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The modulational instability of gravity wave trains on the surface of water acted
upon by wind and under influence of viscosity is considered. The wind regime is that
of validity of Miles’ theory and the viscosity is small. By using a perturbed nonlinear
Schrödinger equation describing the evolution of a narrow-banded wavepacket under
the action of wind and dissipation, the modulational instability of the wave group is
shown to depend on both the frequency (or wavenumber) of the carrier wave and the
strength of the friction velocity (or the wind speed). For fixed values of the water-
surface roughness, the marginal curves separating stable states from unstable states
are given. It is found in the low-frequency regime that stronger wind velocities are
needed to sustain the modulational instability than for high-frequency water waves.
In other words, the critical frequency decreases as the carrier wave age increases.
Furthermore, it is shown for a given carrier frequency that a larger friction velocity
is needed to sustain modulational instability when the roughness length is increased.
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1. Introduction
Since Stokes (1847), it is well known that the potential water wave problem

admits as solutions uniform wave trains of two-dimensional progressive waves. The
stability of the Stokes’ wave solution started with the work by Lighthill (1965) who
provided a geometric condition for wave instability. Later on, Benjamin & Feir (1967)
showed analytically that Stokes waves of moderate amplitude are unstable to small
long-wave perturbations travelling in the same direction. This instability is called
the Benjamin–Feir instability (or modulational instability). Whitham (1974) derived
the same result independently by using an averaged Lagrangian approach, which
is explained in his book. At the same time, Zakharov (1968), using a Hamiltonian
formulation of the water wave problem obtained the same instability result and
derived the nonlinear Schrödinger equation (NLS equation). The evolution of a
two-dimensional nonlinear wave train on deep water, in the absence of dissipative
effects, exhibits the Fermi–Pasta–Ulam recurrence phenomenon. This phenomenon
is characterized by a series of modulation–demodulation cycles in which initially
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nearly uniform wave trains become modulated and then demodulated until they are
again nearly uniform. Modulation is caused by the growth of the two dominant
sidebands of the Benjamin–Feir instability at the expense of the carrier. During
the demodulation, the energy returns to the components of the original wave train.
Recently, within the framework of the NLS equation, Segur et al. (2005a) revisited
the Benjamin–Feir instability when dissipation is taken into account. The latter
authors showed that for waves with narrow bandwidth and moderate amplitude,
any amount of dissipation stabilizes the modulational instability. In the wavenumber
space, the region of instability shrinks as time increases. This means that any initially
unstable mode of perturbation does not grow for ever. Damping can stop the growth
of the sidebands before nonlinear interactions become important. Hence, when the
perturbations are small initially, they cannot grow large enough for nonlinear resonant
interaction between the carrier and the sidebands to become important. The amplitude
of the sidebands can grow for a while and then oscillate in time. Segur et al. (2005a)
have confirmed their theoretical predictions by laboratory experiments for waves of
small to moderate amplitude. Later, Wu, Liu & Yue (2006) developed fully nonlinear
numerical simulations which agreed with the theory and experiments of Segur et al.
(2005a).

Within the framework of random waves, there exists a stochastic counterpart of
the modulational instability discussed above. The stability of nearly Gaussian and
narrow-banded water wave trains was investigated by Alber & Saffman (1978), Alber
(1978) and Crawford, Saffman & Yuen (1980). They found that the modulational
instability on deep water occurs, provided that the relative spectral width is less than
twice the average steepness. Hence, the effect of increasing randomness is to restrict
the instability criterion, to delay the onset of modulational instability, and to reduce
the amplification rate of the modulation.

From the previous studies we could conclude that dissipation and randomness
may prevent the development of the Benjamin–Feir instability (or modulational
instability). These two effects question the occurrence of modulational instability of
water wave trains. Segur, Henderson & Hammack (2005b) speculated about the
effect of dissipation on the early development of rogue waves and asked the question:
can the Benjamin–Feir instability spawn a rogue wave? Since damping affects the
modulational instability of waves in deep water, they assumed that it might affect the
early development of rogue waves. Nevertheless, the latter study did not include wind
effect. What is the role of wind upon modulational instability when dissipative effects
are considered? Waseda & Tulin (1999) showed experimentally that the wind does not
suppress the Benjamin–Feir instability even if the naturally (unseeded experiments)
developed initial sideband energy is reduced. This finding contrasts with that of
Bliven, Huang & Long (1986) who conducted unseeded experiments and found that
sideband growth was reduced in the presence of wind.

The present paper is aimed at reporting on the behaviour of Benjamin–Feir
instability when dissipation and wind input are both taken into account. Following
Miles (1957), but within the framework of modulated wave trains, we assume the
atmospheric pressure at the interface due to wind and the water wave slope to be
in phase. The effect is to produce an exponential growth of the wave amplitude. We
remind the reader that Miles (1957) studied a linear and uniform monochromatic
wave train, whereas we are considering a weakly nonlinear modulated wave train.

In the presence of dissipation it is found that carrier waves of given frequency (or
wavenumber) may suffer modulational instability when the friction velocity is larger
than a threshold value. Conversely, for a given friction velocity it is found that only
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carrier waves whose frequency (or wavenumber) is less than a threshold value are
unstable. Otherwise dissipation prevents instability developing over time.

In § 2, the governing equations and the wave amplification theory of Miles (1957)
are briefly presented. In § 3, the NLS equation is introduced when dissipation and
wind forcing are considered and the competition between wave amplification by the
wind and stabilization due to dissipation is considered. The linear stability analysis
of the Stokes-like wave is developed in § 4. The final discussion is found in § 5.

2. Surface waves under the action of wind and dissipation
We will consider waves on the surface of a fluid whose viscosity is small as given

by Lamb (1993, article no. 349). If g is the acceleration due to gravity, k is the
wavenumber of the surface perturbation and ν is the viscosity, we define a non-

dimensional number L(k) = ν/
√

g/k3, and we say that a fluid is of small viscosity if

L(k) � 1. (2.1)

For the free surface problem in water, viscous effects are generally weak producing
a thin rotational layer adjacent to the potential flow. The thickness of this rotational
boundary layer is O(

√
ν/kc), where c is the phase velocity. In this context, it was

shown by Dias, Dyachenko & Zakharov (2008) that the equations governing the
fluid’s motion can be formulated with the help of potential theory. The correction
due to viscosity they derived within the framework of the linearized equations
was heuristically generalized to the nonlinear equations. Using a similar approach,
Lundgren (1989) derived linear versions of the modified boundary equations (2.4)
and (2.5). Note that another variant of the introduction of viscous effects within the
framework of potential theory can be found in the paper by Skandrani, Kharif &
Poitevin (1996).

The fluid layer is limited above by the water surface described by z = η(x, t). We
will consider the case of infinite depth. Under these hypotheses, the Laplace equation,
the bottom boundary condition and the kinematic condition are

φxx + φzz = 0 for −∞ � z � η(x, t), (2.2)

∇φ → 0 for z → −∞, (2.3)

ηt + φxηx − φz − 2νηxx = 0 for z = η(x, t). (2.4)

The dynamic boundary condition is modified by wind effect too, and has the form

φt +
1

2
[(φx)

2 + (φz)
2] + gη = − 1

ρ
Pa − 2νφzz for z = η(x, t), (2.5)

where ρ is the fluid’s density and Pa is the excess pressure at the free surface. As
proposed by Dias et al. (2008), (2.4) and (2.5) are simply heuristic nonlinear
generalizations of their linear versions when dissipation is introduced.

In this paper we consider water wave trains in the open ocean far from any solid
boundaries. Note that in the case of surface waves generated in wave tanks damping
due to viscous dissipation at the lateral solid boundaries must be introduced (see
Miles 1967).

The dependence of the fluctuating pressure, Pa , on η is what defines the wind–wave
interactions. Within the framework of linearized equations, Miles (1957) assumed that
the surface elevation and aerodynamic pressure are η(x, t) = aeik(x−ct) and Pa =(α +
iβ)ρaU

2
1 kη, respectively, where a denotes the amplitude, k is the wavenumber, c is
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the phase velocity, α and β are two coefficients depending on both k and c, ρa is
the density of air and U1 is a characteristic velocity related to the friction velocity,
u∗, of wind over the water waves. In the expression of Pa , there is a component in
phase and a component in quadrature with the water elevation. For an energy flux
to occur from the wind to the water waves, there must be a phase shift between the
fluctuating pressure and the interface. Hence, the transfer of energy is only due to
the component in quadrature with the water surface or in other words in phase with
the slope. To simplify the problem, we consider only the pressure component in phase
with the slope on the interface

Pa(x, t) = ρaβU 2
1 ηx(x, t). (2.6)

For a logarithmic velocity profile in the turbulent boundary layer over the wave, we
have U1 = u∗/κ , where κ is the von Kármán constant. Hence,

Pa(x, t) = Wηx(x, t), (2.7)

where W = ρa(β/κ2)u2
∗.

The rate of growth of the wave energy is sβω(u∗/c)
2/κ2, where s = ρa/ρ is the

air–water density ratio and ω = kc the frequency.
Miles (1957) developed an alternative derivation of the rate of growth of the wave

energy based on a linear stability analysis of the parallel shear flows. The transfer of
energy from a shear flow U (z) to a surface wave of wavenumber, k, and phase velocity,
c, is associated with a singularity at the critical layer z = zc at which U (z = zc) = c

∂E

∂t
= −ρacπ

(
d2U

dz2
(zc)/k

⏐⏐⏐⏐dU

dz
(zc)

⏐⏐⏐⏐
)

w2(zc), (2.8)

where E is the mean surface wave energy and w2(zc) is the mean-square value of
the wave-induced vertical velocity at z = zc. The overbar denotes an average over x.
The vertical velocity, w, is calculated from a Sturm–Liouville differential equation (or
the Rayleigh equation). The Rayleigh equation can be solved numerically once U (z),
k and c are known. Nevertheless, the presence of a singularity at the critical height,
zc, complicates the resolution. Conte & Miles (1959) developed a numerical method
to treat this singularity and solve the Rayleigh equation.

Writing ∂E/∂t = γE, we introduce the Miles coefficient β such as

γ =
ρa

ρ
kcβ

(
U1

c

)2

= sωβ

(
U1

c

)2

, (2.9)

where γ is the rate of growth of the wave energy. Following Miles (1996), the
coefficient β is given by the following expression:

β = −π

k

(d2U/dz2)(zc)

|(dU/dz)(zc)|
w2(zc)

U 2
1 (∂η/∂x)2

, (2.10)

where z = η(x) is the equation of the surface wave profile.
For a logarithmic profile of the atmospheric shear flow, the rate of growth γ is

γ =
ρa

ρ
kcβ

(
u∗

c

)2/
κ2 =

s

κ2
ωβ

(
u∗

c

)2

. (2.11)

Note that in the classical theory of Miles, the interaction between the wave-induced
motion in the air flow and the turbulence is ignored. The turbulence is introduced
only to sustain a logarithmic wind profile.
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3. The perturbed NLS equation: amplification versus depletion
In this section, we consider both effects of dissipation and wind amplification

on the Benjamin–Feir instability. In the absence of viscosity and wind action, the
Benjamin–Feir instability may be investigated via an asymptotic expansion leading
to the well-known NLS equation. Our aim is to extend the works of Segur et al.
(2005a) and Leblanc (2007) who investigated this problem by considering damping
and wind effects separately. The derivation of the damped and forced NLS equation
does not present any conceptual difficulty. Hence, the expression of the perturbed
NLS equation can be stated as

i(ψt + V ψx) − Ω0

8k2
0

ψxx − 2Ω0k
2
0 |ψ |2ψ − i

WΩ0k0

2gρ
ψ = −2iνk2

0ψ, (3.1)

where k0 and Ω0 are the wavenumber and frequency of the carrier wave, respectively,
satisfying the linear dispersion relation Ω2

0 = gk0 and V =Ω0/2k0 is the group velocity
of the carrier wave. Equation (3.1) describes the spatial and temporal evolution of the
envelope, ψ , of the surface elevation, η, of weakly nonlinear and dispersive gravity
waves on deep water when damping and amplification effects are considered. The free
surface elevation is written as follows:

η(x, t) = ψ(x, t)exp[i(k0x − Ω0t)] + c.c. + O(ε2), (3.2)

where c.c. denotes the complex conjugate. The parameter, ε, is a small parameter
(ε � 1) used to carry out the multiple scale analysis leading to (3.1). The elevation,
η, and envelope, ψ , are of order O(ε). We have assumed that the fluid viscosity, ν,

and density ratio, ρa/ρ, are small: ν/
√

g/k3 = ε2 and ρa/ρ = ε2. These assumptions
are generally used for water and air/sea interface.

We rewrite (3.1) in a standard form by using the following transformations:

ξ = 2k0(x − V t), τ = Ω0t, Ψ =
√

2k0ψ, (3.3)

leading to the following perturbed NLS:

ıΨτ − 1
2
Ψξξ − |Ψ |2Ψ = ıKΨ, (3.4)

with

K =
Wk0

2gρ
− 2

νk2
0

Ω0

. (3.5)

The sign of K determines the nature of the perturbation. If K > 0 we have
amplification of waves and if K < 0 we have depletion. For K < 0, this perturbed
NLS equation is similar to the NLS equation considered by Segur et al. (2005a).
It is also similar to the NLS equation used by Bridges & Dias (2007) when their
coefficients a and c vanish. In that case the latter authors demonstrated that there is
no enhancement of the modulational instability, whereas when a > 0 the instability is
enhanced.

The condition K > 0 implies that

4νκ2Ω0

βsu2
∗

< 1. (3.6)

For a given friction velocity, this condition states that only carrier wave with frequency
or wavenumber less than a threshold value may suffer modulational instability. Within
the framework of the NLS equation, we consider weakly modulated wave train. Hence,
we can assume that β depends on the frequency (or wavenumber) and phase velocity
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Figure 1. Normalized critical frequency Ω = Ωc/(sg2/4ν)1/3 as a function of A = κc0/u∗
(proportional to wave age) for κ2gz0/u

2
∗ = 3 × 10−3.

of the carrier wave. Note that the computation of the coefficient β is done through
the numerical resolution of the Rayleigh equation. Conte & Miles (1959) computed
the values of β as a function of κc0/u∗ for a logarithmic wind profile of the form

U (z) =
u∗

κ
ln(z/z0), (3.7)

where z0 is the roughness length given by z0 = αchu
2
∗/g (αch is the Charnock constant

≈0.011–0.018). Note that c0 = Ω0/k0.
Introducing the dimensionless term κc0/u∗ proportional to the wave age c0/u∗, (3.6)

may be rewritten as follows:

Ω0 <

[
sg2β

4ν(κc0/u∗)2

]1/3

. (3.8)

Let Ωc be defined as follows:

Ωc =

(
sg2

4ν

)1/3 (
β

(κc0/u∗)2

)1/3

. (3.9)

Hence, (3.8) becomes

Ω0 < Ωc. (3.10)

Using the results of Conte & Miles (1959, table 1), the values of Ωc/(sg2/4ν)1/3 are
plotted in figure 1 as a function of κc0/u∗ for the dimensionless roughness length
κ2gz0/u

2
∗ =3 × 10−3. This value of the dimensionless roughness length corresponds to

an aerodynamically smooth flow. The solid line divides the plane into modulationally
unstable region and modulationally stable region. Wavetrains for which the point
(κc0/u∗, Ω0/(sg

2/4ν)1/3) belongs to the lower region suffer modulational instability.
Otherwise dissipation prevents instability developing over in time. For fixed Ω0,
instability prevails when u∗ fulfils the following relation:

u∗ > uc
∗, (3.11)
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Figure 2. Critical friction velocity uc
∗ (in cm s−1) as a function of the carrier wave frequency

Ω0 (in rad s−1) for κ2gz0/u
2
∗ =3 × 10−3.

where uc
∗ satisfies the equation[

βc

(κg/Ω0uc
∗)

2

]1/3

=
Ω0

(sg2/4ν)
1/3

. (3.12)

We recall that β depends on κc0/u∗ or κg/Ω0u
c
∗ implicitly. Hence, βc is the value

taken by β when κg/Ω0u∗ = κg/Ω0u
c
∗. The quantity uc

∗ defines the minimum friction
velocity induced by the wind to amplify a wave train whose carrier frequency is
Ω0. For instance, for a carrier wave frequency Ω0 = 4.886 rad s−1, the minimum
friction velocity is uc

∗ = 8 cm s−1, whereas for Ω0 = 0.706 rad s−1 we found uc
∗ =

46 cm s−1. These computations correspond to κ2gz0/u
2
∗ =3 × 10−3, ν = 10−2 cm2 s−1,

g = 980 cm s−2 and s = 1.2 × 10−3. For κ2gz0/u
2
∗ = 10−2 and Ω0 = 1.73 rad s−1, the

threshold value of the friction velocity is uc
∗ = 22.6 cm s−1. The values of the critical

friction velocity, uc
∗, as a function of the carrier wave frequency, Ω0, are plotted in

figure 2 for κ2gz0/u
2
∗ = 3 × 10−3. In the low-frequency regime stronger wind velocities

are needed to sustain the modulational instability than for high-frequency water
waves. For a given carrier frequency, a larger friction velocity is needed to sustain
modulational instability when the roughness length is increased as shown in figure 3.

To justify the use of the Miles’ mechanism, we followed Janssen (2004) who showed
that this mechanism seems to provide an adequate model for κc0/u∗ > 4. Furthermore,
he emphasized that the inviscid Miles’ model gives good agreement for slow waves
too (κc0/u∗ < 4), regarding the growth rate of waves by wind, with in situ data (see
Janssen 2004, figure 3.3).

4. The Stokes-like wave and its stability
We call a solution of (3.4) a Stokes-like wave if it does not depend on ξ . In our

case, the solution is



Modulational instability in deep water under the action of wind and dissipation 145

0 1 2 3 4 5 6 7 8 9 10 11

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ω

A

Stable 

Unstable 

Figure 3. Normalized critical frequency Ω = Ωc/(sg2/4ν)1/3 as a function of A = κc0/u∗
(proportional to wave age) for several values of the roughness length: κ2gz0/u
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Ψs = a(τ )e−ıb(τ ), (4.1)

with

a(τ ) = ãeKτ, (4.2)

b(τ ) =
ã2

2K
e2Kτ + ∆, (4.3)

where ã is a constant and ∆ is put equal to −(ã2/2K). To study the modulational
stability of this solution we follow Segur et al. (2005a) and Leblanc (2007), and we
superimpose to the solution (4.1) a small perturbation

Ψ = Ψs(1 + δζ (ξ, τ )), (4.4)

where δ � 1. We then substitute (4.4) into (3.4), keeping only terms up to order δ.
We separate the real and imaginary parts of ζ (ξ, τ ) as ζ = M(ξ, τ ) + ıN(ξ, τ ). The
resulting equations are

Mτ − 1
2
Nξξ = 0, (4.5)

Nτ + 1
2
Mξξ + 2a2M = 0. (4.6)

Now setting M(ξ, τ ) = Re(M0(τ )eılξ ) and N(ξ, τ ) = Re(N0(τ )eılξ ), l being the
wavenumber of the perturbation, we arrive at the following system of equations:

dM0

dτ
+

1

2
l2N0 = 0, (4.7)

dN0

dτ
+

(
2a2 − 1

2
l2

)
M0 = 0 with a2 = ã2e2Kτ . (4.8)

Equations (4.7) and (4.7) can be combined to give

d2M0

dτ 2
+

1

2
l2

[
1

2
l2 − 2a2

]
M0 = 0. (4.9)
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Let τ = 2r/ l2 and λ= 2ã/ l. Then (4.9) becomes

d2M0

dr2
+ (1 − λ2 exp(4Kr/l2))M0 = 0. (4.10)

One may distinguish the following two cases according to whether K is negative or
positive.

(i) Let K be negative. This case was analysed by Segur et al. (2005a), and it
was demonstrated that the modulational instability is restabilized by dissipation. To
summarize, it was shown in the presence of damping that the linear perturbation can
grow, but its growth is limited whereas in the absence of damping the perturbation
grows without bound. According to our previous linear stability analysis, instability
restabilizes after a period of time of order equal to ln(2ã/ l)/ |K| (or τ is O(ln(2ã/ l)
τ0/2π | K |, where τ0 is the period of the carrier wave). This value corresponds
to the change of sign of the coefficient of M0 in (4.9). Note that Segur et al.
(2005a) extended their linear stability analysis to the nonlinear case, too. This case is
illustrated in figure 4 from numerical simulations of the NLS equation (3.4) which
show the temporal evolution of the normalized amplitude of the carrier wave and
most unstable sidebands (l = 0.20) with dissipation and forcing (K = −0.0004) and
without dissipation and forcing (K = 0). The amplitudes are normalized by the initial
amplitude of the carrier wave namely ã. The solid and dashed lines correspond to
the amplitude of the carrier and sidebands, respectively. At τ = 0, the initial wave
steepness of the Stokes wave is 0.07, and the ratio between the amplitudes of the
sidebands and carrier wave is 0.10. Furthermore, the carrier of the unperturbed Stokes
wave given by (4.2) has been plotted in figure 4. When K is negative the perturbed
solution is close to the unperturbed solution for large times, whereas when K is
positive the deviation between the two solutions increases with time. The case K < 0
illustrated in figure 4 corresponds to the simulation, where initially the nonlinear
term of the NLS equation is much more larger than the dissipative term (ã2 � |K|).
This situation was discussed by Segur et al. (2005a, see their comment (iii) p. 238),
and it was claimed that even with substantial growth of the perturbation, the Stokes
solution of (3.4) is still linearly stable: it is always possible to find a gap (denoted ∆)
between unperturbed and perturbed solution that satisfies the linear stability criterion.
In real oceanic situations, the dissipation due to viscosity (when ignoring breaking
waves) is very weak compared to the nonlinear interactions. Hence, we can expect
that small dissipation may not have time to play a role in the initial dynamics as it is
demonstrated in figure 4. For large and negative values of K the exponential function
will rapidly become negligible and the solutions of (4.10) will converge asymptotically
to the solutions of the equation d2M0/dr2 + M0 = 0 which are oscillatory. There is no
amplification of the modulational perturbation due to damping effect which is the
dominant mechanism.

(ii) Let K be positive. From our linear stability analysis, the modulational
perturbations grow exponentially with time when (l2/2 − 2ã2e2Kτ ) < C, where C is a
strictly negative constant. This behaviour is also observed within the framework of the
NLS equation as shown in figure 4 (bottom) from the numerical simulation of (3.4) for
the most unstable perturbation (l =0.2). In this case K = 0.0004 and the initial wave
steepness of the Stokes wave is 0.07. When (l2/2 − 2ã2e2Kτ ) > 0 the perturbations
are oscillatory for τ < ln(l/2ã)/K (τ < ln(2ã/ l)τ0/2π |K|) and grow exponentially
for τ > ln(l/2ã)/K (τ > ln(2ã/ l)τ0/2π |K|). This behaviour holds in the nonlinear
case, too. Figure 5 shows the destabilization of an initially stable perturbation
(l = 0.40) due to forcing within the framework of the numerical simulation of NLS
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Figure 4. Temporal evolution of the normalized amplitude of the carrier wave, a0, (solid line)
and upper and lower sidebands, a1 and a−1 (dashed line) corresponding to the most unstable
perturbation (l = 0.20) without dissipation and wind (a), in the presence of dissipation and wind
for K = −0.0004 (b) and for K = 0.0004 (c) within the framework of numerical simulations of
(3.4). The dash-dotted line corresponds to the carrier of the unperturbed Stokes wave given
by (4.2). The period of the carrier wave is τ0.

equation (3.4). During the first stage, the perturbation is oscillatory and then grows
exponentially. Beyond τ = 150τ0, the gap between the unperturbed and perturbed
solutions increases with time. In the wavenumber space, the region of instability
increases as time increases. Therefore, stable modes become unstable after some time.
In this simulation, the initial wave steepness of the wave train is 0.07 and the ratio
between the amplitudes of the sidebands and carrier wave is 0.10. For large and
positive values of K , the coefficient 1 − λ2 exp(4Kr/l2) will become rapidly negative.
Hence, d2M0/dr2 will have the sign of M0 and the solution of (4.10) corresponds
to the temporal amplification of the modulational perturbation of the basic solution
given by (4.1). In this case the wind effect dominates.

For small values of |K|, the exponential function varies slowly and for small values
of r the coefficient 1 − λ2 exp(4Kr/l2) is close to 1 − λ2. Hence, when λ< 1 or l > 2ã

the solutions remain bounded (modulational perturbations are not amplified) and
when λ> 1 or l < 2ã the solutions diverge (modulational perturbations are amplified).
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Figure 5. Temporal evolution of the normalized amplitude of the carrier wave, a0, (solid
line) and upper and lower sidebands, a1 and a−1 (dashed line) corresponding to a stable
perturbation (l = 0.40) in the presence of dissipation and wind (K = 0.0001) within the
framework of numerical simulations of (3.4). The dash-dotted line corresponds to the carrier
of the unperturbed Stokes wave given by (4.2). The period of the carrier wave is τ0.

Consequently, for K < 0 any modulational perturbation is stable or becomes stable
after some time (as shown by Segur et al. 2005a), whereas for K > 0 any modulational
perturbation is unstable or becomes unstable after some time. For values of K close
to zero, which corresponds to a quasi-equilibrium between wind and damping effects,
we can conclude that modulational perturbations of wavenumber l will be linearly
unstable when l < 2ã and linearly stable otherwise (classical result).

5. Discussion
We have shown that the joint action of wind and dissipation have additive effects on

the modulation of a wave train. It has been argued and experimentally demonstrated
that the effect of dissipation on a wave train is to stabilize the Benjamin–Feir instability
(Segur et al. 2005a). In the regime we are considering, we have shown that the effect
of the wind is contrary, as expected (Leblanc 2007). However, both effects, although
additive, do not have the same dependence on the frequency (or wavenumber) of the
carrier wave (Ω0). Consequently, the existence or not of the Benjamin–Feir instability
under the action of wind and taking dissipation into account depends on the strength
of the friction velocity at the water surface. We found that the critical wind velocity,
uc

∗, increases with the wavelength of the carrier wave. In the presence of wind and
dissipation, the unstable domain shrinks for low-frequency regime: this means that
young waves are more sensitive to modulational instability than old waves.

In this paper, we have considered a weakly nonlinear model (the NLS equation)
and a linear wind–wave coupling. The next step is to consider the fully nonlinear
water wave equations with linear and nonlinear wind–wave modelling.

We thank the anonymous referees for their helpful comments. R. A. K. thanks
IRPHE (Marseille, France) for kind hospitality and CNPq (Brazil) for partial
financial support.
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