease reaches a stable endemic state. In this case, β assumes its baseline constant value at all times.

Treatment for both species

Here we show the effects of different intervention scenarios on both P. falciparum
and P. vivax model outputs. The business as usual scenario, as in figure 7.5 (a), is a
parametric set that represents the invention history until present, and the
maintenance of current strategies in the future. In scenarios (b) and (c), vector
control is maintained at the same levels as in the business as usual scenario, but
treatment compliance and coverage linearly decreases to 0% after 2017.
The importance of keeping of maintaining the current vector control and early
detection and treatment (EDAT) interventions in imminent.

Treatment coverage and compliance

Here we present the outputs for the full model, which intrinsically correlates the P.
falciparum and P. vivax models presented on subsections 7.1.1 and 7.1.2,
respectively. It is assumed that the baseline parameters are shared between both
systems while varying two key parameters in the treatment dynamics: coverage
(related to ωT ) and compliance (related to τ ).
The two-species dynamics outputs, as seen in figure 7.5, can be reproduced through
the interactive application available at cfranco.shinyapps.io/malariabr/, where the
model parameters can be adjusted to explore different scenarios.
Starting from values corresponding to the present situation in Amazonian malaria

cfranco.shinyapps.io/malariabr/
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Figure 7.4: Model dynamics for the scenario where a highly effective vector control intervention is
applied (after 4 years) and continuously undertaken in the same system, a drastic decrease in malaria
cases is observed. Here β changes in time according to the coverage and effectiveness of the interven-
tion.

dynamics, we simulated the effect of interventions leading to the increase of either
coverage or compliance. The system dynamics was ran for a wide range of final
values for both of theses parameters (Figure 7.7), looking to find out which possible
intervention would most effectively lead to a decrease in the total number of cases.
From the relation between the percentual decrease in prevalence and
compliance/coverage (Figure 7.6), we conclude that actions towards the increase of
EDAT coverage might be a slightly more effective as a control measure (Figure 7.6).
However, the system is apparently already in an optimal regime, concerning the
mentioned parameters, and such improvements might not be ultimately required.
Even though, the continuous maintenance of an effective treatment system is
essential to keep controlled levels of the disease, as we can see by the dark lines of
simulations in Figure 7.7.
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(a) Business as usual

(b) Decreasing compliance to treatment

(c) Decreasing coverage of treatment

Figure 7.5: P. vivax malaria (blue) and all-species malaria (red) true prevalence outputs when an
intervention starts in 2018 and linearly varies coverage and compliance until 2021 (as in Figure 7.7). (a)
shows the scenario when both interventions are applied successfully. Complementary, in (b) we see
the effect of decreasing compliance to treatment to 0% and the same in (c), for decreasing coverage to
0%. Other parameters correspond to the values in table 7.1.
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Figure 7.6: Preliminary sensitivity analysis for the percentual coverage of EDAT and compliance to
treatment. We can see that a slightly higher percentual decrease in prevalence can be obtained with
broader coverage of EDAT. Parameters were the same as in Figure 7.6.

(a) Coverage (ωT ) scenarios
(b) Compliance (τ ) scenarios

Figure 7.7: True prevalence outputs when an intervention starts in 2018 and linearly varies a treatment
parameter until 2021. (a) shows the effect of increasing to 85% (red dashed line), maintaining at 55%
(red solid line) and decreasing to 0% (dark red solid line) the coverage (ωT ) of EDAT (related to the
parameter ωT ) in the P. falciparum model (without seasonality). Analogously, (b) shows the effect of
increasing to 100% (blue dashed line), maintaining at 86% (blue solid line) and decreasing to 0% (blue
red solid line) the compliance (τ ) to treatment. Other parameters correspond to the values in table
7.1. Analogous plot for P. vivax are qualitatively equivalent.

7.3 Conclusion and perspectives

Single-species models for malaria can be useful to qualitatively reproduce the
disease dynamics at population level, with similar structures to the ones described
in this chapter having been used to inform health policy making in different settings
[139; 172; 132]. Nevertheless, at the time, the lack of more detailed data regarding
case importations, testing and intervention coverage/adherence in the Brazilian
Amazon limited the impact of our models. Further communication with
stakeholders is fundamental, in order to acquire the relevant data to produce
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quantitative and useful outputs, aiming to support strategic decision making within
the national malaria control program.
Additionally, the lack of explicit coupling between the two species dynamics in the
models discussed in this chapter ignores the existence of co-infected individuals,
which can transmit and respond to treatment for more than one species at a time.
Hence the need for multi-species models that incorporate such interactions is
evident.
In chapter 8, we describe how multi-species models can be built from the coupling
between single-species systems. The TRansmission of Related Infectionswith Light
Linkage (TRILL) approximation is intruduced as a framework to make multi-species
modelling feasible. We also present examples of applications of the TRILL
framework in recent modelling exercises aiming to inform malaria elimination
strategic planning in Asia-Pacific [133] and, more recently, in the Guyana Shield
region, lead by S. Silal et al.
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TRILL approximation for multi-species systems

Models for multiple strains or species of pathogens are challenging due to the
number of equations required to accurately account for the inter-species
interactions, which increase exponentially with the number of species, making
numerical and structural identifiability increasingly improbable. We propose an
approximation which allows the dimension of the resulting model to increase
linearly with the number of species. For a two-species SIRS model, we show through
mathematical analysis that this approximation is appropriate for species with low
levels of interaction, which we term TRansmission of Related Infections with Light
Linkage (TRILL). We apply numerical analysis to confirm the analytical result and
explore the less analytically tractable example of a multi-species malaria model.

8.1 Multi-species epidemiological modelling

Realistic multi-species models become increasingly complicated in an exponential
fashion as we increase the number of interacting species being modelled.
Considering an underlying closed population dynamics where all possible
combinations of interactions between N species are taken into account, we can
arrive at (sN − 1) equations when writing the system dynamics in terms of its sN
discrete state variables, with s being the number of discrete states (e.g., s = 3 for a
SIR or SIRS system).
Pathogens with multiple variants or species might interact in complex ways,
including through different levels of cross-immunity or response to treatments.
These mechanisms are not completely understood, representing an additional
challenge when trying to model [97; 92]. Multiple-strain population models have
been previously proposed to investigate immunity duration in a system with
different P. falciparum [77; 78] or influenza [92; 73] strains. Nevertheless,
multi-species models are rare, since different species might have very different life
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cycles and and interact in even more complex ways. A few two-species malaria
models can be found in the literature, but they usually include overly simplifying
assumptions regarding the multiple species life-cycle [98; 123], they are not made at
population-level [52; 119] or do not cosider inter-species super-infection [119].
Aiming to be able to model multi-species epidemiological dynamics with less
extensive, but not over-simplistic, systems of equations, we propose an
approximation which allows the dimension of such systems to increase linearly with
the number of species, rather than exponentially.
In the following sections, we first introduce a one species SIRS dynamic system as a
baseline model. We then replicate its dynamics for two species (with similar
epidemiological cycles, e. g. Plasmodium falciparum and Plasmodium vivax if we
were modelling malaria) including all possible interactions terms between them,
leading to a set of 9 equations that represent the dynamics of the two-species
state-specific variables. The full model is subsequently re-written in terms of
ecological variables, reducing the number of equations to 5. Assuming a weak
interaction regime (or TRansmission of Related Infections with Light Linkage (TRILL)),
we prove that the system can be further reduced to only 4 equations.
Finally, we propose that such framework can be generalised for N-species systems
under the same low linkage regime so, by redefining variables at ecological level [97]
and imposing the TRILL approximation, we can reduce it to an equivalent set of
sN −N equations. Therefore, being able to replace the exponential association
between number of species and equations by a linear one.

8.2 Baseline model

The baseline model describing an SIRS structure for a single species has (s− 1)
equations where s is the number of discrete states (3 in this example):

X
′

= −βXY + ω (1−X) (8.1)
Y

′
= βXY − (ν + ω)Y (8.2)

Here we can see X as susceptible, Y as infectious and Z as recovered individuals.
The parameters represent transmissibility (β), recovery (ν) and loss of immunity (ω)
rates. Note that the Z (Z ′ = νY − ωZ) dynamic equation is redundant under the
assumption of aclosed population, i.e., X + Y + Z = 1.

8.2.1 Full model

An extended two-species model considering the same underlying natural history,
where individuals can be in any combination of the s states for each species, would
be described by (s2 − 1) equations. In the case of the example system presented in
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Figure 8.1: Diagram representing the baseline model compartments and flows. X represents suscep-
tible, Y is the infectious and Z is the recovered sub-population.

the previous section, we would have the following set of 9 equations representing
the two-species dynamics:

V{Xi,Xj}
′

= − (Λi + Λj)V{Xi,Xj} + ωj(V{Xi,Yj} + V{Xi,Zj})

+ωi(V{Yi,Xj} + V{Zi,Xj}) (8.3)
V{Yi,Xj}

′
= ΛiV{Xi,Xj} − (1− αij)ΛjV{Yi,Xj} + ωj(V{Yi,Yj} + V{Yi,Zj})

−(ωi + νi)V{Yi,Xj} (8.4)
V{Zi,Xj}

′
= νiV{Yi,Xj} + ωj(V{Zi,Yj} + V{Zi,Zj})−ωiV{Zi,Xj}

−(1− αij)ΛjV{Zi,Xj} (8.5)
V{Zi,Yj}

′
= νiV{Yi,Yj} + (1− αij)ΛjV{Zi,Xj} − (νj + ωi + ωj)V{Zi,Yj} (8.6)

V{Yi,Yj}
′

= (1− αji)ΛiV{Xi,Yj} + (1− αij)ΛjV{Yi,Xj}

−(νi + νj + ωi + ωj)V{Yi,Yj} (8.7)
V{Zj ,Zj}

′
= νiV{Yi,Zj} + νjV{Zi,Yj} − (ωi + ωj)V{Zi,Zj} (8.8)

with (i, j) ∈ {(1, 2), (2, 1)} and where

Λi = βi(V{Yi,Xj} + V{Yi,Yj} + V{Yi,Zj}) (8.9)

represents the system’s force of infection. All parameters are defined for each of the
species the same way as in the above section, except for αij , which can be defined as
a cross-immunity index.
The full model set of equations in this example can be reduced to only 5 ordinary
differential equations, when written in terms of its ecological variables, Xi, Yi, Zi,
defined as:

Xi = V{Xi,Xj} + V{Xi,Yj} + V{Xi,Zj} (8.10)
Yi = V{Yi,Xj} + V{Yi,Yj} + V{Yi,Zj} (8.11)
Zi = V{Zi,Xj} + V{Zi,Yj} + V{Zi,Zj} (8.12)

with the constant total population constraint

Xi + Yi + Zi = 1 (8.13)

which simplifies the system by making the Z1 and Z2 dynamic equations redundant.
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With the above definitions, we can re-write equations (8.3)-(8.8) as:

V{Xi,Xj}
′

= −(βiYi + βjYj)V{Xi,Xj} + ωi(Xi − V{Xi,Xj})

+ωj(Xj − V{Xi,Xj}) (8.14)
Xi

′ = −βiYi

[
V{Xi,Xj} + (1− αji)(Xi − V{Xi,Xj})

]
+ωi(1−Xi) (8.15)

Yi
′ = βiYi

[
V{Xi,Xj} + (1− αji)(Xi − V{Xi,Xj})

]
−(νi + ωi)Yi (8.16)

again with (i, j) ∈ {(1, 2), (2, 1)}.
Note this is merely an artefact of the chosen structure. The structure was chosen to
demonstrate the concept, but numerical analysis can be used in the case of less
tractable structures, such as the multi-species malaria models exemplified in section
8.5.

8.3 TRansmission of Related Infections with Light
Linkage (TRILL) approximation

We propose an approximation in order to reduce the dimension of the full system.
The approximation assumes that at each time point, the proportion of the population
in the state of uninfected and unimmune to either species, V{Xi,Xj}, is the product of
the proportions in the two composite states of X1 and X2, the proportions of the
population in the state of uninfected and unimmune to each species.
First, letW{Xi,Xj} = XiXj

W{Xi,Xj}
′

= Xi
′
Xj +XiXj

′

= −βiYi

[
V{Xi,Xj} + (1− αji)(Xi − V{Xi,Xj})

]
Xj

−βjYj

[
V{Xi,Xj} + (1− αij)(Xj − V{Xi,Xj})

]
Xi

+ωi (Xj −XiXj) + ωj (Xi −XiXj)

= −βiYi

[
W{Xi,Xj} − αji(W{Xi,Xj} −XjV{Xi,Xj})

]
−βjYj

[
W{Xi,Xj} − αji(W{Xi,Xj} −XiV{Xi,Xj})

]
+ωi

(
Xj −W{Xi,Xj}

)
+ωj

(
Xi −W{Xi,Xj}

)
. (8.17)
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Then, rearranging equation (8.14), we can re-write V ′

{Xi,Xj} as

V
′

{Xi,Xj} = −βiYiV{Xi,Xj}

−βjYjV{Xi,Xj}

+ωi(Xj − V{Xi,Xj})

+ωj(Xi − V{Xi,Xj}). (8.18)

By comparing the terms ofW ′

{Xi,Xj} and V
′

{Xi,Xj}, we can clearly see that
W{Xi,Xj} → V{Xi,Xj} as αij → 0 and/or βi → 0.

8.3.1 Error and equilibrium analysis

In order to analytically evaluate the difference between the full and approximate
models we define the error function

E{Xi,Xj} = V{Xi,Xj} −W{Xi,Xj} (8.19)

with first derivative given by

E
′

= − [βiYi (1− αji) + βjYj (1− αij) + ωi + ωj]E −[
αjiβiYi (1−Xj)V{Xi,Xj} + αijβjYj (1−Xi)V{Xi,Xj}

]
. (8.20)

The second derivative of the error is negative, therefore the error will always tend to
it’s equilibrium value. The error at equilibrium, E∗, is given by:

E∗ = −
αjiβiY

∗
i

(
1−X∗

j

)
V ∗
{Xi,Xj} + αijβjY

∗
j (1−X∗

i )V
∗
{Xi,Xj}

βiY ∗
i (1− αji) + βjY ∗

j (1− αij) + ωi + ωj

(8.21)

The terms in the numerator are cubic in the equilibrium values of the the system
variables, while the terms in the denominator are linear in the equilibrium values of
the the system variables. Since all the system variables are normalised to less than
unity, this would imply that the equilibrium value of the error term would be small.
There are four equilibria of the system. The disease-free equilibrium, the single
species equilibrium and the coexistence equilibrium. In all but the coexistence
equilibrium, E∗ = 0. The size of the error for the coexistence equlibrium is
corellated most strongly with with αji as it appears in the numerator and its
complement appears in the denominator. The rate of loss of immunity, ωi, appears
in the denominator and thus the size of the error is also correlated with the duration
of immunity, 1

ωi
.

We can therefore conclude that the approximation is appropriate for species with
low levels of cross-immunity and short duration of immunity. We term this weak
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form of inter-species interaction as TRansmission of Related Infections with Light

Linkage (TRILL).
The approximate model can therefore be written in its simplest form as 4 ODEs in 4
variables.

8.4 Approximate model equations

Here we define the lower-case variables x, y, z and v{xi,yj} as the TRILL
approximations for the previously defined X , Y , Z and V{Xi,Yj}

v{xi,xj} = xixj (8.22)
v{xi,xj}

′
= xi

′
xj + xixj

′ (8.23)
xi

′
= −βiyi [xj + (1− αji) (1− xj)]xi + ωi (1− xi) (8.24)

yi
′

= βiyi [xj + (1− αji) (1− xj)]xi − (ωi + νi) yi, (8.25)

(i, j) ∈ {(1, 2), (2, 1)}.
Note that, due to the way we defined X , Y and Z for the specific system in Section
8.2, we only end up with V{Xi,Yj} terms left. For more complicated systems, other
mixed terms could appear. In that case, we assume the same reasoning holds and we
can make approximations such as V{Ui,Wj} ≈ UiWj .

8.5 Multi-species malaria models

The theoretical framework presented here has been applied by Silal et al. [133] to
model P.falciparum - P. vivax transmission and costing in the Asia-Pacific
(METCAP). Two independent single species models (similar to the ones described in
chapter 7) are coupled as weak interspecific interactions are taken into account. The
interactions implemented in the METCAP model were dual treatment, triggering
and radical cure, masking, competition between species and the protective effect of
G6PDd against the disease.
The model is also spatially explicit, as intervention packages are modelled for 22
different countries in the region, modelled as interconnected patches. Figure 8.2
shows the minimum intervention package to allow elimination at national level, as
obtained by the model simulations. The simulations took into account P. vivax, P.
falciparum and mixed incidence, making clear the importance of considering
interspecific interactions when modelling towards elimination of the disease as a
whole.
A similar modelling effort is in progress towards malaria elimination in the Guyana
Shield region, which encompasses Guyana, Suriname, French Guiana, as well as
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Figure 8.2: Predicted minimum intervention package to achieve malaria elimination by 2030. A min-
imum package refers to minimum effort where, given the nested nature of the scenarios, Business As
Usual < Universal Coverage < IRS < Effective Usage < Single Dose Radical Cure < New LLINs < New
Pf Drug. All scenarios are considered ‘less effort’ without the addition of Mass Drug Administration.
(Figure and caption reproduced from Silal et al. [133])

some states in the Brazilian Amazon (Amapá, Pará and Roraima) with varied levels
of endemicity among countries.
Due to mining, logging and other activities, significant migration lays out a very
interconnected environment. In this context, the the achievement and maintenance
of malaria elimination depends on coordinated technical and financial efforts.
Hence, the underlying models need to reflect this interconectedness together with
multi-species interactions. This is an ongoing project within or modelling group.

8.6 Discussion

Multiple species are generally considered separately [119] or are intrinsically linked
with very complex models [92]. In reality species do interact but the complexity of
full interactions in models deters modelling approaches.
The 2 species example SIRS system that was initially being modelled with a set of 9
equations, in terms of explicit state variables, was substituted by an approximately
equivalent (under the TRILL regimen) system of 4 equations, written now in terms
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of ecological variables. Extending this reasoning for any system with s baseline
state variables and N species, we obtain that the initial system with sN equations
can be reduced to a set of sN −N equations, simply by defining the variables in a
different way under the TRILL regimen. Note that the new ecological variables are
potentially more relevant in the epidemiological context.
Our proposed modelling approach could be seen as an ecological neutrality

approximation, where the dynamics of the ecological variables (Xi, Yi, Zi) is made
sure to be independent of the strain dynamics within the neutral regimen,
correspondent to the parametric region allowing coexistence only for low levels of
cross-immunity and short duration of immunity. Such contribution provided the
theoretical support for multi-species modelling exercises, such as the one used by
Silal et al. [133] to model two-species malaria in Asia-Pacific.
The TRILL approximation framework can be seen as a powerful tool that makes it
feasible to deal with many previously mathematically, numerically and
computationally intractable modelling challenges. This could lead to important
implications for evidence-based horizontal public-health strategy development. For
example, we will be able to consider more Plasmodium species simultaneously when
planning strategies towards malaria eradication.
Future work includes generalising our analytical proof for systems with more than
two species and with more complex single species dynamics.



9
Final remarks

“We all know that art is not truth. Art is a lie that makes us realise truth, at

least the truth that is given us to understand. The artist must know the

manner whereby to convince others of the truthfulness of his lies.”

(Pablo Picasso, 1923)

The mathematical modelling of infectious diseases is an extremely interdisciplinary
field, where we need to amalgamate different areas of expertise, cultures and
scientific backgrounds. Maintenance of solid inter-disciplinary collaboration
networks is essential for fact-checking, critically discussing results and hence
producing any policy-relevant conclusions.
Based on biological and epidemiological data, compartmental models can be tailored
to investigate different research questions regarding a disease spread dynamics
within a population. With robust model fitting to data and well informed
parametrisation, both qualitative and quantitative predictions regarding the
behaviour of epidemics or endemics are possible.
In our COVID-19 modelling exercise, we wanted to produce a robust model for
non-pharmaceutical intervention scenarios comparison that took into account
household-level heterogeneities. To bridge the gap between compartmental and
household-level models for COVID-19, we have used concepts from network theory
inside a differential equation model, resulting in a mean-field approach to the
population behaviour under social distancing interventions. It was both a
challenging and rewarding experience to be able to contribute with new
methodologies and inform policy making through our COVID-19 models, which
were built in an extremely interdisciplinary, timely and international collaborative
environment.
To tackle the issue of qualitatively investigating the effect of different COVID-19
vaccination strategies, we have adopted a simpler model structure (less
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compartments and implemented interventions), but used delayed differential
equations to account for the time lag between doses. Hence, we were able to
evaluate optimal vaccine delivery strategies.
A different model was used for the same disease, when investigating its
multi-variant dynamics. In this case, we were interested in quantitatively estimating
the value of specific parameters, since the research question revolved around
whether a new variant of concern was more transmissible than the wild virus.
In the context of endemic malaria, we presented single-species models that not only
can be useful, but have been used to inform health policymakers. Nevertheless, as
multiple species can coexist in some parts of the world, it is valuable to evaluate
their combined burden while taken into account their interactions. Hence, a novel
multi-species modelling framework was proposed: the TRansmission of Related
Infectionswith Light Linkage (TRILL) approximation is introduced as a framework
to enable the coupling of multiple species dynamics in a simplified way.
Even though all these models were built from a SEIRS-like baseline structure, the
varied mechanisms, strains or interventions implemented unravelled different
insights, which can be further extended and applied for modelling alternative
diseases.
Going back to the "All models are wrong, but some are useful" aphorism (George
Box), the enquiry we want to keep in mind is not whether our model is the right or
true one (which will never be the case), but whether it is illuminating and useful for
a particular purpose. As Georg Rash once wrote, " no models are [true] — not even
the Newtonian laws. When you construct a model you leave out all the details
which you, with the knowledge at your disposal, consider inessential. Models
should not be true, but it is important that they are applicable, and whether they are
applicable for any given purpose must of course be investigated. This also means
that a model is never accepted finally, only on trial."
Ultimately, the work of a mathematical modeller is everlasting, as there will never
be one true model, but rather an infinitude of model variations appropriate to
answer another infinitude of research questions.
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