Short-time dynamics of percolation observables

Wanderson G. Wanzeller
Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, SP, Brazil

Tereza Mendes
Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, 13560-970 São Carlos, SP, Brazil

Gastão Krein
Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, SP, Brazil

(Received 19 May 2006; published 28 November 2006)

We consider the critical short-time evolution of magnetic and droplet-percolation order parameters for the Ising model in two and three dimensions, through Monte Carlo simulations with the (local) heat-bath method. We find qualitatively different dynamic behaviors for the two types of order parameters. More precisely, we find that the percolation order parameter does not have a power-law behavior as encountered for the magnetization, but develops a scale (related to the relaxation time to equilibrium) in the Monte Carlo time. We argue that this difference is due to the difficulty in forming large clusters at the early stages of the evolution. Our results show that, although the descriptions in terms of magnetic and percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times. In particular, this concerns the attempts to describe the dynamics of the deconfinement phase transition in QCD using cluster observables.

DOI: 10.1103/PhysRevE.74.051123

PACS number: 64.60.Ak, 05.10.Ln, 12.38.Aw, 64.60.Ht

I. INTRODUCTION

It is often useful to map a physical phase transition into the geometric problem of percolation, e.g., in order to gain a better understanding of how the transition is induced in the system (see, e.g., Ref. [1]). This mapping is obtained through a suitable definition of cluster in terms of the system’s variables and parameters. In the case of the Ising model, such physical (droplet) clusters were introduced by Coniglio and Klein (based on the prescription by Kasteleyn and Fortuin) [2] and the mapping is well understood [3]. This also holds for the so-called n-vector models [4]. The correct cluster definition is of special interest in the description of more complex phase transitions, such as the quark-deconfinement transition in finite-temperature QCD, for which the physical order parameter is not yet established. In this case there is still no satisfactory definition for a “droplet” cluster, even in the simpler pure-gauge case [5].

When equilibrium properties are investigated, the descriptions of the spin-model phase transition in terms of the magnetic order parameter or the percolation order parameter are indeed equivalent and one finds the same critical exponents (see, for example, Ref. [6] and references therein). The same may or may not be true for the dynamical evolution of the different types of order parameters, although in principle one might expect to find equivalence for dynamic quantities as well, in particular for the behavior at short times. We recall that the short-time behavior of the magnetic order parameter M is described by a scale-free expression, in terms of a power law (see, for instance Refs. [7–9]).

The study of the dynamic critical behavior of a percolation order parameter with respect to the (Glauber) Monte Carlo evolution might be of relevance for understanding non-equilibrium effects in hot QCD, such as the effects due to the heating and cooling of matter produced in heavy-ion collisions. Indeed, the possible connection between the deconfinement transition in QCD and the percolation phenomenon [10] has received renewed attention in recent years [5] and the dynamics of cluster observables has been investigated using hysteresis methods [11]. Note that the QCD phase transition is predicted to fall into the Ising universality class in the pure two-color SU(2) case and that the chiral phase transition in the two-flavor full-QCD case is expected to be in the universality class of the (continuous-spin) four-vector model [12–14]. This motivates the connection between the percolation transitions for spin models and the (dynamic) behavior at the QCD phase transition. We thus consider here the short-time dynamics of the two- and three-dimensional Ising model and focus on the dynamic critical behavior of the percolation order parameter. (Preliminary results of our study were presented in [15,16].) Note that the dynamic behavior of cluster observables has been considered for the droplet clusters in Ising and Potts models in various studies (see, e.g., [17,18]), but mostly for the so-called cluster numbers n_s, which denote the average number of clusters (per lattice site) containing s sites each—and not for the percolation order parameter.

Here we investigate the dynamic critical behavior of the (zero-field) Ising model

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j,$$

where J is positive and each $S_i = \pm 1$, for short Monte Carlo times t, using the (local) heat-bath algorithm. We measure the magnetization $M = \langle 1/V \sum_i S_i \rangle$ and we consider two different definitions for the percolation order parameter. Indeed, given a definition for a cluster on the lattice, one may consider as the order parameter in percolation theory the strength of the percolating cluster, defined for each configu-
ration by the relative volume of the infinite cluster. (In particular, in the droplet picture for the Ising model, this would give zero for temperatures above the critical one.) On a finite lattice, one might consider the volume of the infinite cluster to be the one of the spanning cluster, or zero when there is no percolating cluster (i.e., above the critical temperature). Note that a spanning cluster is a set of spins connected from the first to the last row of the lattice in at least one of its space directions. Alternatively, one can also consider the relative volume of the largest cluster (see, e.g., chapter 3 in [3]). We denote these two definitions for the percolation order parameter respectively by Ω (in the case of the spanning cluster) and Ω' (in the case of the largest cluster, which is not necessarily a percolating one).

In this work we compare the behaviors of the two types of quantities just described (i.e., percolation or magnetic order parameters) as functions of t. As shown below, we find that whereas the magnetic order parameter displays a power-law increase with t, the data for the percolation order parameters Ω and Ω' are well fitted, respectively, by a diffusion and by a behavior similar to the one of nucleation processes in first-order transitions. In both cases the time scales—respectively called τ and τ'—are related to the relaxation time to equilibrium. Indeed, we show that τ and τ' diverge as L^z when the lattice side L tends to infinity, where $z=2$ is the dynamic critical exponent of the heat-bath algorithm [19].

II. SHORT-TIME (MONTE CARLO) DYNAMICS

Using renormalization-group theory, it can be shown [9,20] that the early time evolution of an order parameter (e.g., the magnetization M) already displays universal critical behavior, given by

$$M(t, e, m_0) = b^{-\beta \nu} \mathcal{M}(tb^{-z}, e b^{1/\nu}, m_0 b^\theta),$$

(2)

where m_0 is the initial magnetization, $e = (T - T_c)/T_c$, \mathcal{M} is a universal function, and b is a scale factor, which can be taken equal to $t^{1/z}$. We thus expect for $T = T_c$ and small m_0 a power-law behavior at early times

$$M(t) \sim m_0 t^\theta,$$

(3)

with $\theta = (\eta - \beta / \nu) / z$. In principle, we would assume that the two percolation order parameters Ω or Ω' defined above should have a similar behavior.

The heat-bath dynamics consist in choosing the two possible directions of each Ising spin according to the exact conditional probability given by its nearest neighbors. Each spin S_i is chosen “up” or “down,” respectively, with probability p_i or $1 - p_i$, where

$$p_i = \frac{1}{1 + \exp(-2\beta \sum_j S_j)}.$$

(4)

$\beta = 1/k_B T$, and the sum is over nearest neighbors of S_i. After a certain number of iterations the spin configuration obeys the Boltzmann distribution. In the heat-bath method, since the updates are local, this transient time becomes considerably large at criticality.

\[\text{FIG. 1. Plot of the early time evolution of the magnetic (} M \text{) and percolation (} \Omega, \Omega' \text{) order parameters for the two-dimensional case. Data are shown for } m_0 = 0.02 \text{ and } L = 200. \text{ Note the logarithmic scale on both axes.} \]

\[\text{FIG. 2. Plot of the early time evolution of the magnetic (} M \text{) and percolation (} \Omega, \Omega' \text{) order parameters for the three-dimensional case. Data are shown for } m_0 = 0.02 \text{ and } L = 64. \text{ Note the logarithmic scale on both axes.} \]
ever, as can be seen in Figs. 1 and 2, the percolation order being consistent with exponential behaviors in terms of $50 000$ and $40 000$ seeds, for several initial magnetizations performing Monte Carlo simulations, respectively, withtobtained from an average over all the generated sequences. We let the system evolve in time and look for power-law behavior of the order parameters$M, \Omega,$ andΩ' as functions of the (Monte Carlo) time. Each temporal sequence is generated from a different random seed, i.e., each sequence has a different initial spin configuration. The time history is then obtained from an average over all the generated sequences. We have studied the two- and three-dimensional cases, performing Monte Carlo simulations, respectively, with$50 000$and$40 000$seeds, for several initial magnetizationsm_0and several lattice volumes, using the heat-bath algorithm. We consider periodic boundary conditions. Note that in order to compare the percolation order parametersΩandΩ'toMwe consider the volumes of clusters of “up” spins with positive sign and volumes of clusters of “down” spins with negative sign when taking the average over the seeds. We obtain that a power-law fit works very well forM, yielding the literature value$[23]$for the exponentθ. However, as can be seen in Figs. 1 and 2, the percolation order parametersΩandΩ'do not show a power-law behavior, being consistent with exponential behaviors in terms oft/τ, thus havingτas a time scale. As verified below, the exponential behaviors are different forΩandΩ', butτis in both cases directly related to the relaxation time to equilibrium. We thus find the surprising result that although the equilibrium behaviors of$M, \Omega,$ andΩ'are equivalent, the different types of order parameters show qualitatively different dynamic critical behavior. More precisely, the behavior ofΩis given in the two- and three-dimensional cases by

$$\Omega(t) = A \exp(-t/\tau),$$

as can be seen from Table I. On the other hand, the behavior ofΩ'is given by

$$\Omega'(t) = B[1 - \exp(-(t/\tau')^\eta)],$$

as shown in Table II.

Fits of the data to the above forms are shown (for the largest lattices considered) in Figs. 3 and 4, respectively, for the two- and three-dimensional cases. Note that the values ofχ^2per degree of freedom (DOF) may be significantly smaller than one, since we perform uncorrelated fits. We see that the departure of the percolation order parameters from the power-law behavior of the magnetization remains even long after the so-called microscopic time$[9]$. In other words, neitherΩnorΩ'can be fitted to a power law at short times. In fact, the forms proposed forΩandΩ'in Eqs. (6) and (7) are

TABLE I. Fits of $\Omega(t)$ to the form $A \exp(-t/\tau)$. Data for the case $m_0=0.02$. The fit intervals are chosen as shown in the second column, whereas the errors in the fit parameters are adjusted to account for the fluctuations in these parameters for slightly different fit intervals.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Δt</th>
<th>A</th>
<th>τ</th>
<th>χ^2/DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100^2</td>
<td>18–83</td>
<td>0.061(1)</td>
<td>85.5(9)</td>
<td>0.97</td>
</tr>
<tr>
<td>125^2</td>
<td>28–110</td>
<td>0.062(1)</td>
<td>134(1)</td>
<td>0.98</td>
</tr>
<tr>
<td>150^2</td>
<td>30–150</td>
<td>0.063(1)</td>
<td>192(2)</td>
<td>0.91</td>
</tr>
<tr>
<td>200^2</td>
<td>41–240</td>
<td>0.061(1)</td>
<td>334(3)</td>
<td>0.69</td>
</tr>
<tr>
<td>24^3</td>
<td>3–100</td>
<td>0.0366(3)</td>
<td>5.9(3)</td>
<td>0.57</td>
</tr>
<tr>
<td>32^3</td>
<td>10–120</td>
<td>0.0397(5)</td>
<td>11.7(6)</td>
<td>0.42</td>
</tr>
<tr>
<td>48^3</td>
<td>15–120</td>
<td>0.0446(4)</td>
<td>28.4(4)</td>
<td>0.58</td>
</tr>
<tr>
<td>64^3</td>
<td>20–130</td>
<td>0.0467(3)</td>
<td>51.6(3)</td>
<td>0.68</td>
</tr>
</tbody>
</table>

TABLE II. Fits of $\Omega'(t)$ to the form $B[1 - \exp(-[t/\tau']^\eta)]$. Data for the case $m_0=0.02$. The fit intervals are chosen as shown in the second column, whereas the errors in the fit parameters are adjusted to account for the fluctuations in these parameters for slightly different fit intervals.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Δt</th>
<th>B</th>
<th>τ'</th>
<th>η</th>
<th>χ^2/DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100^2</td>
<td>7–100</td>
<td>0.104(5)</td>
<td>82(1)</td>
<td>0.71(1)</td>
<td>0.35</td>
</tr>
<tr>
<td>125^2</td>
<td>8–100</td>
<td>0.126(5)</td>
<td>168(14)</td>
<td>0.70(1)</td>
<td>0.23</td>
</tr>
<tr>
<td>150^2</td>
<td>7–100</td>
<td>0.115(4)</td>
<td>179(13)</td>
<td>0.72(1)</td>
<td>0.17</td>
</tr>
<tr>
<td>200^2</td>
<td>10–100</td>
<td>0.20(1)</td>
<td>380(32)</td>
<td>0.73(1)</td>
<td>0.17</td>
</tr>
<tr>
<td>24^3</td>
<td>3–100</td>
<td>0.0349(1)</td>
<td>8.0(1)</td>
<td>0.82(1)</td>
<td>0.42</td>
</tr>
<tr>
<td>32^3</td>
<td>5–120</td>
<td>0.0372(2)</td>
<td>15.4(3)</td>
<td>0.83(2)</td>
<td>0.50</td>
</tr>
<tr>
<td>48^3</td>
<td>10–130</td>
<td>0.0394(3)</td>
<td>34.4(4)</td>
<td>0.90(1)</td>
<td>0.48</td>
</tr>
<tr>
<td>64^3</td>
<td>15–150</td>
<td>0.0402(5)</td>
<td>60.5(4)</td>
<td>0.93(1)</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Moreover, the fixed position \(x_t\) corresponds to the diffusion length for a random walk at time \(t\). We have investigated numerically the critical heat-bath dynamics for magnetic and percolation order parameters in the Ising model at short Monte Carlo times, starting from a small magnetization \(m_0\). From our results we see that although the equilibrium behaviors of the magnetization \(M\) and of the percolation order parameters \(\Omega\) and \(\Omega'\) are equivalent, the two types of order parameters show qualitatively different dynamic critical behavior at short times. Indeed, whereas the magnetic order parameter \(M\) shows a power-law behavior with the exponent \(\theta\), one finds that \(\Omega\) and \(\Omega'\) have a time scale, given respectively by \(\tau\) in Eq. (6) and \(\tau'\) in Eq. (7). This time scale seems to be related to the relaxation time of the algorithm used for thermalization.

The short-time behaviors of \(\Omega\) and \(\Omega'\) are well described respectively by diffusion and by a behavior similar to a growth and nucleation process. This may be related to the difficulty in forming a macroscopic cluster at the early stages of the simulation.

IV. CONCLUSIONS

We have investigated numerically the critical heat-bath dynamics for magnetic and percolation order parameters in the Ising model at short Monte Carlo times, starting from a small magnetization \(m_0\). From our results we see that although the equilibrium behaviors of the magnetization \(M\) and of the percolation order parameters \(\Omega\) and \(\Omega'\) are equivalent, the two types of order parameters show qualitatively different dynamic critical behavior at short times. Indeed, whereas the magnetic order parameter \(M\) shows a power-law behavior with the exponent \(\theta\), one finds that \(\Omega\) and \(\Omega'\) have a time scale, given respectively by \(\tau\) in Eq. (6) and \(\tau'\) in Eq. (7). This time scale seems to be related to the relaxation time of the algorithm used for thermalization.

The short-time behaviors of \(\Omega\) and \(\Omega'\) are well described respectively by diffusion and by a behavior similar to a growth and nucleation process. This may be related to the difficulty in forming a macroscopic cluster at the early stages of the simulation.

ACKNOWLEDGMENTS

We thank Attilio Cucchieri for helpful discussions. Research was supported by FAPESP, CNPq, and CAPES.