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Self-trapping of a Fermi superfluid in a double-well potential
in the Bose-Einstein-condensate—unitarity crossover
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We derive a generalized Gross-Pitaevskii density-functional equation appropriate to study the Bose-Einstein
condensate (BEC) of dimers formed of singlet spin-half Fermi pairs in the BEC-unitarity crossover while the
dimer-dimer scattering length a changes from 0 to . Using an effective one-dimensional form of this equation,
we study the phenomenon of dynamical self-trapping of a cigar-shaped Fermi superfluid in the entire BEC-
unitarity crossover in a double-well potential. A simple two-mode model is constructed to provide analytical
insights. We also discuss the consequence of our study on the self-trapping of an atomic BEC in a double-well

potential.

DOI: 10.1103/PhysRevA.80.063607

I. INTRODUCTION

After the experimental realization of Bose-Einstein con-
densate (BEC) and its controlled study under different trap-
ping conditions [1], there have been many interesting experi-
ments with a cigar-shaped BEC in a quasi-one-dimensional
(ID) trap with a tight transverse confinement [2]. Along the
axial direction several different types of traps have been em-
ployed: harmonic [1], double-well [3], periodic optical-
lattice [4], and bichromatic optical-lattice [5] traps. Many
phenomena have been predicted and observed in such
quasi-1D setting. Of these, the ones worth mentioning in-
clude the formation of bright [6], gap [7], and dark [8] soli-
tons, self-trapping [3,9] and Josephson oscillation [3,10,11].

Macroscopic dynamical self-trapping and Josephson os-
cillation were predicted theoretically [9,12-15] and observed
experimentally [3,10]. Josephson effect was observed in su-
perfluid (SF) *He [16] and *He [17]. After the experimental
observation of BEC in a optical-lattice trap [10], controlled
studies of Josephson oscillation and self-trapping in a cigar-
shaped BEC seems well under control [3]. The studies of
such phenomena in a cigar-shaped BEC usually employ a
double-well potential [3]. In the simplest case of such a sym-
metric 1D potential with the origin of the axial coordinate x
set at the trap center, under certain initial conditions, when a
BEC is released with a population imbalance between two
sides of x=0, it executes undamped Josephson oscillation on
both sides of the trap center maintaining a time-averaged
population imbalance equal to zero. Under different initial
conditions, the BEC exhibits self-trapping, occupying pref-
erably one side of the trap, thus maintaining a definite non-
zero value of time-averaged population imbalance. The un-
derstanding of the transition from Josephson oscillation to
self-trapping and vice versa has been the topic of many re-
cent investigations [3].

A SF Fermi gas in a double-well potential is perhaps even
more interesting, nevertheless much less studied [18]. [There
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have been studies of Josephson oscillation of a Fermi gas in
a optical lattice (OL) potential [19].] Such a trapped SF
Fermi gas gives us the unique opportunity to study the
Bardeen-Cooper-Schrieffer (BCS) to BEC crossover in a
two-component Fermi gas under an entirely different setup.
The BCS-BEC crossover can be realized by varying the at-
traction between the spin-half fermions forming pairs using
the Feshbach resonance technique. As the attraction is in-
creased from zero, the simple BCS SF turns into a complex
Cooper-pair-induced strongly interacting SF and at unitarity
(when the Fermi-Fermi scattering length a, tends to infinity),
it is possible for the Cooper pairs to turn spontaneously into
Fermi dimers (two-body bound state of fermionic atoms) and
the BCS SF turns into a BEC of dimers.

After the experimental realization [20] of the BCS-BEC
crossover in a trapped Fermi SF by varying the atomic inter-
action near a Feshbach resonance, there have been renewed
interests [21-23] in the study of a Fermi SF at unitarity and
beyond in the BEC region where we have the BEC of
dimers. One can thus recover the bosonic behavior in the
BEC limit of the crossover (when the dimer-dimer scattering
length a tends to zero) while expecting new and distinct
behavior in the vicinity of the unitarity regime. Moreover, on
the experimental front it is easier to realize a controlled
BEC-unitarity crossover (BEC side of the BCS-BEC cross-
over) of the Fermi SF than the BCS-unitarity crossover (BCS
side of the BCS-BEC crossover) as the superfluid transition
temperature in the BCS side of the crossover is very low and
difficult to achieve.

Here we present a unified Galilean-invariant dynamical
equation for the study of the BEC-unitarity crossover of a
cigar-shaped BEC of dimers formed of Fermi atoms. In the
BEC limit of small dimer-dimer scattering length a, the
present equation reduces to the usual Gross-Pitaevskii (GP)
equation [24] for bosons, and in the unitarity limit it yields a
density-functional (DF) equation [25] for fermions. Hence
we call this equation a DF GP equation for a Fermi SF valid
in the BEC-unitarity crossover. For the study of a cigar-
shaped Fermi SF along the BEC-unitarity crossover, we re-
duce the present DF GP equation to a quasi-1D form and use
this reduced equation to the study of the self-trapping of
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Fermi SF in a double-well potential. This analytic develop-
ment is presented in Sec. II. This reduced equation also de-
scribes an atomic BEC with repulsive atomic interaction in
the BEC-unitarity crossover with different numerical val-
ue(s) of certain parameter(s), and hence the results of the
present investigation are also applicable to the self-trapping
of a repulsive BEC in a double-well potential.

The numerical simulation with the time-dependent
quasi-1D equation for a cigar-shaped Fermi SF in a symmet-
ric double-well potential with an initial population imbalance
between two wells reveals interesting features of the Joseph-
son oscillation and self-trapping across the BEC-unitarity
crossover. In the limit of zero nonlinearity one has ac Joseph-
son oscillation. As nonlinearity is increased by increasing the
dimer-dimer scattering length or the number of particle, the
Josephson oscillation stops and self-trapping emerges for a
double-well potential with appropriate parameters. With fur-
ther increase in nonlinearity self-trapping is destroyed and
the population in the two wells executes irregular oscillation.
For very large nonlinearity, however, the regular Josephson
oscillation comes back. Nevertheless, for a small number of
particles, the critical nonlinearity required for one of these
phenomenon may not be attained and that particular phe-
nomenon may not be realized. (The nonlinearity actually
saturates for a large value of a and hence cannot be arbi-
trarily increased by increasing a as one approaches unitarity
for a small number of atoms.) These features are discussed in
detail in Sec. IV where we present the numerical results.

In Sec. III we present a simple analytic two-mode model
to understand the essential features of the numerical results
reported in Sec. IV and also point out the limitation of the
two-mode model. Finally, in Sec. V we present a brief sum-
mary and conclusion of the present investigation.

II. DF GP EQUATION FOR A FERMI SF IN THE BEC-
UNITARITY CROSSOVER

At unitarity the following DF equation for trapped SF
fermions [26,27] has produced results for energy in close
agreement with independent Monte Carlo calculations [28]

n_, 4

ZmV + U+ u(n) e Y(r,t)=0, (1)
where U is the trapping potential, m is the mass of a dimer
(twice the atomic mass), u(n)=&h*n*3/m is the bulk chemi-
cal potential of dimers with density (of dimers) n=|¥|?, and
£=2(677)%3¢. The normalization condition of the DF wave
function is [|W|?d*r=N, where N is the number of dimers. At
unitarity the only length scale is n~'/3, and from dimensional
argument the chemical potential—and all energies of the
trapped SF fermions—have the above universal form [29].

There have been many theoretical [30,31] and experimen-
tal [32] investigations which extracted the value of the con-
stant  for fermions, and the most accurate value of this
constant is given by independent Monte Carlo calculations
by two groups [30]: {=0.44, consequently, £~ 13.37 and we
shall use this value of ¢ in the present study. For a trapped
atomic BEC, the energy and chemical potential have the
same universal form: ~&4*n*3/m [33], where now mass m
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and density n refer to bosons. For fundamental bosonic at-
oms, microscopic numerical calculation based on Jastrow
variational wave function yielded for the constant £ a slightly
different value £€=22.22 [33]. With this modification in the
value of &, the present investigation could be applied to the
study of self-trapping of an atomic BEC.

At unitarity the Fermi pair can stay as a Cooper pair or a
dimer and transform into each other without transfer of en-
ergy and Eq. (1) can describe both the Cooper pair and dimer
phases. Here we interpret Eq. (1) as the equation for dimers.
At unitarity the scattering length a of two dimers goes to
infinity: @ — o°. (Actually, at unitarity, the scattering length of
two Fermi atoms ay— . Model studies have indicated that
axay [34]. Consequently, at unitarity we take a— .)

Although Eq. (1) describes both the dimer SF and the
Cooper-pair induced BCS SF at unitarity, the bulk chemical
potential w(n) appearing in this equation should be inter-
preted differently. For the BCS SF it originates from the
kinetic energy of Fermi atoms put in different quantum or-
bitals consistent with the Pauli principle discounted for by
the negative attractive energy due to atomic interaction. For
the dimer SF it originates solely from the repulsive
interaction energy among dimers. In the BCS limit as
a;—07, we have the finite nonlinear term w(n)=2Ep
=2(672)**%?n*3/m [26] in Eq. (1) originating from the ki-
netic energy of Fermi atoms with negligible contribution
from interatomic attraction. On the other hand, in the BEC
limit as a — 0" the nonlinear term for dimers reduces to zero
and at unitarity the nonlinear term in Eq. (1) originates from
the saturation of repulsive dimer-dimer interaction as a — .

For the Fermi SF of dimers (and also for an atomic BEC)
in the BEC-unitarity crossover the following two leading
terms of the bulk chemical potential of a dilute uniform gas
can be obtained [35] from the expression for energy per par-
ticle as obtained by Lee, Huang, and Yang [36]

w(n,a) = (4ah’an/m)[1 + a(n'3a)¥? + -], (2)

where a=32/(3\m) and n'"a is the dimensionless gas pa-
rameter. In this expression the scattering length a must be
positive (a>0) corresponding to a repulsive interaction.
Higher-order terms of expansion (2) has also been consid-
ered [37]; the lowest-order term was derived by Lenz [38].
Considering only the lowest-order term in expansion (2), ap-
propriate in the BEC limit as a,a;— 0", the dimers obey the
usual GP equation [24]
2 2
[— LRI LI ii}lf(r,t) 0. (3)
2m m ot

Considering the second term in expansion (2), in the BEC
limit, the following modified GP equation for dimers can be
written following the suggestion of Fabrocini and Polls [39]:

h? 4ah? d
{——V2+ U+ a|‘I’|2(1+aa3/2|\I’|)—i—:|‘I’(r,t)=O.
2m at

m
(4)

Equation (4) provides an adequate correction to the GP Egq.
(3) for small a. But as a increases and diverges at unitarity,
the nonlinear term should saturate to the finite universal non-
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linear term w(n) of Eq. (1) and not diverge like the nonlinear
terms of the GP Eq. (3) and of the Fabrocini-Polls Eq. (4).
The chemical potential and energy should not diverge at uni-
tarity as the interaction potential remains finite in this limit
although the scattering length a diverges. In the weak-
coupling GP limit, the scattering length serves as a faithful
measure of interaction. But as a increases, it ceases to be a
measure of interaction. For a general scattering length, an
exact expression of the chemical potential is not available.
However, a recent quantum Monte Carlo study maps out the
equation of state in the entire BEC-BCS crossover regime
[30].

Following a recent suggestion [40], for the full BEC-
unitarity crossover we consider the DF GP equation for the
dimer SF providing a smooth interpolation between Egs. (1)
and (4):

h2v? d
[— . +U+ ,u(n,a)—i;]‘l’(r,t):O, (5)
47h’a
wn,a) = W[
( 1+ a(l + 8)a**| V| ) ©)
1+ add®?| V| + Y1 + 8)a®? W] )’

where n=|V|? and & and 7 are yet unknown constants satis-
fying y=4ma/&. (These equations are also valid for an
atomic BEC with m and « representing atomic mass and
scattering length, respectively, and with £€=22.22 [33].) By
construction, Eq. (6) yields limit (2) for small a; it also has
the correct behavior at unitarity. Using a similar expression
for w(n,a) in the BCS-unitarity crossover [41], the constant
& was calculated [42] by requiring that the first derivative of
w(n,a) with respect to (an'’?) be continuous at unitarity. The
condition for continuity yields a small value for &(~0.04).
However, we shall take 6=0 in this study. This will make
further analytical development easier while maintaining the
first derivative of wu(n,a) with respect to (an'?®) approxi-
mately continuous at unitarity. A set of equations, similar to
Egs. (5) and (6), for fundamental bosons, and not for com-
posite dimers, produced results for energy [26] of a trapped
condensate in agreement with Monte Carlo calculations [43].
A similar equation for the BCS-unitarity crossover produced
results for energy [26,41] of a trapped BCS SF in agreement
with Monte Carlo calculations [44]. Different parametriza-
tion of the chemical potential in the BEC-BCS crossover
have been proposed in the literature [45]. We do not expect
our results in this work will be sensitive to which specific
form for w(n,a) we choose to use here. Furthermore, it has
been shown that the DF GP Eq. (5) is equivalent to the quan-
tum hydrodynamic equations for dimers [26,45]

on
—+V-(nv)=0,
at
v BVAn mo?
m—+V|-— +—+U+un,a) | =0
ot 2m \rg 2 M( )

if we identify
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W(r,1) = Vn(r,t)e ™,

v=hVs/m,

where s is a phase and v is the velocity.

For a cigar-shaped SF, where the transverse trapping is
very strong, the interesting dynamics is confined in the axial
direction and in the transverse direction the system is con-
fined in its ground state. In such a quasi-1D geometry, the
axial and transverse coordinates decouple and it is useful to
write an effective 1D equation for the dynamics of a cigar-
shaped SF and we perform the same in the following. For the
cigar-shaped double-well trap,

U(r) = V(x) + mo*(x> + N222 + 2522,

V(x) = Ahw exp(— kmwx*/h),

where A>1 and A and « are two dimensionless parameters
characterizing the strength and width of the barrier, respec-
tively, it is appropriate to take W(r,t)=y(x, 1) p(y) H(z) with
d(y)=[maoN/(hm)]"*exp[-mwh\y?/(2h)] representing the
harmonic-oscillator ground state in the transverse direction
and (x,r) representing the essential dynamics in the x di-
rection The potential V(x) together with the harmonic trap
ma*x*/2 simulate a double well in the axial x direction.
Multiplying Egs. (1) and (4) by &(y)é(z) and integrating
over y and z we get the following 1D equations [27,46]:

Fa n
{ ;a2+U(x)+§ (:) —i%}zﬂ(x,t)=0, )

1 4\ d
2 + U(x) + 2arn| 1 + aa3/2—l - l_ Yl(x,1) =0,
(®)
where 2, Ulx) —Ae 1 x2/2 represents  the

double-well potential and n= 2 and we use harmonic os-
cillator dimensionless units A=m=w=1. All lengths are now
expressed in oscillator unit \%/(mw) and time in w™! and ¢
is normalized as [~ dx|y(x,1)[>*=N.

A simple DF GP equation interpolating between Egs. (7)
and (8) is

A +U(x) + w(n,a) - li Plx,1) =0, 9)

T 200
4 \’)\ —
1+ ——raam\e’n
\”77'
u(n,a) =2akn , (10)

1+ Ba5/2n5/6

where n=|yf*> and B=8aNY®7!%/(3¢). Equation (9) reduces
in the BEC a—0* limit to Eq. (8) and in the unitarity
a— oo limit to Eq. (7). We shall use Eq. (9) for the descrip-
tion of self-trapping and Josephson oscillation in the BEC-
unitarity crossover of fermions.
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III. TWO-MODE MODEL OF THE FERMI SF
A. Two-mode model

Before we present the full numerical results, it is instruc-
tive to consider the so-called two-mode model [9] which is
widely used in the study of BEC in a double-well potential,
and more recently, has been used in the investigation of
Fermi SF across a weak link [47]. Due to its simplicity, the
two-mode model can provide many useful insights. Here we
construct the corresponding two-mode model of the Fermi
SF based on Eq. (9).

To this end, we decompose ¢(x,1) as

lx,1) = ¢ (1) 1 (%) + ¥a(1) o), (11)

where the spatial mode functions ¢, »(x) are assumed to be
real, satisfy the orthonormal condition

f ¢,(x) p(x)dx = 5,

and are localized in each of the two wells, respectively.
1 ,(t) are in general complex and satisfy the condition
|1 2(D[* =N, 5() so that

[ ()2 + [ (D2 = Ny (1) + Na(£) = N.

Inserting decomposition (11) into Eq. (9), integrating out the
spatial degrees of freedom, we obtain the following equa-
tions of motion for 4 »(1):

i¢1=E1¢1+51(|l/f1|)l//1—Kl//2, (12)

iy = Eyi + &[]t — Koy, (13)

where

1 d?

E;= J dx¢i(x)<— P U(X))¢i(x), (14)
2dx

Elwl) = f dx(x) u(n;,a) dilx), (15)

2

K=- f dwl(x)(— S U(x))¢2(x), (16)
dx

with n;=|;¢;|>. Here we have neglected integrals involving

spatial overlaps of ¢,(x) and ¢,(x).

For simplicity, we assume a symmetric double well with
U(x)=U(-x) so that ¢(x)=¢,(—x) and consequently, we
have E|=E, and & (|¢)=E(|¢) =E(|#). Let us write the
waves i , in terms of its amplitude VN, , and phase (6, ,)

N if
P12= VN, e"12
and define a pair of conjugate variables:
SE(NI—Nz)/N, 6562—01.

Here the variable S denotes the population imbalance be-
tween the two wells and 6 is the phase difference. After some
straightforward algebra, the following equations of motion
for S and 6 can be derived from Egs. (12) and (13) by equat-
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ing the real and imaginary parts of both sides:

S=-2K\1-52sin 6,

6= [S(VW,) - S(\J'E)] + ZK’LCOS 0.
V1 -2

These are the two-mode equations for the Fermi SF. Note
that the two-mode equations describing weakly interacting
bosons in double-well potential [9] are recovered if we take
u(n,a)=2a\n and, correspondingly, E(VN;)=2a\N,[|p,|*dx.

The two-mode equations can be cast into the canonical
form

g 0 ,_oH
90 T as’
with the classical Hamiltonian defined as
_ N I f 2
H= J [E(WN,) — E(NN,)1dS - 2KN1 = 8% cos 0. (17)

By studying the properties of this Hamiltonian, we can tell
whether the system should exhibit self-trapping or Josephson
oscillation.

B. Fermi SF at unitarity

As a concrete example, let us consider the Fermi SF at
unitarity where a— 0 and from Eq. (10) we find

2/3
() = (o) = 3;‘5(@) |
a

It follows that
E(N) = UN??,

with U=(3&/5)(N/m)?3[|¢,|'”3dx. The classical Hamil-
tonian takes the form

. %[(1 +8)% 4 (1-85)1- 1 -5 cos 0,

2K 5
where A=(N/2)?3U/(2K) measures the ratio of the strength
of the nonlinearity (N/2)*3U and the tunneling energy 2K.

As can be seen from Fig. 1, if we draw equienergy con-

tours of H in the phase space of (S, 6), we can see two types
of contours: those that form closed loop and those do not.
The division of these two types of contours occurs at the
critical energy (we take 2K as the units for energy)

6A
Eqi=H(S=0,0=m) =—+1.

If the system has energy E<E_;, its dynamics will follow
the closed contours, and both S and @ will oscillate in time.
In particular, the population imbalance S oscillates around 0
and the time averaged population imbalance vanishes. This
corresponds to the ac Josephson regime. On the other hand,
if the system has energy E>FE,_;, it will follow the open
contours where 6 will grow indefinitely and S will oscillate
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) '"'1-0.8
o/m ) () orm (b)

0

FIG. 1. (Color online) Equienergy phase contour plot of the
unitary Fermi SF. (a) Contours of different energies for A=8. (b)
Contours of E=10 for different values of A. Energy is in units of
2K.

around a nonzero value and will never cross the S=0 line.
This corresponds to the self-trapping regime.

Given the initial values S(0) and 6(0), the system moves
on a contour of constant energy given by

3A —

Ey= ?{[1 +S0) PP +[1-50)"7} - V1 -5(0) cos 60).
The condition for self-trapping

6A

E0>Ecri[=_+ 1
5
may be recast into the form
5  1+\1-5(0)cos 6(0)

A= A= 3[1+ SO +[1-S0)3 =2 (18)

In other words, within the two-mode model, the ratio of the
nonlinear strength and the tunneling energy, A, determines
whether the system should be self-trapped or not.

To determine the values of these quantities, we need to
choose properly the spatial mode functions ¢, ,(x). A reason-
able choice is given by [9,48]

() = (%)
d’l,z(x) = N >

V2
where the normalized wave functions ¢. (x) are the lowest-
energy symmetric and antisymmetric stationary solutions to
the time-independent DF equation:

1 & 3&( N\

2/3
——+UX)+ _(_> |¢:|4/3]¢:’
5\

e =|— 2 di

with chemical potential ..

In Figs. 2(a)-2(c) we illustrate the nonlinear strength
(N/2)*3U, tunneling energy 2K and their ratio A as func-
tions of N, respectively. As N\ increases, the strength of the
(repulsive) nonlinearity increases. As a result, the ¢; and ¢,
become widened and enjoy more overlap. This leads to an
increased tunneling energy. However, the ratio of the nonlin-
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FIG. 2. (a) Strength of nonlinearity (N/2)*2U, (b) tunneling

energy 2K, and (c) their ratio A (c) as functions of N\ at unitarity.

(d) The critical A, as function of S(0) for #(0)=0 [see Eq. (18)].

ear strength and the tunneling energy A does not have a
monotonic behavior as N\ is increased. As shown in Fig.
2(c), A initially increases for small N\, reaches a peak and
then decreases. In a recent study, Salasnich et al. [47] used
the local-density approximation on top of quantum Monte
Carlo data of Ref. [30] to explore the phase diagrams and
find regimes of Josephson tunneling and of dynamical self-
trapping of a three-dimensional (3D) Fermi superfluid. In the
two-mode approach reported in Ref. [47], a constant tunnel-
ing energy is arbitrarily chosen for the whole crossover re-
gime. This is an inappropriate oversimplification. In Fig.
2(d), we show the critical value A, as a function of the initial
population imbalance S(0). One can see that as S(0) in-
creases, A. decreases rapidly.

The fact that A is bounded from above even though the
interaction strength can increase without bound has impor-
tant consequences. For example, for certain initial condi-
tions, self-trapping may only occur within an intermediate
range of nonlinearity. Both too small and too large a nonlin-
earity will destroy self-trapping. This statement is also true
away from the unitarity even in the BEC limit. Furthermore,
for a sufficiently small S(0), A may never exceed the corre-
sponding A.. When this is the case, the system will always
stay in the Josephson oscillation regime. For example, ac-
cording to Fig. 2(d), A,~300 for S(0)=0.1. Figure 2(c)
shows that the system can therefore never reach the self-
trapping regime if S(0) equals 0.1 or smaller. This is consis-
tent with our numerical results.

We want to remark that even though results obtained from
the simple two-mode model may provide significant qualita-
tive insights, they are not expected to be accurate quantita-
tively. Particularly for large nonlinearity, predictions from
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the two-mode model can deviate greatly from the numerical
results [48,49]. The error mainly occurs in estimating the
tunneling energy K. The two-mode Egs. (12) and (13) are
obtained by neglecting many terms involving overlap inte-
grals of the mode functions ¢; and ¢, and hence in general
greatly underestimates the tunneling energy, particularly for
large nonlinearity when overlap between ¢, and ¢, can be
significant. Furthermore, the two-mode approximation itself
becomes questionable for large nonlinearity. When there is
exchange of atoms between the two wells, the mode func-
tions will change accordingly due to the modification of the
nonlinear mean field. Indeed, in our numerical calculations
to be presented below, we observe that the spatial wave func-
tion of the system changes in time. In certain regimes, this
change is significantly enough to invalidate the two-mode
model.

IV. NUMERICAL RESULTS

In this section we present an account of the numerical
study of self-trapping and Josephson oscillation in a double-
well potential by solving the full quasi-1D DF GP Eq. (9)
valid for a cigar-shaped SF. The double-well potential is
taken as

U(x) = x2/2 + Ae~". (19)

We shall take the parameters A and « of this double well
similar to the ones employed in Ref. [49] in a study of self-
trapping with dipolar bosonic atoms.

To create an initial state with desired population imbal-
ance for a given set of parameters N\ and a, we search for
the ground state of an asymmetric well comprised of an off-
centered harmonic potential and the Gaussian barrier poten-
tial

U'(x) = (x = x0)2/2 + Ae™ . (20)

The ground state of this asymmetric well is obtained by solv-
ing the time-independent version of the DF GP Eq. (9) using
the imaginary time evolution method. The parameter x, in
Eq. (20) is chosen so that the population imbalance

S(t) =[N,(t) = No(t) /N, (21)

has a fixed predetermined initial value S(0). Here N,(r) and
N,(t) are the number of dimers in the first and the second
well of the double-well potential. Experimentally, this is in-
deed the method used to generate the initial population im-
balance [3]. We have also considered other forms of initial
wave functions and found that the final results are qualita-
tively insensitive to the specific forms provided the initial
population imbalance S(0) is kept fixed at a small value.
However, at a quantitative level the results could be sensitive
to the form of the initial wave function. The sensitivity of the
result to the initial wave form increases as S(0) is increased.
Moreover, the results are quite sensitive to the initial S(0)
employed.

Once the initial wave function is chosen, Eq. (9) is solved
numerically after discretization with the Crank-Nicolson
scheme [50,51] employing space and time steps 0.025 and
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0.0002, respectively, using real-time propagation with the
FORTRAN programs provided in Ref. [50]. The results are
also independently confirmed using a MATLAB code based on
the split fast Fourier transform method.

Now we present results of dynamical evolution of a Fermi
SF, where we take £=13.37 in Egs. (9) and (10). The numeri-
cal study of self-trapping and Josephson oscillation with the
Fermi SF of dimers along the BEC-unitarity crossover re-
veals interesting features. To start the investigation of self-
trapping we fix the trap parameters A and « in Egs. (19) and
(20) at nontrivial values (a not too small value of A and a not
too large ), which permit smooth and free Josephson oscil-
lation in the BEC limit (a=0). Note that a very small value
of A and a very large value of « tend to reduce the double
well [Eq. (19)] to a single well where there cannot be any
self-trapping and Josephson oscillation should appear for all
values of a and N. In order to have self-trapping, A cannot be
too small and « cannot be too large. This is illustrated in Fig.
3(a) for A=8, k=10, N\=100, S(0)=0.2 and for a=0.1,
0.01, and 0.001 where we plot S(¢) vs t. There is no self-
trapping for a very small value of S(0)(=0.1). The quantity
S(¢) is experimentally measurable and S(7) vs ¢ dynamics
provides information about self-trapping and Josephson os-
cillation. From Fig. 3(a) we find that there is Josephson os-
cillation for all values of a and there is no sign of self-
trapping. [A nonzero time average (S(r)) ensures self-
trapping.] But a completely new scenario emerges as A is
increased to 16 from 8, as can be seen from Fig. 3(b) where
we show the S(7) vs ¢ dynamics for @=0.01, 0.1, 0.2, and 0.5.
The plots for a=0.01 and 0.5 of Fig. 3(b) are quite similar to
the plots for a=0.001 and 0.1 of Fig. 3(a) illustrating regular
(periodic) Josephson oscillation with no sign of self-
trapping. But, for intermediate values 0.1 and 0.2 of a, self-
trapping and irregular (nonperiodic) oscillation can be seen
in Fig. 3(b). In Figs. 3(c) and 3(d) we illustrate two more
cases of S(f) vs r dynamics with a different value of
S(0)(=0.3) and different NN and trap parameters, respec-
tively, where one can clearly find self-trapping.

In the following, we discuss in detail the results for three
initial population imbalance S(0)=0.1, 0.2, and 0.3, which
are representative for a general case.

Population imbalance S(0)=0.1: for this relatively small
initial population imbalance, we found that for any values of
NN\ and a, the system is always in the Josephson regime: the
population imbalance S(¢) oscillates sinusoidally between
S(0)==0.1 and S(0)=0.1. The system never exhibits self-
trapping. The frequency of oscillation increases as the
strength of nonlinearity increases. Note that the strength of
nonlinearity is increased by increasing either N\ or a. How-
ever, the nonlinear interaction among dimers saturates as
scattering length a— o0 at unitarity, it increases indefinitely
with NA. This result is consistent with our previous discus-
sion of the two-mode model: for a sufficiently small S(0), the
required critical value of A, for self-trapping cannot be
achieved by increasing the strength of the nonlinearity and
the system stays in the Josephson regime for all values of N\
and a.

Population imbalance S(0)=0.2: the results for the S(7) vs
t dynamics for this initial population imbalance is illustrated
in Figs. 3(a) and 3(b) for fixed N\=100 and various values
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FIG. 3. (Color online) Population imbalance S(¢) vs ¢ dynamics
with (a) NA=100, S(0)=0.2, k=10, A=8, (b) NA=100, S(0)
=02, k=10, A=16, (c) NA=1000, S(0)=0.3, k=10, A=16,
and (d) NA=100, S(0)=0.3, k=8, A=12 for dimer-dimer scat-
tering length a varying over the BEC-unitarity crossover.
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Josephson —> self-trapping ——> irregular oscillation —>Josephson

increasing nonlinear interaction strength

FIG. 4. Different dynamical regimes of Fermi superfluid in the
BEC-unitary crossover.

of a and two different traps as described earlier. In Fig. 3(b),
for a small scattering length of a=0.01 (solid line), Joseph-
son oscillation is observed. When a is increased to 0.1
(dashed line), self-trapping is clearly seen—S(z) does not de-
viate from §(0) too much and never crosses zero. With fur-
ther increase in a to a slightly larger value of 0.2 (dotted
line), self-trapping is destroyed and S(¢) exhibits irregular
oscillations around zero. Accompanied with this irregular
population oscillation, the density profile |¢(x,t)|*> also de-
velops complex and irregular structures. Remarkably, upon
further increase in a, as the dot-dashed curve for a=0.5
shows, regular oscillation returns and the population dynam-
ics once again exhibits sinusoidal Josephson oscillations.

Population imbalance S(0)=0.3: finally, let us discuss this
relatively large initial population imbalance. If we use
NX=100 as we did above for S(0)=0.2, when a is increased
from zero to %, the system sequentially makes transitions
from Josephson, to self-trapping and finally to irregular os-
cillation regimes. The Josephson oscillation is never recov-
ered for NA\=100 for very large values of scattering length a
(results not shown here). In Fig. 3(c) we plot the results for
S(¢) vs t dynamics for N\=1000. In this case, in addition to
the three regimes just mentioned, for a sufficiently large
a(=10), Josephson oscillation is restored, just as in the case
of $(0)=0.2 and NA=100 discussed above. In Fig. 3(d) we
show another example of S(r) vs ¢ dynamics for a different
trap, which is quite similar to that in Fig. 3(c). We also did
some calculation with larger S(0) where a similar panorama
emerges and we do not report the details here.

To summarize the general characteristics of the population
dynamics, we find that for any given initial population im-
balance and for either sufficiently small or sufficiently large
nonlinear interaction strength, the system is in the Josephson
oscillation regime. For intermediate interaction strength, the
system can make transition to self-trappping and irregular
oscillation regimes as schematically shown in Fig. 4. The
critical interaction strength at which the system makes the
transition to self-trapping is sensitive to the initial population
imbalance and increases sharply as S(0) increases. (It is also
sensitive to the parameters for the Gaussian barrier that cre-
ates the double-well potential.) It is possible that for a suffi-
ciently small S(0), the system always stays in the Josephson
regime. The restoration of the Josephson oscillation at large
interaction strength may seem surprising at first sight. How-
ever, one can understand it in the following intuitive way.
For a sufficiently large interaction strength, the chemical po-
tential is large and the effect of the Gaussian barrier becomes
relatively unimportant. The wave functions on opposite sides
of the barrier have sufficient overlap and hence the cloud
tunnel back and forth without difficulty.

The appearance of self-trapping is best illustrated through
a study of the time-averaged population imbalance (S(r)) vs
nonlinearity aN\ and we do that next. In Fig. 5(a) we plot
(8(r)) vs aN\ by varying the scattering length from 0 to o
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0.3 —

<S(1)>

<S(1)>

FIG. 5. (Color online) Time-averaged population imbalance
(S(2)) vs nonlinearity aN\ for different N\ for trap parameters
A=16, k=10 and (a) S(0)=0.3 and (b) S(0)=0.6. Different curves
are generated by varying the scattering length a across the BEC-
unitarity crossover for S(0)=0.3 and 0.6, respectively, based on
initial wave form (20).

for a fixed N\ with trap parameters A=16 and «=10. The
initial population imbalance is chosen as S(0)=0.3. In Fig.
5(a), with the increase in aN\, self-trapping appears for aNA
slightly greater than unity. With further increase in aN\, self-
trapping increases with an increase in (S(7)). For NA=10,
self-trapping never disappears and continues even at unitar-
ity. However, beyond aN\=35 self-trapping decreases with
the increase in aN\ for NA=20, 100 and 1000. For larger
NN\, (S(1)) eventually goes to zero as the nonlinear repulsion
becomes too large to maintain all dimers in a single trap,
except for NA\=10. In Fig. 5(b) we exhibit a similar plot for
$(0)=0.6 with trap parameters A=16 and x=10.

Finally, to check the validity of the quasi-1D approxima-
tion, we performed full 3D numerical simulations based on
Egs. (5) and (6). The quasi-1D approximation should be
valid when w<<Nhw. We have chosen different sets of pa-
rameters, some of which satisfy and the rest violate the
quasi-1D condition. For parameters such that the quasi-1D
condition is satisfied, we indeed find that our 3D numerical
results are nearly identical to the 1D results presented here.
For parameters that the quasi-1D condition is violated, the
3D results show deviations from the 1D ones. However, the
qualitative features (i.e., the dependence of different dynami-
cal regimes on the initial population imbalance and the
strength of nonlinearity) presented in Figs. 3 and 5 remain
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valid. Specifically, we verified that the results reported in
Figs. 3 remain essentially valid in the 3D model. This assures
us of the reliability of the present study in 1D.

V. SUMMARY AND CONCLUSION

To summarize, we have studied the dynamical properties
of a Fermi SF confined in a double-well potential in the
BEC-unitary crossover regime. To this purpose, we have de-
veloped a nonlinear Schrodinger equation valid in the whole
regime based on a density-functional approach and on the
equations of state from quantum Monte Carlo calculations.
This equation is equivalent to the hydrodynamic equations
with the quantum pressure term included. In the BEC side of
the crossover, it describes accurately the equilibrium and
low-energy dynamical properties of the Fermi SF. In particu-
lar, Josephson effect has been investigated using this method
[18] and the results have been shown to agree with those
obtained from the microscopic approach by solving the
Bogoliubov—de Gennes equations [52]. Compared with the
latter, the great advantage of the current approach is its math-
ematical simplicity.

We have identified three dynamical regimes of the sys-
tem: the Josephson regime, the self-trapping regime and the
irregular oscillation regime. For a given initial population
imbalance, these regimes are accessed according to the
strength of nonlinearity as schematically shown in Fig. 4.
The Josephson regime is always reached at either sufficiently
small or sufficiently large interaction strength. For a small
initial population imbalance, Josephson regime may be the
only regime that the system can have access to. Note that the
strength of nonlinearity can be increased by either increasing
the number of dimers N or the scattering length a. However,
it saturates as a tends to infinity while no saturation occurs
for large N.

The quasi-1D model [Egs. (9) and (10)] presented and
used in the study of dynamical evolution of a Fermi SF in the
BEC-unitarity crossover in this paper is also valid for an
atomic BEC with a slightly modified value for the parameter
&. Hence the present results for self-trapping of a Fermi SF in
a double-well potential are also applicable for a repulsive
atomic BEC when the atomic scattering length varies from 0
to . However, in this case there could be practical difficulty
with three-body loss in the experimental realization of the
system for large scattering length.

We have also developed a simple analytical two-mode
model, analogous to the much studied system of a BEC in a
double-well potential. We show that the properties of the
system can be described by a classical Hamiltonian with
population imbalance and relative phase as a pair of conju-
gate variables. The great advantage of the two-mode model
is its simplicity which makes analytical studies possible. The
key parameters that characterize the two-mode model are the
strength of nonlinearity and the tunneling energy. We calcu-
lated these parameters using the spatial mode function ob-
tained by numerically solving the full time-independent non-
linear Schrédinger equation. From this calculation we show
that the ratio of the interaction strength and the tunneling rate
cannot increase indefinitely when the interaction strength in-
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creases. This explains the numerical observation that for suf-
ficiently small initial population imbalance, the system may
always stay in the Josephson regime. However, care must be
taken when making quantitative comparisons with numerical
results. In particular, for strong nonlinearity, the two-mode
model can be even qualitative incorrect. For example, this
model predicts the existence of the Josephson and the self-
trapping regime but not the irregular oscillation regime
found in the numerical calculation, which occurs at relatively
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large nonlinearity and lies in the regime where the two-mode
model is no longer valid.
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