Observation of Single Top-Quark Production


(D0 Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Universidade Federal do ABC, Santo André, Brazil
5Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6University of Alberta, Edmonton, Alberta, Canada; Simon Fraser University, Burnaby, British Columbia, Canada; York University, Toronto, Ontario, Canada and McGill University, Montreal, Quebec, Canada
7University of Science and Technology of China, Hefei, People’s Republic of China
8Universidad de los Andes, Bogotá, Colombia
9Center for Particle Physics, Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
10Czech Technical University in Prague, Prague, Czech Republic
11Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12Universidad San Francisco de Quito, Quito, Ecuador
13LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
14LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
15CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
16LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France
17LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
18CEA, IRFU, SPP, Saclay, France
19IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
20IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
22Physikalisches Institut, Universität Bonn, Bonn, Germany
23Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24Institut für Physik, Universität Mainz, Mainz, Germany
25Ludwig-Maximilians-Universität München, München, Germany
26Fachbereich Physik, Universität Wuppertal, Wuppertal, Germany
27Panjab University, Chandigarh, India
28Delhi University, Delhi, India
29Tata Institute of Fundamental Research, Mumbai, India
30University College Dublin, Dublin, Ireland
31Korea Detector Laboratory, Korea University, Seoul, Korea
32SungKyunKwan University, Suwon, Korea
33CINVESTAV, Mexico City, Mexico
34FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
35Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
36Joint Institute for Nuclear Research, Dubna, Russia
We report observation of the electroweak production of single top quarks in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV based on 2.3 fb$^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron Collider. Using events containing an isolated electron or muon and missing transverse energy, together with jets originating from the fragmentation of $b$ quarks, we measure a cross section of $\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 3.94 \pm 0.88$ pb. The probability to measure a cross section at this value or higher in the absence of signal is $2.5 \times 10^{-7}$, corresponding to a 5.0 standard deviation significance for the observation.

DOI: 10.1103/PhysRevLett.103.092001 PACS numbers: 14.65.Ha, 12.15.Hh, 12.15.Ji, 13.85.Qk

At hadron colliders, top quarks can be produced in pairs via the strong interaction or singly via the electroweak interaction [1]. Top quarks were first observed via pair production at the Fermilab Tevatron Collider in 1995 [2]. Since then, pair production has been used to make precise measurements of several top-quark properties, including the top-quark mass [3]. Single top-quark production, on the other hand, serves as a probe of the $Wtb$ interaction [4].
and its production cross section provides a direct measurement of the magnitude of the quark mixing matrix element $V_{tb}$ without assuming three quark generations [5]. However, measuring the yield of single top quarks is difficult because of the small production rate and large backgrounds.

In 2007, we presented the first evidence for single top-quark production and the first direct measurement of $|V_{tb}|$ [6] using 0.9 fb$^{-1}$ of Tevatron data at a center-of-mass energy of 1.96 TeV. This Letter describes the observation of a single top quark signal in 2.3 fb$^{-1}$ of data. The CDF collaboration recently also reported such evidence in 2.2 fb$^{-1}$ of data [7] and is concurrently reporting observation in 3.2 fb$^{-1}$ of data [8].

When top quarks are produced singly, they are accompanied by a bottom quark in the s-channel production mode [9] or by both a bottom quark and a light quark in t-channel production [10,11]. We search for both of these processes at once. The sum of their predicted cross sections is 3.46 ± 0.18 pb [11] for a top-quark mass $m_t = 170$ GeV, at which this analysis is performed. We refer to the s-channel process as “tb” production and the t-channel process as “tqb.”

The analysis presented in this Letter is an improved version of the one from 2007 [6], with a larger data set. The data were collected with the D0 detector [12] using a logical OR of many trigger conditions in place of only the single-lepton plus jets triggers used previously. Several offline selection criteria, including b-jet identification requirements for double-tagged events, have been loosened. These improvements have increased the signal acceptance by 18%. The backgrounds are $W$ bosons produced in association with jets, top-quark pair (tt) production with decay into the lepton + jets and dilepton final states (when a jet or a lepton is not reconstructed), and multijet production, where a jet is misreconstructed as an electron or a heavy-flavor quark decays to a muon that passes isolation criteria. Z + jets and diboson processes form minor additional background components.

We consider events with two, three, or four jets (which allows for additional jets from initial-state and final-state radiation), reconstructed using a cone algorithm in $(y, \phi)$ space, where $y$ is the rapidity and $\phi$ is the azimuthal angle, and the cone radius is 0.5 [6]. The highest-$p_T$ (leading) jet must have $p_T > 25$ GeV, and subsequent jets have $p_T > 15$ GeV; all jets have pseudorapidity $|\eta| < 3.4$. We require $20 < E_T < 200$ GeV for events with two jets and $25 < E_T < 200$ GeV for events with three or four jets. Events must contain only one isolated electron with $p_T > 15$ GeV and $|\eta| < 1.1$ ($p_T > 20$ GeV for three- or four-jet events), or one isolated muon with $p_T > 15$ GeV and $|\eta| < 2.0$. The background from multijets events is kept to $\approx 5\%$ by requiring high total transverse energy and by demanding that the $E_T$ is not along the direction of the lepton or the leading jet. To enhance the signal fraction, one or two of the jets are required to originate from long-lived $b$ hadrons using a neural network (NN) b-jet tagging algorithm [13]. After b-jet identification, we require the leading b-tagged jet to have $p_T > 20$ GeV. To further improve the sensitivity, we split the data by lepton flavor, number of jets, and b-tagged jets, and data collection period.

We model the signal using the SINGLETOP event generator [14] interfaced to PYTHIA [15]. We assume the SM prediction for the ratio of the $tb$ and $tqb$ cross sections [11]. The $t\bar{t}$, $W +$ jets, and $Z +$ jets backgrounds are simulated using the ALPGEN leading-log MC event generator [16] and PYTHIA to model hadronization. The $t\bar{t}$ background is normalized to the predicted cross section [17].

The diboson backgrounds are modeled using PYTHIA. In the simulation of the $W +$ jets backgrounds, we scale the ALPGEN cross sections for events with heavy-flavor jets by factors derived from calculations of next-to-leading-order effects [18]: $Wb\bar{b}$ and $Wc\bar{c}$ are scaled by 1.47, and $Wcj$ by 1.38.

All MC events are passed through a GEANT-based simulation of the D0 detector and are reconstructed using the same software as for the data. Small differences between data and simulation in the lepton and jet reconstruction efficiencies and resolutions are corrected in the simulation as measured from separate data samples. We also correct the $\eta$(jets), $\Delta\phi$(jet1, jet2), and $\Delta\eta$(jet1, jet2) distributions in the $W +$ jets samples to match data. The multijets background is modeled using independent data samples containing leptons that are not isolated. The multijets background, combined with the background from $W +$ jets, is normalized to the lepton + jets data with other backgrounds subtracted, using the $p_T(\ell)$, $E_T$, and the $W$ boson transverse mass distributions before b-jet identification is applied.

The b-tagging algorithm is modeled in simulated events by applying weights (“tag-rate functions”) measured from data that account for the probability for each jet to be tagged as a function of jet flavor, $p_T$, and $\eta$. After b tagging, an empirical correction of 0.95 ± 0.13 for the $Wb\bar{b}$ and $Wc\bar{c}$ fractions is derived from the b-tagged and not-b-tagged two-jet data and simulated samples.

The above selections give 4519 b-tagged lepton + jets events, which are expected to contain 223 ± 30 single top-quark events. Table I shows the event yields, separated by jet multiplicity. The percentage acceptances are $(3.7 \pm 0.5\%)$ for $tb$ and $(2.5 \pm 0.3\%)$ for $tqb$.

Systematic uncertainties arise from each correction factor or function applied to the background and signal models. Most affect only the normalization, but three corrections modify in addition the shapes of the distributions; these are the jet energy scale corrections, the tag-rate functions, and the reweighting of the distributions in $W +$ jets events. The largest uncertainties come from the jet energy scale [the normalization part is (1.1–13.1)\% for signal and (0.1–2.1)\% for background], the tag-rate func-
TABLE I. Number of expected and observed events in 2.3 fb$^{-1}$ for $e$ and $\mu$, and 1 and 2 $b$-tagged analysis channels combined. The uncertainties include both statistical and systematic components.

<table>
<thead>
<tr>
<th>Source</th>
<th>2 jets</th>
<th>3 jets</th>
<th>4 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t} + $tagb signal</td>
<td>139 ± 18</td>
<td>63 ± 10</td>
<td>21 ± 5</td>
</tr>
<tr>
<td>W + jets</td>
<td>1829 ± 161</td>
<td>637 ± 61</td>
<td>180 ± 18</td>
</tr>
<tr>
<td>Z + jets and dibosons</td>
<td>229 ± 38</td>
<td>85 ± 17</td>
<td>26 ± 7</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>222 ± 35</td>
<td>436 ± 66</td>
<td>484 ± 71</td>
</tr>
<tr>
<td>Multijets</td>
<td>196 ± 50</td>
<td>73 ± 17</td>
<td>30 ± 6</td>
</tr>
<tr>
<td>Total prediction</td>
<td>2615 ± 192</td>
<td>1294 ± 107</td>
<td>474 ± 80</td>
</tr>
<tr>
<td>Data</td>
<td>2579</td>
<td>1216</td>
<td>724</td>
</tr>
</tbody>
</table>

The cross section is determined using the same Bayesian approach as in our previous studies [6]. This involves forming a binned likelihood as a product over all bins and channels, evaluated separately for each multivariate discriminant, with no cuts applied to the outputs. The central value of the cross section is defined by the position of the peak in the posterior density, and the 68% interval about the peak is taken as the uncertainty on the measurement. Systematic uncertainties, including all correlations, are reflected in this posterior interval.

We extract inclusive single top-quark cross sections $\sigma_{\text{pp} \rightarrow tX, tqb + X}$ of $\sigma_{\text{BDT}} = 3.74^{+0.95}_{-0.79}$ pb, $\sigma_{\text{BNN}} = 4.70^{+1.18}_{-0.93}$ pb, and $\sigma_{\text{ME}} = 4.30^{+0.99}_{-1.20}$ pb. The sensitivity of the analyses to a contribution from single top-quark production is estimated by generating an ensemble of pseudo data sets that sample the background model and its uncertainties, with no signal present. We measure a cross section from each pseudo data set, and hence obtain the probability that the SM cross section is reached. This provides expected sensitivities [stated in terms of Gaussian standard deviations, (SD)] for 4.3, 4.1, and 4.1 SD for the BDT, BNN, and ME analyses, respectively. The measured significances, obtained by counting the number of pseudo data sets above the measured cross section, are 4.6, 5.2, and 4.9 SD, respectively.

The three multivariate techniques use the same data sample but are not completely correlated: the correlation of the measured cross section using pseudo data sets with background and SM signal is BDT : BNN = 74%, BDT : ME = 60%, BNN : ME = 57%. Their combination therefore leads to increased sensitivity and a more precise measurement of the cross section. We use the three discriminant outputs as inputs to a second set of Bayesian

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{(Color online). The combination discriminant outputs for (a) $W +$ jets and (b) $t\bar{t}$ cross-check samples. $H_T$ is the scalar sum of the $p_T$ of the final-state objects (lepton, $E_T$, and jets).}
\end{figure}
Bayesian posterior for $j$ pseudodataset measurements are shown in Fig. 3. Measured posterior densities and the background-only corresponding to a significance of 5.0 SD. The expected and full systematics and no signal) used to measured the significance.

In summary, we have measured the single top-quark production cross section using 2.3 fb$^{-1}$ of data at the D0 experiment. We measure a cross section for the combined $tb + tgb$ channels of $3.94 \pm 0.88$ pb. Our result provides an improved direct measurement of $V_{tb}$. The measured single top-quark signal corresponds to an excess over the predicted background with a significance of 5.0 SD—observation of single top-quark production.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACYT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

neural networks, and obtain the combined cross section and its signal significance from the new discriminant output. The resulting expected significance is 4.5 SD. Figure 2 illustrates the importance of the signal when comparing data to prediction. The measured cross section is $\sigma(p\bar{p} \to tb + X, tgb + X) = 3.94 \pm 0.88$ pb.

The measurement has a $p$ value of $2.5 \times 10^{-7}$, corresponding to a significance of 5.0 SD. The expected and measured posterior densities and the background-only pseudodataset measurements are shown in Fig. 3.

We use the cross section measurement to determine the Bayesian posterior for $|V_{tb}|^2$ in the interval $[0,1]$ and extract a limit of $|V_{tb}| > 0.78$ at 95% C.L. within the SM [6]. When the upper constraint is removed, we measure $V_{tb}f_1^2 = 1.07 \pm 0.12$, where $f_1^2$ is the strength of the left-handed $Wtb$ coupling.

FIG. 2 (color online). Distribution of the combination output for all 24 analysis channels combined, (a) full range, and (b) high signal region. The bins have been ordered by their expected signal to background ratio and the signal is normalized to the measured cross section. The hatched band indicates the total uncertainty on the background. For the ranked combination output >0.92, (c) shows the distribution of lepton charge times pseudorapidity of the leading not-$b$-tagged jet, and (d) shows the reconstructed top-quark mass.

FIG. 3 (color online). (a) Expected SM and measured Bayesian posterior probability densities for the $tb + tgb$ cross section. The shaded regions indicate 1 standard deviation above and below the peak positions. (b) Measured cross sections using the ensemble of background-only pseudo data sets (containing full systematics and no signal) used to measured the significance of the result.
[11] N. Kidonakis, Phys. Rev. D 74, 114012 (2006). Individual cross sections: $\sigma_{tb} = 1.12 \pm 0.05$ pb and $\sigma_{tq} = 2.34 \pm 0.13$ pb.
[17] N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014 (2003). We used $\sigma(p\bar{p} \rightarrow t\bar{t} + X) = 7.91^{+0.61}_{-0.60}$ pb, including an uncertainty component for the top-quark mass.