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The transition from integrability to nonintegrability for a set of two-dimensional Hamiltonian mappings
exhibiting mixed phase space is considered. The phase space of such mappings show a large chaotic sea
surrounding Kolmogorov-Arnold-Moser islands and limited by a set of invariant tori. The description of the
phase transition is made by the use of scaling functions for average quantities of the mapping averaged along
the chaotic sea. The critical exponents are obtained via extensive numerical simulations. Given the mappings
considered are parametrized by an exponent � in one of the dynamical variables, the critical exponents that
characterize the scaling functions are obtained for many different values of �. Therefore classes of universality
are defined.
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I. INTRODUCTION

Two-dimensional, nonlinear, area-preserving mappings
have been considered in the study of dynamical systems for
many years. Applications of this formalism can be used in
study of channel flows, waveguide, transport properties,
Fermi acceleration and also for the study of magnetic field
lines in toroidal plasma devices with reversed shear �such as
tokamaks� �1–10�.

Generally, such kind of mappings have one or more con-
trol parameters. They can control the intensity of the nonlin-
earity, controlling also a transition from integrability to non-
integrability. The phase space of these mappings exhibit
quite often mixed forms. One can observe a large chaotic sea
that eventually surrounds Kolmogorov-Arnold-Moser islands
and is limited by a set of invariant tori. The size of the
chaotic sea is strongly influenced by the control parameters
since they play the rule of controlling the intensity of the
nonlinearity.

In this paper, we address specifically a transition from
integrability to nonintegrability present in a special class of
two-dimensional, nonlinear, area-preserving mappings. We
look at average properties along the chaotic sea and therefore
we find critical exponents that describe the behavior of av-
erage quantities of the chaotic sea. Such quantities are de-
scribed in terms of scaling arguments, leading to a generic
and robust description of a scaling observed for the chaotic
sea. The critical exponents are obtained for several values of
the control parameters. The knowledge of such exponents
allow us to define and compare classes of universality for the
two-dimensional Hamiltonian mappings.

The paper is organized as follows. In Sec. II we present
the model and discuss the variables and control parameters
used. Some properties of the phase space are also discussed,
including a characterization of fixed points. The chaotic
component of the phase space is characterized by Lyapunov
exponents. In Sec. III we obtain and describe the critical
exponents that define classes of universality. A merger of all
the curves of the average quantity is obtained. Finally in the
Sec. IV we present our concluding remarks.

II. DEFINITION OF THE PROBLEM AND THE MAPPING

In this section, we present and discuss some dynamical
properties for a set of two-dimensional Hamiltonian map-
pings. We assume that there is a two-dimensional integrable
system that is slightly perturbed. The Hamiltonian function
that, in principle, describes the system is written as �11�

H�I1,I2,�1,�2� = H0�I1,I2� + �H1�I1,I2,�1,�2� , �1�

where the variables Ii and �i with i=1,2 correspond, respec-
tively, to the action and angle. One can see clearly that the
control parameter � controls a transition from integrability to
nonintegrability. To use the characterization of the dynamics
in terms of a mapping, we can now consider a Poincaré
section defined by the plane I1��1 and assume �2 as con-
stant �mod 2��. A generic two-dimensional mapping which
qualitatively describes the behavior of Eq. �1� is

T:�In+1 = In + �h��n,In+1�
�n+1 = ��n + K�In+1� + �p��n,In+1�� mod�2�� ,

� �2�

where h, K, and p are assumed to be nonlinear functions of
their variables while the index n corresponds to the nth itera-
tion of the mapping. The variables I and � correspond indeed
to I1 and �1.

Since the mapping �2� should be area preserving, the ex-
pressions for h��n , In+1� and p��n , In+1� have to obey some
properties, in particular some intrinsic relations. The rela-
tions are obtained considering that the determinant of the
Jacobian matrix is the unity. After some straightforward al-
gebra, it is easy to conclude that area preservation will be
observed only if the condition

�p��n,In+1�
��n

+
�h��n,In+1�

�In+1
= 0, �3�

is matched. For many mappings considered in the literature,
the function p��n , In+1�=0. Hence, if we keep h as
h��n�=sin��n�, and vary K, to illustrate applicability of the
formalism, we nominate the following mappings that have
already been studied:

�i� Considering K�In+1�= In+1+�In+1
2 , the logistic twist

mapping is obtained �12�;
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�ii� K�In+1�= In+1, then the Taylor-Chirikov’s map is recov-
ered �13�;

�iii� K�In+1�=2 / In+1, then the Fermi-Ulam accelerator
model is obtained �14,15�;

�iv� K�In+1�=�In+1, with � constant, then the bouncer
model is found �16�;

�v� For the case of

K�In+1� = �4�2�In+1 −	In+1
2 −

1

�2
 if In+1 �
1

�
,

4�2In+1 if In+1 �
1

�
.

�4�

where � is a constant, then we recovered the so called
Hybrid-Fermi-Ulam-bouncer model �17�.

In this paper, we consider the following expression for the
two-dimensional mapping

T:�xn+1 = �xn +
a

yn+1
� � mod 1

yn+1 = 
yn − b sin�2�xn�

, �5�

where a, b, and � are the control parameters. The determi-
nant of the Jacobian matrix is Det J=sign�yn−b sin�2�xn��
where sign�u�=1 if u�0 and sign�u�=−1 if u	0. Note that
if �	0, depending on the initial conditions and control pa-
rameters, one can observe unlimited growth for the variable
ȳ. Such growth is observed since large values of y implies in
a large number of oscillations for the sine function. Then, in
the regime of very large oscillations, the sin function works
more likely a random function yielding in an unlimited
growth for ȳ. Since we want avoid such a condition in order
to use the scaling approach, in this paper we consider only
values for 0	��1.

Note however if we choose �=1 and change the dynami-
cal variables to x→v and y→
, the mapping �5� recovers
the one-dimensional Fermi-Ulam accelerator model where v
represents the velocity of the particle and 
 denotes the
phase of the moving wall. For this case the critical exponents
are well defined �18�.

It is important to emphasize that there are two control
parameters in mapping �5� that control the transition from
integrability to no integrability, namely, a=0 or b=0. The
phase space generated from iteration of the mapping �5� for
a=2, b=10−3 and �=1 /2 is shown in Fig. 1.

The fixed points of the mapping �5� can be obtained by
matching the following conditions: yn+1=yn=y and
xn+1=xn=x+m, where m=1,2 ,3 , . . .. It is shown in Table I
the fixed points obtained for different values of the exponent
� and a fixed a=2, as well as their classification. We stress
that fixed point 1, as labeled in Table I, is always hyperbolic,
while fixed point 2 can be elliptic or hyperbolic, according to
the combination of control parameters. Some of the elliptic
fixed points are shown in Fig. 1 as �red� circles while some
of the hyperbolic are identified as �blue� squares. Let us now
discuss the characterization of the chaotic component of the
phase space using Lyapunov exponents. Basically the proce-
dure considers in evolving two neighboring initial conditions
and check whether they diverge exponentially from each

other, as time evolves, or not. If the Lyapunov exponent is
positive, say ��0, the system has a chaotic component.

The Lyapunov exponents are defined as �19�

� j = lim
n→�

1

n
ln

 j

�n�
, j = 1,2, �6�

where 
 j
�n� are the eigenvalues of the matrix

M =�i=1
n Ji�x ,y� where Ji is the Jacobian matrix of the map-

ping evaluated along the orbit.

TABLE I. Fixed points and their classification for different val-
ues of �.

� Fixed point 1 Fixed point 2 Elliptic Hyperbolic

2
3 �0, � a

m �3/2� � 1
2 , � a

m �3/2� 0	m	 � 6 219/78

b� �2/5 m� � 6 219/78

b� �2/5

2
5 �0, � a

m �5/2� � 1
2 , � a

m �5/2� 0	m	 � 20	2
b� �2/5 m� � 20	2

b� �2/5

1
2 �0, � a

m �2� � 1
2 , � a

m �2� 0	m	 � 16
b� �1/3 m� � 16

b� �1/3

3
4 �0, � a

m �4/3� � 1
2 , � a

m �4/3� 0	m	 � 16 21/3

3b� �1/2 m� � 16 21/3

3b� �1/2

3
5 �0, � a

m �5/3� � 1
2 , � a

m �5/3� 0	m	 � 20 22/3

3b� �3/8 m� � 20 22/3

3b� �3/8

4
5 �0, � a

m �5/4� � 1
2 , � a

m �5/4� 0	m	 � 5 21/4

b� �4/9 m� � 5 21/4

b� �4/9

1 �0, a
m � � 1

2 , a
m � 0	m	 � 4

b� �1/2 m� � 4
b� �1/2

FIG. 1. �Color online� Phase space generated by the mapping
Eq. �5� for the control parameters, a=2, b=10−3, and �=1 /2. The
�red� circle bullets indicate the location of some of the elliptic fixed
points, each one of them enumerated, while the �blue� square fur-
nish the position of some of the hyperbolic fixed points. Their nu-
meration follow the same scheme, at the same value of y, of the
elliptic fixed points.
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It is shown in Fig. 2, the behavior of the positive
Lyapunov exponent averaged along the chaotic sea for the
mapping �5�. The control parameters used were
a=2, b=10−4 and three different values of �, namely: �a�
�=1 /2; �b� �=3 /4; and �c� �=4 /5, as labeled in the figure.
We have used an ensemble of five randomly chosen initial
conditions along the chaotic sea and each initial condition
was iterated up to 5�108 times. The average value obtained
for �=1 /2 was �̄=1.20�3� where the error 0.03 corresponds
the deviation of the five sample. Considering �=3 /4 we
found �̄=1.50�3�, while for the case of �=4 /5 we obtained
�̄=1.53�4�.

We now discuss the behavior of the Lyapunov exponents
as function of the parameters a, b, and �. It is shown in Fig.
3�a� the behavior of �̄�b for a fixed a=2 and �=3 /4. De-
spite the variation in the control parameter for a large range
of b� �10−5 ,10−3�, the positive Lyapunov exponent, shown
in a log� linear plot, does not exhibit a representative varia-
tion. A similar behavior was observed in Fig. 3�b� for the

case of �̄�a for a fixed b=10−2 and same � used in Fig. 3�a�
and a large range of a� �10,102�. The variation in the con-
trol parameter � produces a change in the Lyapunov expo-

nent, as shown in Fig. 3�c� for �̄��. The control parameters
considered in Fig. 3�c� were a=10 and b=10−2 while
�� �0.1,1�. For this case, the positive Lyapunov exponent
grows linearly with the control parameter �. A linear fit fur-

nishes �̄=0.71�1�+1.00�2��.

III. NUMERICAL RESULTS AND SCALING PROPERTIES

In this section, we concentrate to discuss some scaling
properties present in the chaotic sea. The average quantity to
be explored is the deviation of the average ȳ for chaotic
orbits, denoted as �. In fairness, the behavior of � shows the
same properties of the average ȳ. It is defined as

��n,a,b� =
1

M
�
i=1

M

	yi
2�n,a,b� − yi

2�n,a,b� , �7�

where M corresponds to an ensemble of different initial con-
ditions xi� �0,1� randomly chosen for a fixed y0=10−3b and
ȳi is given by

yi�n,a,b� =
1

n
�
j=1

n

yj,i. �8�

The behavior of ��n for different control parameters, as
labeled in the figure, is shown in Fig. 4. However, similar
results would indeed be observed for other values of � too.
We have considered fixed the exponent �=3 /4.

Let us now discuss the behavior observed in Fig. 4. The
curves start growing for small n and after reaching a critical
crossover iteration number, nx, they bend toward a regime of
convergence. Based on the behavior seen in Fig. 4�a� we can
suppose that

FIG. 2. �Color online� Plot of the positive Lyapunov exponents
for the control parameters a=2 and b=10−4 and �a� �=1 /2; �b�
�=3 /4; and �c� �=4 /5.

FIG. 3. �Color online� Plot of the average Lyapunov exponents
for the control parameters: �a� �=3 /4 and a=2; �b� �=3 /4 and
b=10−2; and �c� a=10 and b=10−2.
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�i� For n�nx, � grows according to a power law of the
type

� � �nb2��, �9�

where � is a critical exponent;
�ii� For large n, say n�nx, the behavior of � is

� � a�1b�2, �10�

where �1 and �2 are critical exponents;
�iii� The crossover nx, that characterizes the transition of

the growing regime for the saturation is

nxb
2 � az1bz2, �11�

where z1 and z2 are called as dynamical exponents.
The critical exponents �1, �2 and the dynamical expo-

nents z1 and z2 can be obtained from extensive numerical
simulations. First, fitting the initial regime of growth, we
obtain that the critical ��0.5. The other critical exponents
are obtained from specific plots. It is shown in Figs. 5�a� and
5�b� a plot nx�b and �sat�b respectively for the case where
a=2. On the other hand, Figs. 5�c� and 5�d� plots nx�a and
�sat�a for the case of a fixed control parameter b=10−2. All
the results shown in the Fig. 5 were obtained for a fixed
�=3 /4 and using very long simulations of 5�108 iterations.
The ensemble average used was M =5�103.

A power law fitting to the curves plotted in Fig. 5 fur-
nishes that: �a� z2=−0.817�8� and �b� �2=0.588�3�, while �c�
z1=1.112�6� and �d� �1=0.562�1�. Since we have now ob-
tained the critical exponents, the scaling hypotheses can be
verified. In this case, it is shown in Fig. 4�b� a merger of four
different curves of � generated for different values of the
control parameters a and b into a single and universal plot.

All the curves of � presented above were obtained for a
fixed �=3 /4. The procedure does indeed works well for
other values of � too. It is shown in Table II the critical
exponents found via extensive numerical simulations. Table
II was obtained for a fixed control parameter a=2. However,
if we keep as fixed the control parameter b, the critical ex-
ponents are shown in Table III. We stress that all curves
obtained for different control parameters shall experience the
same merger if the axis are rescaled properly. The behavior
shown in both the Tables II and III can be presented in terms
of a plot, as shown in Fig. 6.

One can see in Fig. 6 that as the control parameter � rises,
there is a decrease in both the exponents �1 and �2. Since �i,
i=1,2 are related to the behavior of � in the saturation re-
gime, i.e., for sufficiently long n, such a decrease implies that
for a large value of �, the saturation will be achieved at
lower values than those compared to the same control param-
eters but for smaller �. The behavior of the crossover nx is
also strongly affected since the critical exponents zi, i=1,2
are modeled by decreasing functions of �.

FIG. 4. �Color online� �a� Plot of different � curves as function
of n for the control parameters �=3 /4, and different values of a and
b for an ensemble of M =5000 different initial conditions. �b� Their
collapse onto a single and universal plot.
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FIG. 5. �Color online� Plot for the case of the fixed control
parameter �=3 /4. The parameters used were: �a� a=2 for nx�b,
�b� a=2 for �sat�b, �c� b=10−2 for nx�a, and �d� b=10−2 and
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Let us now discuss about the classes of universality. First
we have to stress that the phase transition we are considering
in this paper is not defined in the rigorous Statistical Me-
chanics point of view. The transition we are taking into ac-
count describes the behavior of average quantities, along the
chaotic sea, as function of the control parameters which con-
trol the intensity of the nonlinearity of the mappings. More-
over, the critical exponents we found for the average quan-
tities are written as function of the control parameters. After
finding these critical exponents, we can rescale the system
conveniently so that, after a reparametrization, all quantities
are scale independent. The set of critical exponents obtained
define which class of universality the system belongs to.
Therefore, to illustrate three cases, we consider the following
examples: �i� Fermi-Ulam model and periodically corrugated
waveguide; �ii� a dissipative bouncer model and a stochastic
version of the Fermi-Ulam model with the particle experi-
encing inelastic collisions; �iii� a classical particle confined
in an infinitely deep potential well containing an oscillating
square well �20� or time modulated barrier �21� and mapping
�4� with �=1 /2. These three cases illustrate two different
phase transitions.

In the case �i�, the Fermi-Ulam model �a classical particle
confined to bounce between two walls; one of them is fixed
and the other one is periodically time varying—collisions are
elastic and no damping forces are present� is described via a
two-dimensional, nonlinear, area-preserving mapping for the
variables velocity of the particle and phase of the moving
wall. The critical exponents obtained for the average velocity
along the chaotic sea were �18�: �=0.5, �=0.5, and z=−1.
On the other hand, the corrugate waveguide model considers
the description of a light-beam moving inside two mirrors
where one of them is flat and the other one is periodically
corrugated. The mapping describes the position of the light
beam at each reflection with the mirror and the angle of the
light-beam trajectory �22�, then there is no velocity involved
in this model. The critical exponents obtained were the same
as those obtained for the Fermi-Ulam model. The models are
totally independent from each other, but then, near such a
transition, the chaotic sea has qualitatively the same general
behavior, thus the two models belong to the same class of
universality, near this transition.

For the case �ii�, let us point out that the Fermi-Ulam
model, in its deterministic version, does not have Fermi ac-
celeration, thanks to the presence of a set of invariant span-
ning curves in the phase space. Fermi acceleration is a phe-
nomenon where a classical particle can acquires unlimited
energy after collisions with an infinitely heavy and moving
wall. However, if one introduce a stochastic force on the
moving wall, then Fermi acceleration is produced. Moreover,
if we consider that the particle is suffering inelastic collisions

TABLE II. Critical exponents obtained for a=2 and
b� �10−5 ,10−3� for the mapping �5�.

� � �2 z2

2/5 0.481�5� 0.75�1� −0.56�1�
3/7 0.487�7� 0.696�4� −0.57�2�
4/9 0.484�5� 0.710�2� −0.58�1�
1/2 0.488�4� 0.673�2� −0.641�7�
3/5 0.488�5� 0.59�1� −0.68�2�
2/3 0.489�7� 0.607�1� −0.757�4�
5/7 0.491�5� 0.5893�9� −0.808�5�
3/4 0.488�6� 0.588�3� −0.817�8�
4/5 0.489�7� 0.563�1� −0.858�6�
1 0.495�6� 0.518�4� −1

TABLE III. Critical exponents obtained for the range
a� �10,102� and b=10−2 for the mapping �5�.

� � �1 z1

1/5 0.489�6� 0.820�2� 1.64�1�
1/4 0.491�5� 0.791�1� 1.57�1�
1/3 0.489�5� 0.741�1� 1.464�7�
2/5 0.492�6� 0.704�1� 1.38�1�
3/7 0.491�5� 0.6929�9� 1.34�1�
4/9 0.492�5� 0.680�3� 1.342�6�
1/2 0.492�5� 0.659�1� 1.33�1�
3/5 0.493�5� 0.611�2� 1.209�7�
2/3 0.491�6� 0.587�1� 1.162�5�
3/4 0.492�5� 0.562�1� 1.112�6�
4/5 0.492�5� 0.547�1� 1.088�5�
1 0.496�4� 0.4967�4� 0.987�4�
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FIG. 6. Plot of the critical exponents as function of the param-
eter �: �a� �1��; �b� z1��; �c� �2��; and �d� z2��.
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with the boundary such collisions are sufficient conditions to
suppress Fermi acceleration �23�. Notice however that the
bouncer model �a classical particle falling in a constant
gravitational field and hitting a time moving boundary� does
indeed exhibit Fermi acceleration for some specific initial
conditions and control parameters. If one introduce inelastic
collisions with the moving wall, then Fermi acceleration is
also suppressed �24,25�. The critical exponents for both cases
are obtained as �=−0.5, �=0.5, and z=−1. For this case, the
transition considered was from limited to unlimited energy
gain. Since the two sets of critical exponents are the same,
then the two models belong to the same class of universality
near such a phase transition.

In the last case �iii�, the model consists of a classical
particle confined to move inside an infinitely deep potential
well which contains: �a� oscillating square well �20� or �b�
oscillating potential barrier �21�. The dynamics of either
cases is described by a two-dimensional area-preserving-map
with more than one nonlinearity. The phase space is mixed
and invariant tori prevent the unlimited energy gain. The
chaotic sea of both models is described by scaling arguments
leading to the following critical exponents: ��2 /3, �=0.5,
and z�4 /3. These exponents are the same as those obtained
by us for �=1 /2 in mapping �4� �see Table III�. Therefore,
despite the differences of the models and the mapping, the

critical exponents are the same, therefore the models belong
to the same class of universality near this phase transition
from integrability to non integrability.

Finally, the Tables II and III bring a set of critical expo-
nents which could be used to define classes of universality
and compared to other kinds of transition observed in dy-
namical systems.

IV. CONCLUSION

To summarize our conclusions, we have studied in this
work a phase transition from integrability for nonintegrabil-
ity for a set two-dimensional Hamiltonian maps. The critical
exponents were obtained via extensive simulations and scal-
ing hypotheses were all supported by a perfect collapse of all
the curves of the deviation around the average quantities for
the chaotic sea. Lyapunov exponents have also been used to
quantify the intensity of chaos of the mappings.
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