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RESUMO

O principal objetivo desta tese é estudar alguns tópicos de pesquisa que podem ser clas-

sificados como estudos baseados em um conceito conhecido como “pares coerentes de

medidas de segundo tipo”. Um par de medidas é considerado um par coerente de medidas

de segundo tipo se a derivada do polinômio ortogonal de grau (n+1) associado a uma das

medidas pode ser dada como combinação linear dos polinômios ortogonais de graus n e

(n− 1) associados à outra medida. Nosso estudo inicial sobre par coerente de medidas de

segundo tipo começou com medidas definidas no círculo unitário. Um dos tópicos de pes-

quisa que consideramos é estender a ideia de coerência no círculo unitário substituindo o

operador derivada na fórmula que define o conceito por um operador q-diferença. Proprie-

dades de polinômios ortogonais do tipo Sobolev relacionados também são exaustivamente

exploradas. Outro tópico de pesquisa nesta tese é considerar uma análise minuciosa de

pares de medidas na reta real que satisfaçam a propriedade de coerência de segundo tipo.

Foi encontrada uma caracterização completa das medidas que satisfazem este conceito.

Como tópico final de pesquisa, é também considerado um estudo sobre uma extensão do

conceito de pares coerentes de medidas de segundo tipo na reta real onde as medidas são

assumidas como simétricas. Polinômios ortogonais de Sobolev associados também são

analisados.

Palavras-chave: Polinômios ortogonais na reta real. Polinômios ortogonais no círculo
unitário. Polinômios ortogonais de Sobolev. Pares coerentes de medidas de segundo tipo.
Sequências encadeadas positivas.





ABSTRACT

The main objective in this thesis is to consider some topics of research which can be

classified as studies based on a concept known as “coherent pairs of measures of the second

kind”. A pair of measures is said to be a coherent pair of measures of the second kind if

the derivative of the (n + 1)-th degree orthogonal polynomial associated with one of the

measures can be given as a linear combination of the n-th degree and (n − 1)-th degree

orthogonal polynomials associated with the other measure. The initial studies concerning

coherent pairs of measures of the second kind started with measures defined on the unit

circle. One of the topics of research considered here is to extend the idea of coherence on

the unit circle by replacing the derivative operator in the formula that defines the concept

by a q-difference operator. Properties of related Sobolev type orthogonal polynomials are

also thoroughly explored. Another topic of research in this thesis is to consider a thorough

analysis of pairs of measures on the real line that satisfy the coherence property of the

second kind. A complete characterization of measures that satisfy this concept has been

found. As a final topic of research, a study on an extension to the concept of coherent

pairs of measures of the second kind on the real line where the measures are assumed

to be symmetric is also considered. Associated Sobolev orthogonal polynomials are also

analyzed.

Keywords: Orthogonal polynomials on the real line. Orthogonal polynomials on the unit
circle. Sobolev orthogonal polynomials. Coherent pairs of measures of the second kind.
Positive chain sequences.
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Introduction and Historical Remarks

Orthogonal polynomials and associated Sobolev orthogonal polynomials that follow
from pairs of positive measures which satisfy a property or concept known as coherence
property of the second kind has turned out to be an important topic of study in recent
years. For example, we say that the pair of positive measures {ν0, ν1} supported on the
real line is a coherent pair of positive measures of the second kind on the real line if the
respective sequences of monic orthogonal polynomials {Pn(ν0; ·)}n≥0 and {Pn(ν1; ·)}n≥0
satisfy

Pn(ν1;x)− τnPn−1(ν1;x) = 1
n+ 1P

′
n+1(ν0;x), n ≥ 1, (1)

where τn 6= 0 for n ≥ 1.
{Pn(ν; ·)}n≥0 is a sequence of monic orthogonal polynomials with respect to the posi-

tive measure ν, if

(i) Pn(ν;x) is a monic polynomial of exact degree n;

(ii)
∫
Pn(ν;x)Pm(ν;x)dν(x) =

0 if m 6= n,

hn > 0 if m = n.

We remark that integration here is along the support of the measure.
Our studies regarding pairs of positive measures satisfying the concept of coherence of

the second kind were motivated by two reasons. The first one is that this study provide
a nice and complete analysis of special pairs of positive measures on the real line and of
the corresponding sequences of orthogonal polynomials with many interesting properties.

The second one is related to some problems in approximation theory. Precisely, the
analysis of the Fourier expansions in terms of the sequences of polynomials orthogonal
with respect to the Sobolev inner product:

〈f, g〉S =
∫
f(x)g(x)dν0(x) + s

∫
f ′(x)g′(x)dν1(x), (2)

with s > 0. It turns out that the monic Sobolev orthogonal polynomials Sn(ν0, ν1;x) with
respect to the inner product 〈 . , . 〉S satisfy the connection formulas

Sn+1(ν0, ν1;x)− γnSn(ν0, ν1;x) = Pn+1(ν0;x),

S ′n+1(ν0, ν1;x)− γnS ′n(ν0, ν1;x) = (n+ 1) [Pn(ν1;x)− τnPn−1(ν1;x)] ,
n ≥ 1,

with S1(ν0, ν1;x) = P1(ν0;x). These simple connection formulas between {Sn(ν0, ν1; ·)}n≥0
and the sequences of monic orthogonal polynomials {Pn(ν0; ·)}n≥0 and {Pn(ν1; ·)}n≥0 per-
mit one to easily study the properties of the polynomials Sn(ν0, ν1;x). We have found

17



Introduction and Historical Remarks 18

that (see, for example, [40]) there exist specific examples of pairs of measures {ν0, ν1}
satisfying the property (1) for which the properties of the polynomials Sn(ν0, ν1;x) can
be analyzed in more detail.

Topics considered in this thesis include a study on the characterization of pairs of
positive measures which satisfy the concept of coherence of the second kind on the real
line (this particular work, which has appeared in [29], has also been mentioned in the
PhD thesis at UNESP of Gustavo Andreto Marcato) and, more importantly, include also
studies concerning the following two extensions to this concept:

• In the first case, results are analyzed with respect to a family of pairs of measures
supported on the unit circle, where in the formula that defines the concept of coherence
the derivative operator is replaced by a q-difference operator. These results, presented in
Chapter 2, have now appeared in [30];

• In the second case, results are obtained under a notion of coherence suitable for sym-
metric pairs of measures on the real line. These results, which are given in Chapters 4
and 5, are under preparation to be submitted for publication.

We now give some historical details which will also clarify the nomenclature adopted
here. The concept of coherence (of the first kind) pairs of positive measures on the real
line was introduced in 1991 by Iserles, Koch, Nørsett and Sanz-Serna [31]. As stated in
[31], a pair of positive measures {ν0, ν1} is a coherent pair of positive measures on the real
line if and only if the corresponding sequences of monic orthogonal polynomials satisfy

Pn(ν1;x) = 1
n+ 1

[
P ′n+1(ν0;x)− ρnP ′n(ν0;x)

]
, ρn 6= 0, n ≥ 1. (3)

It was shown in this case that the sequence of monic orthogonal polynomials with respect
to the inner product 〈 . , . 〉S satisfies the connection formulas

Sn+1(ν0, ν1;x)− γnSn(ν0, ν1;x) = Pn+1(ν0;x)− ρnPn(ν0;x),

S ′n+1(ν0, ν1;x)− γnS ′n(ν0, ν1;x) = (n+ 1)Pn(ν1;x),
n ≥ 1. (4)

The above connection formulas proved to be very useful in studies concerning the analytic
properties of the respective Sobolev orthogonal polynomials. In particular, with a novel
use of these connection formulas, H. G. Meijer and M. de Bruin [62] found information
about the location of zeros of these Sobolev orthogonal polynomials. Moreover, asymp-
totics properties have been deeply analyzed in the literature (see, for example, [43], [58],
[59], [60] as well as the recent survey [50], where an updated list of references concerning
this topic is presented).

The motivation in [31] for introducing such pairs of measures was their applications
in connection with the Fourier expansions of functions with respect to the Sobolev inner
product 〈 . , . 〉S. A particular case of such Fourier series expansions based on Legendre-
Sobolev orthogonal polynomials had already been considered in [32], where some nume-
rical tests comparing these Legendre-Sobolev Fourier series expansions and the ordinary
Legendre-Fourier series expansions are presented. In the framework of coherent pairs
of measures it is possible to obtain the associated Sobolev-Fourier coefficients with low
computational cost (see [24]). The convergence of the corresponding Sobolev-Fourier ex-
pansions for the Jacobi weights is analyzed in [47], [14], [15], [16]. For other weights
belonging to the so called Kufner-Opic class, see [46].
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All pairs of positive measures supported on the real line that satisfy the coherence
property (3) were completely determined in 1997 by H. G. Meijer [61]. He showed that
if {ν0, ν1} is a coherent pair of measures on the real line, then one of the measures must
be classical (either Jacobi or Laguerre) and the other one is a rational perturbation of it.
The starting point of the work in [61] are certain functional relations established in [44]
with respect to pairs of quasi-definite moment functionals such that the corresponding
sequences of monic orthogonal polynomials satisfy a relation as (3). Thus, what was
proved by Meijer [61] is more general than what is stated above.

The idea of coherence property was carried over to measures on the unit circle in [10].
The authors of [10] introduced the concept of coherent pair for Hermitian quasi-definite
linear functionals (which can be represented by signed measures supported on the unit
circle). In the positive definite case (see [69]), the linear functionals are associated with
nontrivial positive measures supported on the unit circle.

Following [10], a pair {µ0, µ1} of positive measures supported on the unit circle is said
to be a coherent pair of positive measures on the unit circle if the corresponding sequences
of monic orthogonal polynomials {Φn(µ0; ·)}n≥0 and {Φn(µ1; ·)}n≥0 satisfy the algebraic
relation

Φn(µ1; z) = 1
n+ 1

[
Φ′n+1(µ0; z)− ρnΦ′n(µ0; z)

]
, ρn 6= 0, n ≥ 1.

As established in [10], if {µ0, µ1} is a coherent pair of positive measures on the unit circle
then the following can be stated:

• If µ0 is the Lebesgue measure (dµ0(z) = dz
2πiz ), then the measure µ1 is such that

dµ1(z) = dµ0(z)
|z − α|2

,

with |α| < 1. This means µ1 belongs to the Bernstein-Szegő class.
• If µ1 is the Lebesgue measure, then the measure µ0 is such that

dµ0(z) = |z − α|2dµ1(z).

They also prove that the only Bernstein-Szegő measure µ0 for which {µ0, µ1} is a
coherent pair is the Lebesgue measure. A full description of all coherent pairs of measures
supported on the unit circle is still not known and this remains as an open problem.

More recently, in [71], an example of a family of pairs of measures {µ0, µ1} such that
there hold

Φn(µ1; z)− τnΦn−1(µ1; z) = 1
n+ 1Φ′n+1(µ0; z), τn 6= 0, n ≥ 1, (5)

has been introduced and the corresponding sequence of monic Sobolev orthogonal poly-
nomials has also been studied. Motivated by these results, in [71] pairs of measures on
the unit circle with the property (5) were further explored in [49]. In [49] these pairs of
measures have been referred to as coherent pairs of measures of the second kind on the
unit circle. Thus, we refer to the pair of measures {ν0, ν1} on the real line satisfying the
property (1) as a coherent pair of measures of the second kind on the real line.
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In the results considered in Chapter 2 of this thesis, we look at a special pair of
measures on the unit circle {µ0, µ1} for which the corresponding sequences of orthogonal
polynomials {Φn(µ0; ·)}n≥0 and {Φn(µ1; ·)}n≥0 satisfy

Φn(µ1; z)− τnΦn−1(µ1; z) = 1
{n+ 1}q

Dq

[
Φn+1(µ0; z)

]
, τn 6= 0, n ≥ 1, (6)

where Dq[F (z)] = F (q−1/2z)−F (q1/2z)
q−1/2z−q1/2z

and {n}q is such that Dq[zn] = {n}q zn−1. In view of
(6) we say that {µ0, µ1} satisfies a coherence type property of the second kind on the unit
circle with respect to the q-difference operator Dq in which 0 < q < 1.

Coming back to measures and orthogonal polynomials on the real line, let us recall
that the connection formulas in (4) hold when the pair of measures {ν0, ν1} satisfies the
coherence property (3). This means, from results shown in [61], the formulas in (4)
hold when one of the measures in {ν0, ν1} is classical. The extension of the concept of
coherence, in which

Pn(ν1;x)− τnPn−1(ν1;x) = 1
n+ 1

[
P ′n+1(ν0;x)− ρnP ′n(ν0;x)

]
, ρn 6= 0, (7)

for n ≥ 1, where {ν0, ν1} is known as a (1, 1)-coherent pair when τn 6= 0 for n ≥ 1, is
explored in [23] by including semiclassical measures. In this case the Sobolev orthogo-
nal polynomials associated with the inner product 〈 . , . 〉S in (2) satisfy the connection
formulas

Sn+1(ν0, ν1;x)− γnSn(ν0, ν1;x) = Pn+1(ν0;x)− ρnPn(ν0;x),

S ′n+1(ν0, ν1;x)− γnS ′n(ν0, ν1;x) = (n+ 1) [Pn(ν1;x)− τnPn−1(ν1;x)] ,
n ≥ 1.

We mention that a (1, 1)-coherent pair is a particular case of the (M,N)-coherent pair
considered, for example, in [34].

We would like to emphasize that the characterization of measures that satisfy the
coherence property (7) is performed in [23] assuming the restriction ρn 6= 0 for n ≥ 1.
Observe that the results associated with the special case in which τn = 0 and ρn 6= 0 for
n ≥ 1 was already considered in [61]. Surprisingly, a complete study of the situation in
which τn 6= 0 and ρn = 0 for n ≥ 1 has not been done previously and this study is covered
in the results given in Chapter 3 of this thesis.

In Chapter 4 we consider the following extension to the study of measures which are
coherent pair of measures of the second kind on the real line. That is we consider the
characterization of measures {ν0, ν1} which are now symmetric and that the corresponding
orthogonal polynomials {Pn(ν0; ·)}n≥0 and {Pn(ν1; ·)}n≥0 satisfy

Pn(ν1;x)− τn−1Pn−2(ν1;x) = 1
n+ 1P

′
n+1(ν0;x), n ≥ 2,

where τn 6= 0 for n ≥ 1. Such a study in the case of coherent pairs of measures of the first
kind on the real line is also well known and this turned out to be a non-trivial and very
important extension. As one can observe from results given in Chapter 3, the same can
be said about our extension to coherent pairs of measures of the second kind. We have
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referred to such pairs of measures as symmetric coherent pairs of measures on the real line.

Finally in Chapter 5 we look at the orthogonal polynomials that follow from the So-
bolev inner product (2), when {ν0, ν1} is a symmetric coherent pair of measures of the
second kind on the real line.



1 Basic Background

In this chapter we collect the basic results required to the development of this work.
We also introduce the definitions and terminologies used. This material is essential for
what follows.

1.1 Positive Chain Sequences
An important theory used in the development of the present work is the theory of

positive chain sequences. Following the definition adopted by Chihara [20], we say that
a sequence of real numbers {dn}n≥1 is a positive chain sequence if there exists a second
sequence {gn}n≥0 such that

(i) 0 ≤ g0 < 1, 0 < gn < 1, for n ≥ 1;

(ii) dn = (1− gn−1)gn for n ≥ 1.

This concept was introduced by Wall [78] in his monograph on continued fractions and has
been thoroughly explored by Chihara [20] and many others in studies regarding orthogonal
polynomials defined on bounded intervals on the real line. The sequence {gn}n≥0 is called
a parameter sequence of the positive chain sequence {dn}n≥1. The parameter g0 is called
initial parameter. In general, a parameter sequence of a positive chain sequence needs
not to be unique.

Example 1.1. For α > −1 the sequence {d(α)
n }n≥1 defined by

d(α)
n = n(α + n)

(α + 2n− 1)(α + 2n+ 1) , n ≥ 1,

is a positive chain sequence in which one of its parameter sequence {g(α)
n }n≥0 is such that

g(α)
n = n

α + 2n+ 1 , n ≥ 0.

Definition 1.2. Let {dn}n≥1 be a positive chain sequence. A parameter sequence {mn}n≥0
is called its minimal parameter sequence if m0 = 0.

Notice that every positive chain sequence {dn}n≥1 has a minimal parameter sequence
{mn}n≥0 which can be obtained by setting m0 = 0 and

mn = dn
1−mn−1

, n ≥ 1.

22
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If the minimal parameter sequence {mn}n≥0 is the only parameter sequence of {dn}n≥1,
we say that {dn}n≥1 is uniquely determined.

When the positive chain sequence {dn}n≥1 is not uniquely determined we can also talk
about its maximal parameter sequence {Mn}n≥0.

Definition 1.3. Let {dn}n≥1 be a positive chain sequence. A parameter sequence {Mn}n≥0
is called its maximal parameter sequence if Mk > gk, k ≥ 0, for every other parameter
sequence {gn}n≥0.

The constant sequence dn = 1/4, n ≥ 1, is one of the simplest examples of positive
chain sequences with mn = n/2(n + 1) and Mn = 1/2, n ≥ 0, as the minimal parameter
sequence and maximal parameter sequence, respectively.

The following results are found in [20]. In the next theorem, we state the Wall’s
criterion for a parameter sequence to be the maximal parameter sequence.

Theorem 1.4. Let {dn}n≥1 be a positive chain sequence. A parameter sequence {Mn}n≥0
is the maximal parameter sequence of {dn}n≥1 if and only if

∞∑
k=1

M1M2 · · ·Mk

(1−M1)(1−M2) · · · (1−Mk)
=∞.

Theorem 1.5. Let {dn}n≥1 be a positive chain sequence and let {mn}n≥0 and {Mn}n≥0
be, respectively, its minimal and maximal parameter sequences. Let {d̃n}n≥1 be a positive
chain sequence with a parameter sequence {hn}n≥0. If dn ≤ d̃n for n ≥ 1, then

mn ≤ hn ≤Mn, n ≥ 0.

Moreover, if we have in addition dn0 < d̃n0 for some n0 ≥ 1, then

mn < hn for n ≥ n0 and hj < Mj for j = 0, 1, . . . , n0 − 1.

Now we state an useful comparison test for chain sequences.

Theorem 1.6 (Comparison Test). Let {dn}n≥1 be a positive chain sequence and let
{cn}n≥1 be a sequence. If 0 < cn ≤ dn for n ≥ 1, then {cn}n≥1 is also a positive chain
sequence.

Theorem 1.7. Let {dn}n≥1 be a positive chain sequence such that lim
n→∞

dn = d, then

0 ≤ d ≤ 1/4.

Moreover, if {dn}n≥1 is uniquely determined, then

lim
n→∞

mn = 1
2[1 +

√
1− 4d].

Otherwise, if {dn}n≥1 has multiple parameters sequences, then

lim
n→∞

mn = 1
2[1−

√
1− 4d] and lim

n→∞
Mn = 1

2[1 +
√

1− 4d].

To denote other positive chain sequences, we will use the notation

bk,n = bn+k, k ≥ 1,

where {bn}n≥0 is any sequence.
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Theorem 1.8. Let {dn}n≥1 be a positive chain sequence with parameter sequence {gn}n≥0
and let {mn}n≥0 and {Mn}n≥0 be, respectively, its minimal and maximal parameter se-
quences. Then

(i) {d1,n}n≥1 is a positive chain sequence with parameter sequence {g1,n}n≥0.

(ii) If {m̃n}n≥0 denotes the minimal parameter sequence of {d1,n}n≥1, then m̃n < m1,n
for n ≥ 0.

(iii) {M1,n}n≥0 is the maximal parameter sequence of {d1,n}n≥1.

Remark 1.9. Note that the positive chain sequence {dn}n≥1 can be such that
M0 = m0 = 0. But, it is important to note that always 0 < m1,0 ≤ M1,0 < 1. The
equality m1,0 = M1,0 holds when the positive chain sequence {dn}n≥1 has a unique para-
meter sequence.

1.2 Special Functions
In this section we give a short overview on special functions, q-special functions, hy-

pergeometric series and basic hypergeometric series. We refer to, for example, Andrews,
Askey and Roy [1], Ismail [33], Gasper and Rahman [26], Koekoek, Lesky and Swarttouw
[37] and Slater [70].

For a ∈ C, the shifted factorial or Pochhammer symbol is defined by

(a)0 = 1 and (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), n ≥ 1. (1.1)

Since (1)n = n! for n ≥ 0, the above definition can be seen as a generalization of the
factorial. Also, we denote by Γ(z) the Gamma function which is defined by the gamma
integral

Γ(z) =
∫ ∞

0
tz−1e−tdt, Re(z) > 0.

The Gamma function satisfies the well-known property Γ(z + 1) = zΓ(z) with Γ(1) = 1,
which shows that Γ(n+ 1) = n! and Γ(z + n) = (z)nΓ(z) for n ≥ 0.

The hypergeometric function rFs is defined by the series

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣∣z
)

= rFs(a1, . . . , ar; a1, . . . , as; z)

=
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k! .
(1.2)

Here bi 6= 0,−1,−2, . . ., for all i. If ai = −n, n = 0, 1, 2, . . . , for some i, then this hyperge-
ometric function is a polynomial in z. The radius of convergence ρ of the hypergeometric
series is given by

ρ =


∞, if r < s+ 1,
1, if r = s+ 1,
0, if r > s+ 1.

One of the most important summation formulas for hypergeometric series is given by
the Binomial Theorem

1F0

(
a
−

∣∣∣∣∣z
)

=
∞∑
k=0

(a)k
k! z

k = (1− z)−a, |z| < 1,
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which is a generalization of Newton binomial

1F0

(
−n
−

∣∣∣∣∣z
)

=
n∑
k=0

(−n)k
k! zk =

n∑
k=0

(
n

k

)
(−z)k = (1− z)n, n = 0, 1, 2, . . . .

When p = 2 and q = 1 the hypergeometric series defined on (1.2), usually called the
Gauss hypergeometric series, is given by

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k! , |z| < 1.

Now let us introduce the notion of q-analogues (or q-extensions) for some special
functions and classical formulas which will be necessary in the development of our work.
Unless otherwise stated, we shall always assume 0 < q < 1. Notice that

lim
q→1

1− qa
1− q = a, a ∈ C.

The number (1− qa)/(1− q) is sometimes called the basic number (or q-number).
The q-analogue of the Pochhammer symbol (1.1) is defined by

(a; q)0 = 1, (a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n = 1, 2, . . . .

Clearly,
lim
q→1

(qa; q)n
(1− q)n = (a)n.

The symbols (a; q)n are called q-Pochhammer symbols (or q-shifted factorials). For nega-
tive subscripts we define

(a; q)−n = 1
n∏
k=1

(1− aq−k)
= 1

(aq−n; q)n
, a 6= qn, n = 1, 2, . . . .

We can also define
(a; q)∞ =

∞∏
n=0

(1− aqn),

which implies that
(a; q)n = (a; q)∞

(aqn; q)∞
.

The multiple q-Pochhammer symbols are defined by

(a1, a2, . . . , ak; q)n =
k∏
i=1

(ai; q)n.

The function Γq(z) defined by

Γq(z) = (q; q)∞
(qz; q)∞

(1− q)1−z,

is called the q-Gamma function. This is a q-analogue of the Gamma function Γ(z). In
fact, we have

lim
q→1

Γq(z) = Γ(z).
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It is easily seen that Γq(z) satisfies the functional equation

Γq(z + 1) = 1− qz
1− q Γq(z), with Γq(1) = 1.

A basic hypergeometric or q-hypergeometric series is given by

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣∣q, z
)

= rφs(a1, . . . , ar; b1, . . . , bs; q, z)

=
∞∑
k=0

(a1, a2, . . . , ar; q)k
(q, b1, . . . , bs; q)k

(
(−1)kqk(k−1)/2

)s+1−r
zk.

(1.3)

Here the parameters bi are such that the denominator factors in the terms of the series
are non-zero. Since (q−n; q)k = 0, k = n + 1, n + 2, . . ., if ai for some i is of the form
q−n, where n is a nonnegative integer, this basic hypergeometric series is a polynomial of
degree n in z. The radius of convergence of this series is 1, 0 or ∞ accordingly r = s+ 1,
r > s+ 1 or r < s+ 1, as can be seen from the ratio test.

The q-hypergeometric series is a q-analogue of the hypergeometric series defined by
(1.2) since

lim
q→1 rφs

(
qa1 , . . . , qar

qb1 , . . . , qbs

∣∣∣∣∣q, (q − 1)s+1−rz

)
= rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣∣z
)
.

If we set r = 2, s = 1, a1 = qa, a2 = qb and b1 = qc in (1.3), we get

2φ1
(
qa, qb; qc; q, z

)
=
∞∑
k=0

(qa; q)k (qb; q)k
(qc; q)k (q; q)k

zk. (1.4)

This is the q-analogue of the Gauss hypergeometric series. The 2φ1 series was studied by
Heine around the mid 19th-century and is usually called Heine’s series or, in view of the
base q, the basic hypergeometric series or q-hypergeometric series, or simply a q-series.

1.3 q-Difference Operators
In this section we give a short overview on some q-difference operators. For further

information, we refer to, for example, Ismail [33] and Koekoek, Lesky and Swarttouw [37].
In [28] W. Hahn introduced the linear operator Aq,ω defined by

Aq,ω[F (z)] = F (qz + ω)− F (z)
(q − 1)z + ω

, 0 < q < 1,

where w is a complex number. This operator is called Hahn’s q-operator. As a special
case of Aq,ω we have the q-difference operator

DH
q [F (z)] = Aq,0[F (z)] = F (z)− F (qz)

(1− q)z . (1.5)

Clearly,
DH
q [zn] = 1− qn

1− q z
n−1.

In particular for differentiable function F (z) we have limq→1 D
H
q [F (z)] = F ′(z).
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Another q-difference operator is the Askey-Wilson divided difference operator DA-W
q

(see [33]) defined by

DA-W
q [f(x)] = F (q1/2eiθ)− F (q−1/2e−iθ)

(q1/2 − q−1/2)(z − 1/z)/2 , x = (z + 1/z)/2, (1.6)

where f(x) = F (z), z = e±iθ. Here θ is not necessarily real.
The q-difference operator Dq of our interest is defined by

Dq[F (z)] = F (q−1/2z)− F (q1/2z)
q−1/2z − q1/2z

, (1.7)

where we assumed 0 < q < 1. It is not difficult to see that

lim
q→1

Dq[F (z)] = F ′(z),

if the function F is differentiable at z.
The action of the operator Dq on the monomial zn is given by

Dq[zn] = {n}q zn−1, n ≥ 1,

where
{n}q = 1− qn

q(n−1)/2(1− q) = q−n/2 − qn/2

q−1/2 − q1/2 .

Note that {0}q = 0 and limq→1{n}q = n, n ≥ 1.
Moreover, if we apply the operator Dq on the q-hypergeometric series 2φ1 as in (1.4),

then

Dq

[
2φ1

(
qa, qb; qc; q, r̃z

)]
= r̃

(1− qa)(1− qb)
(1− qc)(1− q) 2φ1

(
qa+1, qb+1; qc+1; q, q−1/2r̃z

)
. (1.8)

Remark 1.10. The q-difference operator Dq and the numbers {n}q can also be referred
to as the (q−1/2, q1/2) - derivative and the (q−1/2, q1/2) - integers, respectively. These termi-
nologies come from the so-called (p, q) - calculus or post-quantum calculus introduced in
[19] (see also [67] and the references therein).

Remark 1.11. Note that

DH
q [F (z)] = Dq[F (q1/2z)] and (z2 − 1)DA-W

q [F (z)] = 2z2Dq[F (z)],

where DH
q and DA-W

q are the operators given by (1.5) and (1.6), respectively.

1.4 Orthogonal Polynomials on the Real Line
This section summarizes the basic concepts about moment functionals and orthogonal

polynomials on the real line to be used in the sequel. These concepts can be found in
Chihara [20], Ismail [33] and Szegő [74].

In [51] appears an algebraic approach to the study of linear functionals defined on the
space of polynomials. This work by P. Maroni has shown to be an attractive alternative
approach to the study of orthogonal polynomials since it provides a general perspective



Orthogonal Polynomials on the Real Line 28

to the study of the topic (see also [53, 55, 56]). Since we use here this approach, we give
below some of the required basic concepts.

Let v be a linear functional defined on the linear space P of polynomials with complex
coefficients and consider P′ its algebraic dual space, i.e., the linear space of all linear
functionals defined on P. If v ∈ P′ and p is a polynomial, 〈〈v, p〉〉 will denote the image of
p by v. We begin by presenting some definitions of some basic operations in the space P∗.

Definition 1.12. Let v ∈ P∗, π ∈ P and q ∈ C.

(i) The left multiplication of v by π, denoted by πv, is the linear functional on P∗
defined by

〈〈πv, p〉〉 = 〈〈v, πp〉〉, p ∈ P.

(ii) The distributional derivative of v, denoted by Dv, is the linear functional on P∗
defined by

〈〈Dv, p〉〉 = − 〈〈v, p′〉〉, p ∈ P.

It satisfies
D(πv) = π′v + πDv.

(iii) We define the division of v by (x− q) as〈〈 1
x− q

v, p
〉〉

=
〈〈

v,
p(x)− p(q)
x− q

〉〉
, p ∈ P.

(iv) The linear functional δq given by

〈〈δq , p〉〉 = p(q), p ∈ P,

is said to be the Dirac delta linear functional supported at q .

It is straightforward verified that

(x− q)
[

1
x− q

v
]

= v and 1
x− q

[(x− q) v] = qv− (v)0 δq .

Every linear functional v ∈ P∗ can be associated with a sequence of complex numbers
{(v)n}n≥0 where

(v)n = 〈〈v, xn〉〉 , n = 0, 1, 2, . . . ,

which is called the sequence of moments of v. Each (v)n is said to be the moment of order
n of v, n ≥ 0. Since the moments (v)n play a central role in the study of these linear
functionals, it is also customary to call such linear functionals as moment functionals.

The Gram matrix associated with the moment functional v in terms of the canonical
basis {xn}n≥0 of P is given by

H =
[
(v)i+j

]∞
i,j=0

=



(v)0 (v)1 · · · (v)n · · ·
(v)1 (v)2 · · · (v)n+1 · · ·
... ... . . . ...

(v)n (v)n+1 · · · (v)2n · · ·
... ... ... . . .

 , (1.9)
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and it is known in the literature as Hankel matrix. We denote the determinant of the
(n+ 1)-th principal leading submatrix of H as ∆n.

Throughout this thesis δm,n will denote the Kronecker’s delta symbol

δm,n =

1 if m = n,

0 if m 6= n.

Definition 1.13. A sequence of monic polynomials {Pn}n≥0 such that

deg(Pn) = n and 〈〈v, PmPn〉〉 = hnδm,n, hn 6= 0, m, n = 0, 1, 2, . . . ,

is said to be a sequence of monic orthogonal polynomials (MOP) with respect to v.

A direct consequence of the above definition is that a sequence of MOP {Pn}n≥0 with
respect to the moment functional v is a basis of P. Then, there exists a unique sequence
of linear functionals {vn}n≥0, called the dual basis, such that

〈〈vn, Pm〉〉 = δn,m, n,m ≥ 0, (1.10)

where δn,m denotes the Kronecker delta. As a consequence, the linear functional v can be
expressed as

v =
∞∑
n=0

γnvn, γn = 〈〈v, Pn〉〉 .

Next, we introduce some preliminary results (see [41], [55]).

Lemma 1.14. Let {Pn}n≥0 be a sequence of MOP with respect to the moment functional
v and {vn}n≥0 the corresponding dual basis, then

vn = Pn(x)
hn

v, n ≥ 0.

Lemma 1.15. If {Pn}n≥0, {P̃n}n≥0 are sequences of monic polynomials and {vn}n≥0,
{ṽn}n≥0 are their corresponding dual bases and P̃n = P ′n+1/(n+ 1), then

D(ṽn) = −(n+ 1)vn+1.

Moreover, if {Pn}n≥0 is a sequence of MOP with respect to the moment functional v

D(ṽn) = −(n+ 1)Pn+1(x)
hn+1

v, n ≥ 1.

The existence of a sequence of MOP with respect to moment functional v can be
characterized by the next theorem.

Theorem 1.16. Let v be a moment functional with its corresponding Hankel matrix given
by (1.9). A necessary and sufficient condition for the existence of a sequence of MOP with
respect to v is

∆n 6= 0, n = 0, 1, 2, . . . .

In this situation, v is said to be quasi-definite.
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The most important occurrence of orthogonal polynomials emerges when ∆n > 0 for
all n ≥ 0. In this case v is said to be a positive definite moment functional (see [20]) and
it has the integral representation

〈〈v, xn〉〉 =
∫
E
xn dν(x), n = 0, 1, 2, . . . ,

where ν is a nontrivial positive Borel measure supported on some infinite subset E ⊆ R.
The above integral is also known in the literature as Stieltjes integral.

If ν is absolutely continuous, then we have

dν(x) = ω(x)dx,

where ω : [a, b] → R is a non-negative function supported on some interval [a, b] ⊆ R
(where −∞ ≤ a < b ≤ ∞). The function ω is known as a weight function. In this case
one can write

〈〈v, xn〉〉 =
∫ b

a
xn ω(x)dx, n = 0, 1, 2, . . . . (1.11)

Remark 1.17. Since a positive definite moment functional v can be defined by a positive
measure ν, we can also refer to {Pn}n≥0 as the sequence of MOP with respect to the
positive measure ν.

One of the most important properties of orthogonal polynomials is that they satisfy a
very simple relation known as three-term recurrence relation (TTRR, for short) that we
state in the next theorem.

Theorem 1.18. Let v be a quasi-definite moment functional and let {Pn}n≥0 be its corres-
ponding sequence of MOP. Then the polynomials Pn(x) satisfy the three-term recurrence
relation

Pn+1(x) = (x− βn+1)Pn(x)− αn+1Pn−1(x), n ≥ 1, (1.12)

with P0(x) = 1 and P1(x) = x− β1, where the coefficients βn and αn+1 are given by

βn = 1
hn−1

〈〈
v, xP 2

n−1

〉〉
and αn+1 = hn

hn−1
6= 0, n ≥ 1.

Moreover, if v is positive definite, then βn is real and αn+1 > 0 for n ≥ 1.

The converse of the previous theorem is valid and it is an important characteriza-
tion of orthogonal polynomials and quasi-definite moment functionals, it is known in the
literature as Favard’s Theorem.

Theorem 1.19 (Favard). Let {βn}n≥1 and {αn}n≥1 be two arbitrary sequences of complex
numbers and let {Pn}n≥0 be a sequence of monic polynomials defined by the TTRR (1.12).
Then there exists a unique moment functional v such that

〈〈v, 1〉〉 = α1 and 〈〈v, PmPn〉〉 = 0 if n 6= m m,n = 0, 1, 2, . . . .

Moreover, v is quasi-definite and {Pn}n≥0 is its corresponding sequence of MOP if and
only if αn 6= 0 for n ≥ 1, while v is positive definite with {Pn}n≥0 as its corresponding
sequence of MOP if and only if βn ∈ R and αn > 0 for each n ≥ 1.
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Next we introduce the so-called semiclassical moment functionals. Let φ and ψ be two
nonzero polynomials such that

φ(x) = λφj x
j + . . . , λφj 6= 0, j ≥ 0, and ψ(x) = λψkx

k + . . . , λψk 6= 0, k ≥ 1.

Then, (φ, ψ) is said to be an admissible pair of polynomials if either k 6= j − 1 or if
k = j − 1, then nλφk+1 + λψk 6= 0, n ≥ 0.

Definition 1.20. A moment functional v is said to be semiclassical if v is quasi-definite
and there exist two polynomials φ and ψ such that

D(φv) = ψv, (1.13)

where (φ, ψ) is an admissible pair of polynomials.

Notice that, the pair of polynomials satisfying the Pearson equation given in Definition
1.20 is not unique since, for instance, if the admissible pair of polynomials (φ1, ψ1) satisfies
(1.13), then for every nonzero polynomial π, the pair (πφ1, πψ1 + π′φ1) also satisfies (1.13)
and it is an admissible pair of polynomials.

To a semiclassical moment functional v one can associate the class of v as the non-
negative integer number s given by

s = min
{

max{deg(φ)− 2, deg(ψ)− 1} : D(φv) = ψv and (φ, ψ) is admissible
}
.

Observe that, s is defined as the minimum value among all pairs of admissible polynomials
satisfying (1.13). For more details regarding the class of a semiclassical moment functional
see for example [55].

The equation (1.13) is known in the literature as Pearson equation (see [52], [55], [68]).
One of the most important families of polynomials on the real line are the so-called

classical orthogonal polynomials. They are the Hermite, Laguerre, Besel and Jacobi poly-
nomials (some special cases are the Gegenbauer, Chebyshev and Legendre polynomials).
These families are a special case of the semiclassical orthogonal polynomials since their
corresponding moment functional v is of class s = 0.

In the next table, we describe the main parameters of the classical families of MOP.

Pn Hermite Laguerre Jacobi Bessel

v H Lα Jα,β Bα
φ 1 x 1− x2 x2

ψ −2x −x+ α + 1 −(α + β + 2)x+ β − α (α + 2)x+ 2

ω(x) e−x
2

xαe−x (1− x)α(1− x)β xαe−2/x

E R (0,+∞) [−1, 1] {z ∈ C : |z| = 1}

βn 0 α + 2n− 1 β2−α2

(α+β+2n−2)(α+β+2n) − 2α
(α+2n−2)(α+2n)

αn+1
n

2 n(α + n) 4n(α+n)(β+n)(α+β+n)
(α+β+2n−1)(α+β+2n)2(α+2n+1)

−4n(α+n)
(α+2n−1)(α+2n)2(α+β+2n+1)

−α /∈ N −α,−β,−(α + β) /∈ N α /∈ {0,−1,−2, . . .}

Table 1.1: The Classical families of MOP
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The classical MOP are the only monic orthogonal polynomials such that their cor-
responding moment functional v satisfies the Pearson equation (1.13) with deg(φ) ≤ 2
and deg(ψ) = 1. In this case, we say that v is classical. In addition, a classical moment
functional v has an integral representation as (1.11).

Remark 1.21. The moment functionals H, Lα, Jα,β and Bα of the Table 1.1 are quasi-
definite for all ranges of their parameters. Moreover, H is positive definite, Lα is positive
definite if α > −1 and Jα,β is positive definite if α > −1 and β > −1.

Another important fact is that sequences of MOP satisfy the so-called Christoffel-
Darboux identity.

Theorem 1.22 (Christoffel-Darboux Formula). Let {Pn}n≥0 be a sequence of MOP sa-
tisfying the TTRR (1.12) with αn+1 6= 0 for n ≥ 1. Then

n∑
j=0

Pj(x)Pj(y)
hj

= 1
hn
Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

x− y
, n ≥ 0.

Moreover, if v is positive definite then
n∑
j=0

P 2
j (x)
hj

= 1
hn

[P ′n+1(x)Pn(x)− Pn+1(x)P ′n(x)] > 0, n ≥ 0.

Let v be a quasi-definite moment functional and let {Pn}n≥0 be its corresponding
sequence of MOP. Given a real or complex number κ and let the moment functional
(x− κ)v be defined by (see [20])

〈〈(x− κ)v, xn〉〉 = (v)n+1 − κ(v)n, n = 0, 1, 2, . . . .

It follows immediately that for every polynomial p ∈ P

〈〈(x− κ)v, p〉〉 = 〈〈v, (x− κ)p〉〉 .

We define the polynomials P ∗n(κ, x) by

P ∗n(κ, x) = (x− κ)−1
[
Pn+1(x)− Pn+1(κ)

Pn(κ) Pn(x)
]
, n ≥ 0,

where κ is assumed not to be a zero of Pn(x).

Theorem 1.23. Let v be a quasi-definite moment functional and let {Pn}n≥0 be its cor-
responding sequence of MOP. If κ is not a zero of Pn(x) for any n, then (x − κ)v is
quasi-definite and {P ∗n(κ, ·)}n≥0 its the corresponding sequence of MOP.

Moreover, if v is positive-definite on [a, b], then (x − κ)v is also positive-definite on
[a, b] if and only if a ≥ κ.

We will refer to P ∗n(κ, x) as the monic kernel polynomials corresponding to v (or
corresponding to the sequence {Pn}n≥0) with K-parameter κ.

An important family of moment functionals is constituted by the symmetric moment
functionals, i.e., 〈〈v, x2n+1〉〉 = 0 for every n ≥ 0. If v is a quasi-definite moment functio-
nal and {Pn}n≥0 is its corresponding sequence of MOP, then we can define the moment
functional u by

〈〈u, xn〉〉 =
〈〈
v, x2n

〉〉
, n ≥ 0. (1.14)
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We can also define the sequences of monic polynomials {Qn}n≥0 and {Q̃n}n≥0 by

P2n(x) = Qn(x2) and P2n+1(x) = xQ̃n(x2). (1.15)

Thus u is a quasi-definite moment functional and {Qn}n≥0 and {Q̃n}n≥0 are the sequences
of MOP with respect to u and xu, respectively (see [20]).

Conversely, if u is a quasi-definite moment functional, it is possible to define the
symmetric moment functional v by〈〈

v, x2n
〉〉

= 〈〈u, xn〉〉 and
〈〈
v, x2n+1

〉〉
= 0, n ≥ 0. (1.16)

If u and xu are quasi-definite moment functionals and {Qn}n≥0 and {Q̃n}n≥0 are,
respectively, the corresponding sequence of MOP. Then the symmetric moment functional
v defined by (1.16) is quasi-definite and its sequence of MOP {Pn}n≥0 is given by (1.15)
(see [20]).

Remark 1.24. Note that {Q̃n}n≥0 are the kernel polynomials corresponding to u withK-
parameter 0, i.e., Q̃n(x) = Q∗n(0, x). Besides, v is called the symmetrized linear functional
of u.

Given a semiclassical quasi-definite moment functional u, the semiclassical character
of the symmetrized linear functional of u, its class, and the respective Pearson equation
are described in the next theorem and were proved in [3].

Theorem 1.25. Let u be semiclassical moment functional of class s̃ satisfying the Pearson
equation

D(Φu) = Ψu.

Let v denote the symmetrization of u and let xu be a quasi-definite moment functional
and Π(x) = −Φ′(x) + 2Ψ(x). Then, v is semiclassical of class s satisfying the Pearson
equation given by (1.13), where the number s and the polynomials φ and ψ are defined
according to the next cases:

(i) If Φ(0) = 0 and Π(0) = 0, then

φ(x) = (θ0Φ)(x2), ψ(x) = x[−(θ2
0Φ)(x2) + 2(θ0Ψ)(x2)],

and s = 2s̃.

(ii) If Φ(0) = 0 and Π(0) 6= 0, then

φ(x) = x(θ0Φ)(x2), ψ(x) = 2Ψ(x2),

and s = 2s̃ + 1.

(iii) If Φ(0) 6= 0, then

φ(x) = xΦ(x2), ψ(x) = 2[x2Ψ(x2) + Φ(x2)],

and s = 2s̃ + 3.

Here, (θqp)(x) = p(x)− p(q)
x− q

, p ∈ P.
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Corollary 1.26. If s is odd, then the polynomials φ and ψ in (1.13) are, respectively, odd
and even functions. If s is even, then the polynomials φ and ψ in (1.13) are, respectively,
even and odd functions.

Finally, we present a well known relation between a sequence of MOP and positive
chain sequence (see [20, Chapter IV, Theorem 2.4]). This result will be required in our
study.

Theorem 1.27. Let {Pn}n≥0 be the sequence of MOP with respect to the positive definite
moment functional v with support on (a, b) ⊆ R and let the sequence {an(t)}n≥1 be given
by

an(t) = αn+1

(t− βn)(t− βn+1) , n ≥ 1,

where {βn}n≥1 and {αn+1}n≥1 are the coefficients of the corresponding TTRR (1.12). Then
for t ∈ R \ (a, b), the sequence {an(t)}n≥1 is a positive chain sequence and its minimal
parameter sequence mn(t)n≥0 is such that

m0(t) = 0 and mn(t) = 1− Pn+1(t)
(t− βn+1)Pn(t) = αn+1Pn−1(t)

(t− βn+1)Pn(t) , n ≥ 1.

Example 1.28. For λ > −1 and 0 < q < 1, let us denote by {Ĉn(x; qλ+1|q)}n≥0 the
sequence of monic continuous q-ultraspherical polynomials given by

Ĉn(x; qλ+1|q) = (q; q)n
2n (qλ+1; q)n

Cn(x; qλ+1|q), n ≥ 0,

where
Cn(x; qλ+1|q) = (qλ+1; q)n

(q; q)n
einθ 2φ1

(
q−n, qλ+1

q−λ−n
q, q−λe−2iθ

)
is the continuous q-ultraspherical (or Rogers) polynomials the n-th degree usually defined
(see, for example, [5] and [37, p. 469]).

It is known that, with the positive measure ν(x; qλ+1|q) on [−1, 1] given by

dν(x; qλ+1|q) = (e2iθ, e−2iθ; q)∞
(qλ+1e2iθ, qλ+1e−2iθ; q)∞

(sin θ)−1dx, x = cos θ,

there holds the orthogonality relation∫ 1

−1
Ĉn(x; qλ+1|q) Ĉm(x; qλ+1|q) dν(x; qλ+1|q) = hn(qλ+1|q)δm,n, for m,n = 0, 1, 2, . . . ,

with
hn(qλ+1|q) = π(qλ+1, qλ+2; q)∞

(q, q2λ+2; q)∞
(1− qλ+1)(q2λ+2; q)n(q; q)n
22n−1(1− qλ+n+1)(qλ+1; q)2

n

, n ≥ 0.

The monic continuous q-ultraspherical polynomials {Ĉn(x; qλ+1|q)}n≥0 satisfy the TTRR

Ĉn+1(x; qλ+1|q) = xĈn(x; qλ+1|q)− d(λ)
n+1(q)Ĉn−1(x; qλ+1|q), n ≥ 1,

with Ĉ0(x; qλ+1|q) = 1 and Ĉ1(x; qλ+1|q) = x, where the coefficients d(λ)
n+1(q) are given by

d
(λ)
n+1(q) = (1− qn) (1− q2λ+n+1)

4
(
1− qλ+n

) (
1− qλ+n+1

) , n ≥ 1. (1.17)
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Since the coefficients of the TTRR for the monic q-ultraspherical orthogonal polyno-
mials are

β(λ)
n (q) = 0 and α

(λ)
n+1(q) = d

(λ)
n+1(q), n ≥ 1,

by Theorem 1.27, the sequence

aλn,q(t) = α
(λ)
n+1(q)

(t− β(λ)
n (q))(t− β(λ)

n+1(q))
= d

(λ)
n+1(q)
t2

, n ≥ 1,

is a positive chain sequence for t ∈ R \ (−1, 1). In particular, if t = 1, the sequence
{d(λ)

n+1(q)}n≥1 is a positive chain sequence.

1.5 Orthogonal Polynomials on the Unit Circle
In this section we give some of the basic results on the theory of orthogonal polynomials

on the unit circle to be used in the next chapter. The basic sources for this section are
Ismail [33] and Simon [69].

We consider a linear functional L in the linear space Λ = span{zn : n ∈ Z} of the
Laurent polynomials with complex coefficients such that

µn = 〈〈L, zn〉〉 = 〈〈L, z−n〉〉 = µ−n, n ∈ Z.

The complex numbers {µn}n∈Z are said to be the moments associated with L. The linear
functional L can be referred to as a moment functional. Under these conditions, we can
introduce a bilinear form associated with L in the space P of polynomials with complex
coefficients as follows

〈p(z), q(z)〉L =
〈〈
L, p(z)q(1/z)

〉〉
, p, q ∈ P.

The Gram matrix associated with this bilinear form in terms of the monomial basis
{zn}n≥0 of P is

T =
[
〈zi, zj〉L

]∞
i,j=0

=



µ0 µ−1 · · · µ−n · · ·
µ1 µ0 · · · µ−n+1 · · ·
... ... . . . ...
µn µn+1 · · · µ0 · · ·
... ... ... . . .

 ,

known in the literature as Toeplitz matrix. Notice that T is an Hermitian matrix. We
denote the determinant of the (n+ 1)× (n+ 1) principal leading submatrix of T as ∇n,
with the convention ∇−1 = 1.

The moment functional L is said to be quasi-definite (respectively, positive definite) if
∇n 6= 0 (respectively, ∇n > 0) for n ≥ 0, and there exists a sequence of monic polynomials
{Φn}n≥0 such that

〈Φn(z),Φm(z)〉L = knδn,m,

where kn 6= 0, n ≥ 0. This sequence is said to be the monic orthogonal polynomial
sequence corresponding to L.
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In the positive definite case, there exists a nontrivial positive measure µ(z) = µ(eiθ)
supported on the unit circle T = {z = eiθ : 0 ≤ θ ≤ 2π} such that

〈f, g〉µ = 〈f(z), g(z)〉L =
∫
T
f(z)g(z)dµ(z)

and the associated sequence of monic orthogonal polynomials {Φn}n≥0 is usually defined
by

〈Φn,Φm〉µ =
∫
T

Φn(z)Φm(z)dµ(z) =
∫ 2π

0
Φn(eiθ)Φm(eiθ)dµ(eiθ) = κ−2

n δn,m, n,m ≥ 0,

where κ−2
n = ||Φn||2 =

∫
T |Φn(z)|2dµ(z). This sequence is said to be the sequence of monic

orthogonal polynomials on the unit circle (OPUC, in short) that are also known in the
literature as Szegő polynomials. Here, µ is a nontrivial measure if its support is infinite.
In addition, µ is said to be a probability measure if

∫
T dµ(z) = 1.

The monic OPUC satisfy the so-called forward and backward recurrence relations,
respectively,

Φn(z) = zΦn−1(z)− an−1Φ∗n−1(z),

Φn(z) = (1− |an−1|2)zΦn−1(z)− an−1Φ∗n(z),
n ≥ 1, (1.18)

where an−1 = −Φn(0) and Φ∗n(z) = znΦn(1/z) denotes the reversed (reciprocal) polyno-
mial of Φn(z). Following Simon [69] we refer to the numbers an as Verblunsky coefficients.
It is known that these coefficients are such that |an| < 1, n ≥ 0. It is also well known that
OPUC are completely characterized by the coefficients {an}n≥0 as given by the following
theorem.

Theorem 1.29. Given an arbitrary sequence of complex numbers {an}n≥0, where |an| < 1,
n ≥ 0, then associated with this sequence there exists a unique nontrivial probability mea-
sure on the unit circle such that the polynomials generated by (1.18) are the corresponding
OPUC.

In the next examples we introduce the “general circular Jacobi monic polynomials”
and “general Pastro orthogonal monic polynomials”. These polynomials, which are a
generalization of the polynomials analyzed in [4] and [66], were extensively studied in [72]
and [18]. Neither of these polynomials are in the list of examples discussed in the Section
1.6 of [69].

Example 1.30 (General circular Jacobi monic polynomials). Let b = λ+ iη be such that
λ > −1/2. The polynomials

Φ(b)
n (z) = (b)n

(b+ 1)n 2F1(−n, b+ 1; −b− n+ 1; z), n ≥ 0, (1.19)

are the monic OPUC defined by〈
Φ(b)
m ,Φ(b)

n

〉
µ(b)

=
∫
T

Φ(b)
m (ζ) Φ(b)

n (ζ) dµ(b)(ζ) = A(b)
n δn,m,

with respect to the probability measure µ(b) supported on the unit circle. The probability
measure µ(b) is such that

i2πζ dµ
(b)(ζ)
dζ

= τ (b)w(b)(ζ), with w(b)(eiθ) = e(π−θ) Im(b)(4 sin2(θ/2))Re(b), (1.20)
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where
τ (b) = |Γ(b+ 1)|2

Γ(b+ b̄+ 1)
.

Moreover, the coefficients A(b)
n satisfy

A(b)
n = (b+ b̄+ 1)n n!

|(b+ 1)n|2
, n ≥ 0.

There is also an alternative expression for Φ(b)
n (see [72])

Φ(b)
n (z) = (b+ b̄+ 1)n

(b+ 1)n 2F1(−n, b+ 1; b+ b̄+ 1; 1− z), n ≥ 0.

Example 1.31 (General Pastro orthogonal monic polynomials). Let b = λ + iη be such
that λ > −1/2. The polynomials

Φ(b)
n (q; z) = (qb; q)n

(qb+1; q)n
qn/2

2φ1(q−n, qb+1; q−b−n+1; q, q−b+1/2z), n ≥ 0, (1.21)

are q-analogues of the polynomials given by (1.19) since limq→1 Φ(b)
n (q; z) = Φ(b)

n (z). These
monic polynomials are OPUC satisfying〈

Φ(b)
m(q; . ),Φ(b)

n (q; . )
〉
µ

(b)
q

=
∫
T

Φ(b)
m(q; ζ) Φ(b)

n (q; ζ) dµ(b)
q (ζ) = A(b)

n (q) δn,m, (1.22)

with respect to the probability measure µ(b)
q supported on the unit circle. The probability

measure µ(b)
q is such that

i2πζ
dµ(b)

q (ζ)
dζ

= τ (b)
q w(b)

q (ζ), with w(b)
q (ζ) = |(q1/2ζ; q)∞|2

|(qb+1/2ζ; q)∞|2
, (1.23)

where

τ (b)
q = (q; q)∞(qb+b+1; q)∞

(qb+1; q)∞(qb+1; q)∞
= |Γq(b+ 1)|2

Γq(b+ b̄+ 1)
. (1.24)

Also, the coefficients A(b)
n (q) satisfy

A(b)
n (q) = (qb+b+1; q)n (q; q)n

|(qb+1; q)n|2
, n ≥ 0.

1.6 Para-orthogonal Polynomials on the Unit Circle
and Positive Chain Sequences

Given a sequence {Φn}n≥0 of monic OPUC with respect to the positive measure µ on
the unit circle, the associated sequence {Ψn}n≥0 of monic para-orthogonal polynomials on
the unit circle (POPUC for short) is such that

Ψn(z) = zΦn−1(z)− ρnΦ∗n−1(z), n ≥ 1,

where ρn is a any sequence of complex numbers such that |ρn| = 1. These polynomials are
interesting since their zeros are all simple and lie on the unit circle T. As an application,
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the zeros of these polynomials are used in the quadrature rules on the unit circle. These
facts were first observed in [35].

Let us consider some results established in [13] and [9]. Let the sequences of polyno-
mials {Rn}n≥0 and {Qn}n≥0 be such that

Rn+1(z) = [(1 + icn+1)z + (1− icn+1)]Rn − 4dn+1zRn−1(z),

Qn+1(z) = [(1 + icn+1)z + (1− icn+1)]Qn − 4dn+1zQn−1(z),
n ≥ 1. (1.25)

with R0(z) = 1, Q0(z) = 0, R1(z) = (1 + ic1)z+ (1− ic1) and Q1(z) = 2d1, where {cn}n≥1
is a sequence of real numbers and {dn}n≥1 is a positive chain sequence.

Remark 1.32. Note that the first element d1 of the positive chain sequence {dn}n≥1
doest not affect the sequence of polynomials {Rn}n≥0, however has an influence in the
sequence of polynomials {Qn}n≥0 and consequently, in the results of this section (see [13]
for more details).

From the recurrence formula (1.25) we have

R∗n(z) = znRn(1/z) = Rn(z) and Q∗n(z) = zn−1Qn(1/z) = Qn(z), n ≥ 1.

With this property the polynomials {Rn}n≥0 and {Qn}n≥0 can be called self-inversive

polynomials. Moreover, if Rn(z) =
n∑
k=0

rn,kz
k and Qn(z) =

n−1∑
k=0

qn,kz
k, then

rn,n = rn,0 =
n∏
k=1

(1 + ick), n ≥ 1, and qn,n−1 = qn,0 = 2d1

n∏
k=2

(1 + ick), n ≥ 2.

Lemma 1.33. Let {Rn}n≥0 and {Qn}n≥0 be the sequences of polynomials obtained from
(1.25). Then there exist two series expansions

E0(z) = −
∞∑
n=0

νn+1z
n and E∞(z) =

∞∑
n=1

ν−n+1z
−n,

where νn = −ν−n+1, n ≥ 1, such that there hold the correspondence properties

E0(z)− Qn(z)
Rn(z) = γn

rn,n
zn +O(zn+1) and E∞(z)− Qn(z)

Rn(z) = γn
rn,n

1
zn+1 +O((1/z)n+2),

for n ≥ 0. Moreover, if the moment functional L on the space of Laurent polynomials is
defined by 〈〈

L, z−n
〉〉

= νn, n = 0,±1,±2, . . . ,

then the polynomials Rn satisfy the orthogonality property

〈〈
L, z−n+jRn

〉〉
=


−γn, j = −1,
0, j = 0, 1, . . . , n− 1,
γn, j = n,

n ≥ 1.

Here, γ0 = ν0 = 2d1

1 + ic1
and γn = 4dn+1

1 + icn+1
γn−1, n ≥ 1.
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Theorem 1.34. Taking into account the real sequence {cn}n≥1 and the positive chain
sequence {dn}n≥1 there exists a unique nontrivial probability measure µ on the unit circle.
If M0 > 0, where {Mn}n≥0 is the maximal parameter sequence of {dn}n≥1, then µ has a
pure point of mass M0 at z = 1. Let L be the moment functional associated with {cn}n≥1
and {dn}n≥1 as given by Lemma 1.33. Then〈〈

L, z−n
〉〉

=
∫
T
z−n(1− z)dµ(z), n = 0,±1,±2, . . . .

Thus, from Lemma 1.33 and Theorem 1.34, it follows that

νn =
〈〈
L, z−n

〉〉
=
∫
T
z−n(1− z)dµ(z), n = 0,±1,±2, . . . ,

and for n ≥ 1 ∫
T
z−nRn(z)(1− z)dµ(z) = 0, 0 ≤ k ≤ n− 1.

Moreover, the authors of [13] proved that, if γ̂n =
∫
TRn(z)dµ(z), n ≥ 0, then

γ̂0 = 1 and γ̂n = 2(1−mn)γ̂n−1, n ≥ 1,

where {mn}n≥0 is the minimal parameter sequence of the positive chain sequence {dn}n≥1.
The following theorem is an immediate consequence of the above results.

Theorem 1.35. If the sequence of polynomials {Φn}n≥0 is such that

Φ0(z) = 1 and Φn(z)
n∏
k=1

(1 + ick) = Rn(z)− 2(1−mn)Rn−1(z), n ≥ 1,

then {Φn}n≥0 is the sequence of monic OPUC with respect to µ.

Example 1.36. Let the sequences {cn}n≥1 and {dn}n≥1 be given by

cn = η

λ+ n
, n ≥ 1,

d1 = d
(λ,ε)
1 = 1

2
2λ+ 1
λ+ 1 (1− ε), dn+1 = 1

4
n(2λ+ n+ 1)

(λ+ n)(λ+ n+ 1) , n ≥ 1
(1.26)

where λ > −1/2, η ∈ R and 0 ≤ ε < 1.
Notice that, as verified in [17], the sequence {dn}n≥1 is a positive chain sequence with

maximal parameter sequence {M (ε)
n }n≥0 given by

M
(ε)
0 = ε, M (ε)

n = 1
2

2λ+ n

λ+ n
, n ≥ 1.

The polynomials R(b)
n (z) generated by the sequences {cn}n≥1 and {dn+1}n≥1 given by

(1.26) together with the first recurrence formula (1.25) are

R(b)
n (z) = (b+ 1)n

(λ+ 1)n 2F1(−n, b+ 1; −b− n; z)

= (2λ+ 2)n
(λ+ 1)n 2F1(−n, b+ 1; b+ b+ 2; 1− z), n ≥ 0,

(1.27)
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where b = λ+ iη. Note that d1 doest not affect the polynomials R(b)
n (z).

From Theorem 1.35, if

Φ(b,ε)
n (z) = (λ+ 1)n

(b+ 1)n

[
R(b)
n (z)− 2[1−m(λ,ε)

n ]R(b)
n−1(z)

]
, (1.28)

where {m(λ,ε)
n }n≥0 is the minimal parameter sequence of the positive chain sequence {dn}n≥1,

the sequence of polynomials {Φ(b,ε)
n }n≥0 is the sequence of monic OPUC with respect the

probability measure µ(b,ε) given by∫
T
f(ζ)dµ(b,ε)(ζ) = (1− ε)

∫
T
f(ζ)dµ(b)(ζ) + ε f(1).

Observe that {Φ(b,0)
n }n≥0 is the sequence of general circular Jacobi polynomials {Φ(b)

n }n≥0
and µ(b) is the probability measure given in (1.20).



2 Pastro Polynomials and
Sobolev-Type OPUC Based on the
Dq Operator

The aim in this chapter is to consider the monic orthogonal polynomials Ψ(b,ε,s)
n (q; z)

with respect to the Sobolev-type inner product〈
f, g

〉
S

(b,ε,s)
q

=
〈
f, g

〉
µ̃

(b,ε)
q

+ s
〈
Dq[f ], Dq[g]

〉
µ

(b+1)
q

, (2.1)

where the pair of measures {µ̃(b,ε)
q , µ(b+1)

q } satisfy a coherence type property of the second
kind on the unit circle with respect to the q-difference operator Dq given by (1.7). That
is, the associated sequences of monic OPUC {Φ̃(b,ε)

n (q; ·)}n≥0 and {Φ(b+1)
n (q; ·)}n≥0 of µ̃(b,ε)

q

and µ(b+1)
q , respectively, satisfy

Dq[Φ̃(b,ε)
n (q; z)] = {n}q

[
Φ(b+1)
n−1 (q; z)− χ(b,ε)

n (q) Φ(b+1)
n−2 (q; z)

]
, n ≥ 2.

with Dq[Φ̃(b,ε)
1 (q; z)] = 1 = Φ(b+1)

0 (q; z). This property is proved in Theorem 2.9.
The measures µ(b+1)

q and µ̃(b,ε)
q , which we consider to be probability measures on the

unit circle, are defined as follows:
(i) µ(b+1)

q is the probability measure given in (1.23). We write

dµ(b+1)
q (ζ) = 1

i2πζ τ
(b+1)
q

|(q1/2ζ; q)∞|2
|(qb+3/2ζ; q)∞|2

dζ,

with

τ (b+1)
q = (q; q)∞(qb+b+3; q)∞

(qb+2; q)∞(qb+2; q)∞
= |Γq(b+ 2)|2

Γq(b+ b̄+ 3)
.

Hence, its corresponding sequence of monic OPUC are the general Pastro orthogonal
monic polynomials {Φ(b+1)

n (q; ·)}n≥0 given in the Example 1.31.

(ii) µ̃(b,ε)
q is the probability measure such that〈

f, g
〉
µ̃

(b,ε)
q

= (1− ε)τ̃ (b)
q

∫
T
f(ζ)g(ζ) |(qζ; q)∞|2

|(qb+1ζ; q)∞|2
1

i2πζ dζ + ε f(1)g(1), (2.2)

where

τ̃ (b)
q = (1− qb+1)(1− qλ+1cos ηq)(q; q)∞(q2λ+2; q)∞

(1− qλ+1cos ηq) 2φ1(q, q−b; qb+2; q, qb+1)
1

|(qb+1; q)∞|2
, ηq = −η ln(q).

More information on this probability measure will be presented in Theorems 2.6
and 2.7.

41
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We study some properties of Ψ(b,ε,s)
n (q; z) and establish the connection formulas that

they satisfy with the monic OPUC corresponding to the measure µ̃(b,ε)
q . Bounds for the

connection coefficients as well as outer relative asymptotics are also provided. The results
given in this chapter have appeared in the paper [30].

2.1 Introduction
The sequence of polynomials {pn(z;α, β)}n≥0 given by

pn(z;α, β) = 2φ1
(
q−n, qα; q−β−n+2; q, q−β+3/2z

)
, n ≥ 0, α, β ∈ R, (2.3)

was introduced by P. I. Pastro [66], where it was showed that these polynomials satisfy
the biorthogonal relation on the unit circle∫

T
pn(ζ;α, β)pm(ζ; β, α)w(ζ;α, β) 1

i2πζ dζ = hn δm,n.

Here, w(ζ;α, β) is the q-beta weight function given by

w(ζ;α, β) = (q1/2ζ; q)∞ (q1/2ζ; q)∞
(qα−1/2ζ; q)∞ (qβ−1/2ζ; q)∞

.

We remind that T ≡ {ζ = eiθ: 0 ≤ θ < 2π} and it is also assumed that 0 < q < 1.
Remark 2.1. When β = α, the sequence of polynomials {pn(z;α, α)}n≥0 is a sequence
of OPUC with respect to the positive weight function w(ζ, α, α).

The results obtained in Pastro [66] were inspired by the following results given by
R.Askey in [4, p. 304]. Let the sequence of hypergeometric polynomials {Pn(z;α, β)}n≥0
be such that

Pn(z;α, β) = 2F1
(
− n, α; −β − n+ 2; z

)
, n ≥ 0, α, β ∈ R. (2.4)

Then these polynomials satisfy the biorthogonal relation∫
T
Pn(ζ;α, β)Pm(ζ; β, α)W (ζ;α, β) 1

i2πζ dζ = Hnδm,n,

with W (eiθ;α, β) = ei(α−β)θ/2| sin(θ/2)|α+β−2.
Remark 2.2. When α = β, the weight function W (ζ;α, α) is positive on the unit circle
and the polynomials Pn(z;α, α) are OPUC with respect to this weight function.

Following [4] and [66], the parameters α and β in the polynomials (2.3) and (2.4) are
assumed to be real. However, it is now known that (see [72, 18]) the parameters α and β
can be extended to complex values.

In this chapter our goal is to consider some properties of the following three sequences
of monic polynomials

{R̂(b)
n (q; ·)}n≥0, {Φ̃(b,ε)

n (q; ·)}n≥0 and {Ψ(b,ε,s)
n (q; ·)}n≥0,

where R̂(b)
n (q; z) is defined in (2.8) below, Φ̃(b,ε)

n (q; z) is the monic OPUC with respect to
inner product (2.2), and Ψ(b,ε,s)

n (q; z) are the monic orthogonal polynomials with respect
to Sobolev-type inner product (2.1).

Using the q-difference operator (1.7), in the next sections we present the proof the
following properties:
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A) The polynomials R̂(b)
n (q; z) are such that

Dq[R̂(b)
n (q; z)] = {n}q Φ(b+1)

n−1 (q; z), n ≥ 1.

B) The polynomials Φ̃(b,ε)
n (q; z) satisfy Dq[Φ̃(b,ε)

1 (q; z)] = 1 = Φ(b+1)
0 (q; z) and

Dq[Φ̃(b,ε)
n (q; z)] = {n}q

[
Φ(b+1)
n−1 (q; z)− χ(b,ε)

n (q) Φ(b+1)
n−2 (q; z)

]
, n ≥ 2.

C) The polynomials Ψ(b,ε,s)
n (q; z) satisfy the connection formula

Ψ(b,ε,s)
n (q; z)− β(b,ε,s)

n (q) Ψ(b,ε,s)
n−1 (q; z) = Φ̃(b,ε)

n (q; z), n ≥ 1.

The polynomials Φ(b)
n (q; z) are the general Pastro orthogonal polynomials, given in

(1.21).

2.2 Preliminary Results on q-Hypergeometric Poly-
nomials

In this section we mention some results of certain families of q-hypergeometric poly-
nomials, given in [18] and [2], that we need for what follows.

First we consider the family of polynomials given by

Q(b,c,d)
n (q; z) = (qc−b+1; q)n

(qb+1; q)n
qn(b−d+1)

2φ1
(
q−n, qb+1; q−c+b−n; q, q−c+d−1z

)
, n ≥ 0,

where 0 < q < 1 and b, c and d are complex parameters with b 6= −1,−2, . . . and
c− b+ 1 6= −1,−2, . . .. These polynomials satisfy the three term recurrence formula (see
[18])

Q
(b,c,d)
n+1 (q; z) =

(
z + β

(b,c,d)
n+1

)
Q(b,c,d)
n (q; z)− α(b,c,d)

n+1 zQ
(b,c,d)
n−1 (q; z), n ≥ 1, (2.5)

with Q(b,c,d)
0 (q; z) = 1 and Q(b,c,d)

1 (q; z) = z + β
(b,c,d)
1 , where

β(b,c,d)
n = 1− qc−b+n

1− qb+n qb−d+1, α
(b,c,d)
n+1 = (1− qn) (1− qc+n+1)

(1− qb+n) (1− qb+n+1) q
b−d+1, n ≥ 1.

In addition, it was also shown in [18] that if Re(c+ 2) > Re(d) > 0, then
∫
T
ζ−jτ (b,c)v(b,c,d)

q (ζ) 1
i2πζ dζ = (q−b; q)j

(qc−b+2; q)j
qjd, j = 0,±1,±2, . . . (2.6)

and ∫
T
ζ−kQ(b,c,d)

n (ζ) τ (b,c)v(b,c,d)
q (ζ) 1

i2πζ dζ = ρ(b,c)
n δn,k, 0 ≤ k ≤ n, n ≥ 0, (2.7)

where ρ(b,c)
n = (q; q)n (qc+2; q)n

(qb+1; q)n (qc−b+2; q)n
, n ≥ 0,

v(b,c,d)
q (ζ) = (q−b+dζ; q)∞ (qb−d+1/ζ; q)∞

(qdζ; q)∞ (qc−d+2/ζ; q)∞
and τ (b,c) = (q; q)∞ (qc+2; q)∞

(qc−b+2; q)∞ (qb+1; q)∞
.
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Now let us consider the monic polynomials {R̂(b)
n (q; ·)}n≥0 given by

R̂(b)
n (q; z) = (qb+1; q)n

(qb+1; q)n 2φ1
(
q−n, qb+1; q−b−n; q, q−bz

)
, n ≥ 0, (2.8)

where b = λ + iη with λ = Re(b) > −1. These polynomials, which were extensively
studied in [2], have only simple zeros, all of them lying on the unit circle.

The polynomials R̂(b)
n (q; z) are a particular case of the polynomials Q(b,c,d)

n (q; z) with
the choice of the parameters d = b+ 1 and c = b+ b, i.e.,

Q(b,b+b,b+1)
n (q; z) = R̂(b)

n (q; z), n ≥ 0.

Another particular case of the polynomials Q(b,c,d)
n (q; z) are the general Pastro ortho-

gonal monic polynomials Φ(b)
n (q; z) stated in the Example 1.31. Indeed, with the choice

d = b+ 1/2 and c = b+ b− 1, we have

Q(b,b+b−1,b+1/2)
n (q; z) = Φ(b)

n (q; z), n ≥ 0.

Remark 2.3. The general Pastro orthogonal monic polynomials Φ(b)
n (q; z) are different

from the polynomials R̂(b)
n (q; z) since they have their zeros inside the open unit disk.

Multiplying both sides of the expression (2.8) by (qb+1; q)n/(qλ+1cos ηq; q)n, we obtain
the modified polynomials

R(b)
n (q; z) = (qb+1; q)n

(qλ+1cos ηq; q)n
R̂(b)
n (q; z)

= (qb+1; q)n
(qλ+1cos ηq; q)n 2φ1

(
q−n, qb+1; q−b−n; q, q−bz

)
, n ≥ 0,

(2.9)

where ηq = −η ln(q). From (2.5) it is possible to verify that these polynomials satisfy

R
(b)
n+1(q; z) =

[(
1 + ic

(b)
n+1(q)

)
z +

(
1− ic(b)

n+1(q)
)]
R(b)
n (q; z)− 4d(b)

n+1(q)zR
(b)
n−1(q; z), (2.10)

for n ≥ 1, with R(b)
0 (q; z) = 1 and R(b)

1 (q; z) =
(
1 + ic

(b)
1 (q)

)
z +

(
1− ic(b)

1 (q)
)
. Here,

c(b)
n (q) = qλ+n sin ηq

1− qλ+ncos ηq
and d

(b)
n+1(q) = (1− qn) (1− q2λ+n+1)

4(1− qλ+ncos ηq) (1− qλ+n+1cos ηq)
. (2.11)

Notice that the sequence {d(b)
n+1(q)}n≥1 satisfy

d
(b)
n+1(q) ≤ d

(λ)
n+1(q), n ≥ 1,

where d(λ)
n+1(q) are the coefficients given in (1.17). Moreover, in the Example 1.28 we obser-

ved that the sequence {d(λ)
n+1(q)}n≥1 is a positive chain sequence. Therefore, by Theorem

1.6 wich is the comparison test for positive chain sequences, the sequence {d(b)
n+1(q)}n≥1 is

a positive chain sequence. Moreover,

lim
n→∞

d
(b)
n+1(q) = lim

n→∞

(1− qn) (1− q2λ+n+1)
4(1− qλ+ncos ηq) (1− qλ+n+1cos ηq)

= 1
4 . (2.12)

Remark 2.4. The polynomials {R(b)
n (q; ·)}n≥0 and the sequences {c(b)

n (q)} and {d(b)
n+1(q)}

are, respectively, the q-analogues of the polynomials {R(b)
n }n≥0 and the sequences {c(b)

n }
and {d(b)

n+1} given in the Example 1.36. Indeed

lim
q→1

R(b)
n (q; z) = R(b)

n (z), lim
q→1

c(b)
n (q) = c(b)

n and lim
q→1

d
(b)
n+1(q) = d

(λ)
n+1. (2.13)
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2.3 Some Further Properties
From [71], it is known that the monic polynomials R̂(b)

n (z) given by

R̂(b)
n (z) = (λ+ 1)n

(b+ 1)n
R(b)
n (z), n ≥ 0,

where R(b)
n (z) are as in (1.27), satisfy the differential property

d

dz
R̂(b)
n (z) = nΦ(b+1)

n−1 (z), n ≥ 1. (2.14)

Here, Φ(b)
n (z) are the general circular Jacobi polynomials (1.19).

Similar to the differential property (2.14) between polynomials R̂(b)
n (z) and Φ(b+1)

n (z),
we state the following q-differential property between polynomials R̂(b)

n (q; z) and Φ(b+1)
n (q; z),

where we substitute the derivative operator by q-difference operator Dq. This corresponds
to the Property A stated in Section 2.1.

Theorem 2.5. With respect to the q-difference operator Dq given by (1.7), the polynomial
R̂(b)
n (q; z) given in (2.8) and the general Pastro monic OPUC Φ(b+1)

n−1 (q; z) given in (1.21),
satisfy

Dq[R̂(b)
n (q; z)] = {n}q Φ(b+1)

n−1 (q; z), n ≥ 1. (2.15)

Proof. By applying the q-difference operator Dq to both sides of the q-hypergeometric
expression (2.8) and using the equality (1.8), we get

Dq[R̂(b)
n (q; z)] = (qb+1; q)n

(qb+1; q)n
Dq

[
2φ1

(
q−n, qb+1; q−b−n; q, q−bz

)]

= (qb+1; q)n
(qb+1; q)n

q−b
(1− q−n)(1− qb+1)
(1− q−b−n)(1− q) 2φ1

(
q−n+1, qb+2; q−b−n+1 q, q−1/2q−bz

)
,

for n ≥ 1, and by adequately manipulating the q-Pochhammer symbols, we have

Dq[R̂(b)
n (q; z)] = 1− qn

q(n−1)/2(1− q)
(qb+1; q)n−1

(qb+2; q)n−1
q(n−1)/2

2φ1
(
q−n+1, qb+2; q−b−n+1 q, q−b−1/2z

)
,

for n ≥ 1. Here, the right hand side to the above equality is equal to the q-hypergeometric
expressions for {n}qΦ(b+1)

n−1 (q; z). This confirms the result of the theorem.

The results given below, which follows from Lemma 1.33, Theorem 1.34 and Theorem
1.35, are based on the double sequence {(c(b)

n (q), d(b)
n+1(q))}n≥1 given in (2.11).

Let Re(b) > −1 and let {M (b)
n+1(q)}n≥0 be the maximal parameter sequence of the

positive chain sequence {d(b)
n+1(q)}n≥1. That is, {M (b)

n+1(q)}n≥0 is the largest sequence such
that 0 < M (b)

n (q) < 1 for n ≥ 1 and

[1−M (b)
n (q)]M (b)

n+1(q) = d
(b)
n+1(q), n ≥ 1.

An explicit expression for M (b)
1 (q) is in (2.22) below.
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Using M (b)
1 (q) and 0 ≤ ε < 1, we now consider the augmented positive chain sequence

{d̃(b,ε)
n (q)}n≥1, where

d̃
(b,ε)
1 (q) = (1− ε)M (b)

1 (q) and d̃
(b,ε)
n+1(q) = d

(b)
n+1(q), n ≥ 1,

and let {m̃(b,ε)
n (q)}n≥0 be its minimal parameter sequence. That is,

m̃
(b,ε)
0 (q) = 0 and [1− m̃(b,ε)

n−1(q)]m̃(b,ε)
n (q) = d̃(b,ε)

n (q), n ≥ 1. (2.16)

Observe that the sequence {ε,M (b)
1 (q),M (b)

2 (q),M (b)
3 (q), . . .} is the maximal parameter se-

quence of {d̃(b,ε)
n (q)}n≥1. Observe also that m̃(b,ε)

1 (q) = (1−ε)M (b)
1 (q) and m̃(b,0)

n (q) = M (b)
n (q)

for n ≥ 1.

Theorem 2.6. Associated with the sequence of polynomials {R(b)
n (q; ·)}n≥0, (i.e., associa-

ted with {c(b)
n (q)}n≥1 and {d(b)

n+1(q)}n≥1), there exists a unique absolutely continuous proba-
bility measure on T, which we denote by µ̃(b,0)

q . Moreover, for 0 ≤ ε < 1, if {m̃(b,ε)
n (q)}n≥0

is as in (2.16) and if the probability measure µ̃(b,ε)
q is such that∫

T
f(ζ) dµ̃(b,ε)

q (ζ) = (1− ε)
∫
T
f(ζ) dµ̃(b,0)

q (ζ) + ε f(1), (2.17)

then the following hold:

• The polynomials R(b)
n (q; z) satisfy

∫
T
ζ−n+kR(b)

n (q; ζ) (1− ζ)dµ̃(b,ε)
q (ζ) = δn,k

1
2

n∏
j=0

4d̃(b,ε)
j+1(q)

1 + ic
(b)
j+1(q)

, 0 ≤ k ≤ n, n ≥ 0. (2.18)

• The sequence of monic polynomials {Φ̃(b,ε)
n (q; z)}n≥0 given by

Φ̃(b,ε)
n (q; z) = (qλ+1cos ηq; q)n

(qb+1; q)n

[
R(b)
n (q; z)− 2[1− m̃(b,ε)

n (q)]R(b)
n−1(q; z)

]
= R̂(b)

n (q; z)− 2[1− m̃(b,ε)
n (q)](1− q

λ+ncos ηq)
(1− qb+n) R̂

(b)
n−1(q; z), n ≥ 1,

(2.19)

is the sequence of monic OPUC with respect to µ̃(b,ε)
q . That is,

〈
Φ̃(b,ε)
m (q; . ), Φ̃(b,ε)

n (q; . )
〉
µ̃

(b,ε)
q

=
∫
T

Φ̃(b,ε)
m (q; ζ) Φ̃(b,ε)

n (q; ζ) dµ̃(b,ε)
q (ζ) = 0, n 6= m.

From (2.13) and (2.19) one can verify that

lim
q→1

Φ̃(b,ε)
n (q; z) = Φ(b,ε)

n (z), n ≥ 1,

where the orthogonal polynomials Φ(b,ε)
n (z) are given in (1.28).

From (2.19), for the Verblunsky coefficients {−Φ̃(b,ε)
n+1(q; 0)}n≥0 associated with the me-

asure µ̃(b,ε)
q we have

−Φ̃(b,ε)
n (q; 0) = −(qb+1; q)n

(qb+1; q)n

[
1− 2[1− m̃(b,ε)

n (q)]1− q
λ+n cos ηq

1− qb+n

]
, n ≥ 1,
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and
lim
n→∞

∣∣∣− Φ̃(b,ε)
n (q; 0)

∣∣∣ = 0.

Thus, the measure µ̃(b,ε)
q belongs to the Nevai class (see [69]) and hence, there holds the

outer ratio asymptotics

lim
n→∞

Φ̃(b,ε)
n (q; z)

Φ̃(b,ε)
n−1(q; z)

= z, (2.20)

in every compact subset of C \ D.
Theorem 2.6 states the existence of the probability measures µ̃(b,0)

q associated with
{c(b)
n (q)}n≥1 and {d(b)

n+1(q)}n≥1. The next theorem gives information about the explicit
form of µ̃(b,0)

q and also information regarding the values of Ã(b,ε)
n (q).

Theorem 2.7. The probability measure µ̃(b,ε)
q given in Theorem 2.6 is such that

dµ̃(b,0)
q (ζ) = τ̃ (b)

q w̃(b)
q (ζ) 1

i2πζ dζ, (2.21)

where

w̃(b)
q (ζ) = |(qζ; q)∞|2

|(qb+1ζ; q)∞|2
and τ̃ (b)

q = 2M (b)
1 (q) (1− qλ+1cos ηq)

(q; q)∞(q2λ+2; q)∞
|(qb+1; q)∞|2

.

Moreover, if Ã(b,ε)
n (q) =

〈
Φ̃(b,ε)
n (q; . ), Φ̃(b,ε)

n (q; . )
〉
µ̃

(b,ε)
q

, then

Ã(b,ε)
n (q) = m̃

(b,ε)
1 (q)

m̃
(b,ε)
n+1(q)

1− qλ+1cos ηq
1− qλ+n+1cos ηq

(q; q)n(q2λ+2; q)n
(qb+1; q)n(qb+1; q)n

, n ≥ 1.

Proof. From (2.7) and (2.9), with v(b,b+b,b+1)
q (ζ) = (1− ζ−1)w̃(b)

q (ζ), we have

∫
T
ζ−kR(b)

n (q; ζ) τ (b,b+b)(1− ζ−1)w̃(b)
q (ζ) 1

i2πζ dζ = δn,k
(qb+1; q)n ρ(b,b+b)

n

(qλ+1cos ηq; q)n
,

for 0 ≤ k ≤ n and n ≥ 0. Hence, by conjugation of this expression and then using the
conjugate reciprocal (reverse) property

R(b)∗
n (q; z) = znR

(b)
n (q; 1/z) = R(b)

n (q; z), n ≥ 0,

which can be easily verified from (2.10), we can also write

∫
T
ζ−n+kR(b)

n (q; ζ) (1− ζ)τ̃ (b)
q w̃(b)

q (ζ) 1
i2πζ dζ = δn,k

τ̃ (b)
q

τ (b,b+b)

(qb+1; q)n ρ(b,b+b)
n

(qλ+1cos ηq; q)n
,

for 0 ≤ k ≤ n and n ≥ 0. Comparing this with (2.18) we then have

τ̃ (b)
q

τ (b,b+b)

(qb+1; q)n ρ(b,b+b)
n

(qλ+1cos ηq; q)n
= 1

2

n∏
j=0

4d̃(b,0)
j+1(q)

1 + ic
(b)
j+1(q)

, n ≥ 0.

Thus, by using (2.11) we confirm the value of τ̃ (b)
q .
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Now to find the value of Ã(b,ε)
n (q), we first observe that

Ã(b,ε)
n (q) =

∫
T

Φ̃(b,ε)
n (q; ζ) Φ̃(b,ε)

n (q; ζ) dµ̃(b,ε)
q (ζ) =

∫
T
(ζn − 1) Φ̃(b,ε)

n (q; ζ) dµ̃(b,ε)
q (ζ), n ≥ 1.

Hence, from ζ − 1 = (1− ζ)/ζ and

ζ
n − 1
ζ − 1

=
n−1∑
j=0

ζ−j,

we find
Ã(b,ε)
n (q) =

∫
T

[ n−1∑
j=0

ζ−j−1
]
Φ̃(b,ε)
n (q; ζ) (1− ζ)dµ̃(b,ε)

q (ζ), n ≥ 1.

Thus, from (2.19) we can write

Ã(b,ε)
n (q)

= (qλ+1cos ηq; q)n
(qb+1; q)n

∫
T

[ n−1∑
j=0

ζ−j−1
][
R(b)
n (q; z)− 2[1− m̃(b,ε)

n (q)]R(b)
n−1(q; z)

]
(1− ζ)dµ̃(b,ε)

q (ζ),

and, hence, we obtain from (2.18) that

Ã(b,ε)
n (q) = −(qλ+1cos ηq; q)n

(qb+1; q)n
2[1− m̃(b,ε)

n (q)]
∫
T
ζ−nR

(b)
n−1(q; ζ) (1− ζ)dµ̃(b,ε)

q (ζ), n ≥ 1.

By conjugating this expression and using the conjugate reciprocal property of R(b)
n−1(q; ζ)

we then have

Ã
(b,ε)
n (q) = (qλ+1cos ηq; q)n

(qb+1; q)n
2[1− m̃(b,ε)

n (q)]
∫
T
R

(b)
n−1(q; ζ) (1− ζ)dµ̃(b,ε)

q (ζ), n ≥ 1.

Thus, again from (2.18)

Ã
(b,ε)
n (q) = (qλ+1cos ηq; q)n

(qb+1; q)n
2[1− m̃(b,ε)

n (q)]12

n−1∏
j=0

4d̃(b,ε)
j+1(q)

1 + ic
(b)
j+1(q)

= m̃
(b,ε)
1 (q)

m̃
(b,ε)
n+1(q)

n∏
j=1

4 d(b)
j+1(q)∣∣∣1 + ic

(b)
j (q)

∣∣∣2 , n ≥ 1,

and the required result of the theorem follows.

Remark 2.8. In the results given in this section the augmented positive chain sequence
{d̃(b,ε)

n (q)}n≥1 plays an important role. However, this chain sequence is based on the value
of M (b)

1 (q) which one can derive from the evaluation of the integral∫
T
w̃(b)
q (ζ) 1

i2πζ dζ = 1
τ̃

(b)
q

= |(qb+1; q)∞|2

2M (b)
1 (q) (1− qλ+1cos ηq)(q; q)∞(q2λ+2; q)∞

.

Hence, using w̃(b)
q (ζ) = ζv(b,b+b,b+1)

q (ζ)/(ζ − 1) and (2.6) one can also show that

M
(b)
1 (q) = 1

2
1− qb+1

1− qλ+1cos ηq
1

2φ1(q, q−b; qb+2; q, qb+1)
. (2.22)
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The next theorem states that {µ̃(b,ε)
q , µ(b+1)

q } satisfies a coherence type property of the
second kind on the unit circle with respect to the q-difference operator Dq. This is the
Property B stated in Section 2.1.

Theorem 2.9. The pair of measures {µ̃(b,ε)
q , µ(b+1)

q }, where µ̃(b,ε)
q is given by Theorem 2.6

and µ(b+1)
q is given by (1.23), satisfies the coherence type property of the second kind on

the unit circle with respect to the q-difference operator Dq given by (1.7). That is, the
respectives associated monic OPUC satisfy

Dq[Φ̃(b,ε)
n (q; z)] = {n}q

[
Φ(b+1)
n−1 (q; z)− χ(b,ε)

n (q) Φ(b+1)
n−2 (q; z)

]
, n ≥ 2, (2.23)

where χ(b,ε)
n (q) = 2[1− m̃(b,ε)

n (q)](1− q
λ+ncos ηq)

(1− qb+n)
{n−1}q
{n}q

, n ≥ 2.

Moreover, limn→∞ χ
(b,ε)
n (q) = q1/2.

Proof. By applying the q-difference operator Dq to (2.19) we have

Dq[Φ̃(b,ε)
n (q; z)] = Dq[R̂(b)

n (q; z)]− 2[1− m̃(b,ε)
n (q)](1− q

λ+ncos ηq)
(1− qb+n) Dq[R̂(b)

n−1(q; z)],

for n ≥ 1, and using Theorem 2.5 leads to the required coherence formula.
On the other hand, notice that

lim
n→∞

{n−1}q
{n}q

= q1/2,

and from (2.12) it follows that limn→∞ d̃
(b,ε)
n (q) = limn→∞ d

(b,ε)
n (q) = 1/4, then using The-

orem 1.7 we obtain
lim
n→∞

m̃(b,ε)
n (q) = 1

2 .

The above asymptotic results confirm the asymptotic result of χ(b,ε)
n (q).

2.4 The Sobolev-Type OPUC
As we have pointed out in the introduction of this work, coherent pairs of measures

constitute an useful tool to study sequences of orthogonal polynomials with respect to
the Sobolev inner product associated with such a pair of measures.

Following the results obtained in [8, 71] and taking into account (2.23), we can now
deal with the sequence {Ψ(b,ε,s)

n (q; ·)}n≥0 of monic orthogonal polynomials associated with
the Sobolev-type inner product〈

f, g
〉
S

(b,ε,s)
q

=
〈
f, g

〉
µ̃

(b,ε)
q

+ s
〈
Dq[f ], Dq[g]

〉
µ

(b+1)
q

, (2.24)

where µ(b+1)
q is the probability measure given in (1.23) and µ̃(b,ε)

q is the probability measure
given by (2.17) and (2.21). Moreover, we assume b to be such that Re(b) > −1.

We define the sequences {p(b,ε,s)
n (q)}n≥1 and {q(b,ε,s)

n (q)}n≥1, which will play an important
role in the sequel, by

q
(b,ε,s)
n+1 (q) = s {n}q{n+1}qA(b+1)

n−1 (q)χ(b,ε)
n+1(q),

p(b,ε,s)
n (q) = Ã(b,ε)

n (q) + s {n}2
q

[
A

(b+1)
n−1 (q) + A

(b+1)
n−2 (q) |χ(b,ε)

n (q)|2
]
,
n ≥ 1, (2.25)
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where Ã(b,ε)
n (q) is given in Theorem 2.7 and A(b+1)

n (q) is given by (1.22). As we are dealing
with probability measures, we also remind that Ã(b,ε)

0 (q) = A
(b+1)
0 (q) = 1. Moreover,

A
(b+1)
−1 (q) = 0.
For later use, we now observe that A(b+1)

n (q) and Ã(b,ε)
n (q) stay bounded as n → ∞.

Indeed, from Theorem 2.7 we have

Ã(b,ε)
n (q) = m̃

(b,ε)
1 (q)

m̃
(b,ε)
n+1(q)

1− qλ+1cos ηq
1− qλ+n+1cos ηq

(1− qn)(1− q2λ+2)
|1− qb+1|2

A
(b+1)
n−1 (q), n ≥ 1. (2.26)

Therefore, since limn→∞A
(b+1)
n (q) = τ (b+1)

q , we get

lim
n→∞

Ã(b,ε)
n (q) = 2m̃(b,ε)

1 (q)(1− qλ+1cos ηq)(1− q2λ+2)
|1− qb+1|2

τ (b+1)
q .

Here, τ (b+1)
q is as in (1.24).

In the next result, we consider the expression for Ψ(b,ε,s)
n (q; z) as a linear combination

of the polynomials {Φ̃(b,ε)
j (q; . )}nj=0 given by (2.19).

Theorem 2.10. If {Ψ(b,ε,s)
n (q; . )}n≥0 and {Φ̃(b,ε)

n (q; . )}n≥0 are the sequences of monic
orthogonal polynomials with respect to the inner products

〈
f, g

〉
S

(b,ε,s)
q

and
〈
f, g

〉
µ̃

(b,ε)
q

, res-
pectively, then

Ψ(b,ε,s)
1 (q; z) = Φ̃(b,ε)

1 (q; z) and

Ψ(b,ε,s)
n+1 (q; z) =

n∑
j=1

a
(b,ε,s)
n+1,j(q) Φ̃(b,ε)

j (q; z) + Φ̃(b,ε)
n+1(q; z), n ≥ 1.

Here, if a(b,ε,s)
n (q) = [a(b,ε,s)

n+1,1(q), a(b,ε,s)
n+1,2(q), . . . , a(b,ε,s)

n+1,n(q)]T , then

a
(b,ε,s)
2,1 (q) = s{2}qχ(b,ε)

2 (q)/[Ã(b,ε)
1 (q) + s] and

T(b,ε,s)
n (q) a(b,ε,s)

n (q) = q
(b,ε,s)
n+1 (q) en, n ≥ 2,

where en is the n-th column of the n × n identity matrix and T(b,ε,s)
n (q) is the n × n

Hermitian tridiagonal matrix

p
(b,ε,s)
1 (q) −q(b,ε,s)

2 (q)

−q(b,ε,s)
2 (q) p

(b,ε,s)
2 (q) −q(b,ε,s)

3 (q)
. . . . . . . . .

−q(b,ε,s)
n−1 (q) p

(b,ε,s)
n−1 (q) −q(b,ε,s)

n (q)

−q(b,ε,s)
n (q) p(b,ε,s)

n (q)


,

with p
(b,ε,s)
k (q) and q

(b,ε,s)
k (q) as in (2.25).

Proof. If we write Ψ(b,ε,s)
n+1 (q; z) = ∑n+1

j=0 rn,jΦ̃
(b,ε)
j (q; z), with rn,n+1 = 1, by considering

the orthogonality between Ψ(b,ε,s)
n+1 (q; z) and Ψ(b,ε,s)

0 (q; z) with respect to the inner product〈
f, g

〉
S

(b,ε,s)
q

:
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0 =
〈
Ψ(b,ε,s)

0 (q; . ),Ψ(b,ε,s)
n+1 (q; . )

〉
S

(b,ε,s)
q

=
〈

1,
n+1∑
j=0

rn,jΦ̃(b,ε)
j (q; . )

〉
µ̃

(b,ε)
q

+ s
〈

0,
n+1∑
j=0

rn,jDq

[
Φ̃(b,ε)
j (q; . )

]〉
µ

(b+1)
q

= rn,0
〈
1, 1

〉
µ̃

(b,ε)
q

,

for n ≥ 0. Thus, rn,0 = 0 and we can write Ψ(b,ε,s)
n+1 (q; z) = ∑n+1

j=1 rn,jΦ̃
(b,ε)
j (q; z).

Hence, with n ≥ 1, from

0 =
〈
Φ̃(b,ε)

1 (q, . ),Ψ(b,ε,s)
n+1 (q; . )

〉
S

(b,ε,s)
q

=
〈

Φ̃(b,ε)
1 (q; . ),

n+1∑
j=1

rn,jΦ̃(b,ε)
j (q; . )

〉
µ̃

(b,ε)
q

+ s
〈

1,
n+1∑
j=1

rn,j Dq

[
Φ̃(b,ε)
j (q; . )

]〉
µ

(b+1)
q

and (2.23), we get

0 = rn,1
〈
Φ̃(b,ε)

1 (q; . ), Φ̃(b,ε)
1 (q; . )

〉
µ̃

(b,ε)
q

+ s
〈

Φ(b+1)
0 (q; . ),

n+1∑
j=1

rn,j{j}q
[
Φ(b+1)
j−1 (q; . )− χ(b,ε)

j (q) Φ(b+1)
j−2 (q; . )

]〉
µ

(b+1)
q

,

where χ(b,ε)
1 (q) Φ(b+1)

−1 (q; . ) = 0. Hence,[
Ã

(b,ε)
1 (q) + sA

(b+1)
0 (q)

]
rn,1 − {2}qsA(b+1)

0 (q)χ(b,ε)
2 (q) rn,2 = 0. (2.27)

Thus, when n = 1, with the observation r1,2 = 1 we obtain the expression for
r1,1 = a

(b,ε,s)
2,1 (q). With rn,j = a

(b,ε,s)
n+1,j(q), j = 1, 2, . . . , n, we also have from (2.27)

p
(b,ε,s)
1 (q) a(b,ε,s)

n+1,1(q)− q
(b,ε,s)
2 (q) a(b,ε,s)

n+1,2(q) = 0, n ≥ 2.

Now with n ≥ 2 and 2 ≤ k ≤ n, from

0 =
〈
Φ̃(b,ε)
k (q; . ),Ψ(b,ε,s)

n+1 (q; . )
〉
S

(b,ε,s)
q

=
〈
Φ̃(b,ε)
k (q; . ),

n+1∑
j=1

rn,jΦ̃(b,ε)
j (q; . )

〉
µ̃

(b,ε)
q

+ s
〈
Dq

[
Φ̃(b,ε)
k (q; . )

]
, Dq

[
Ψ(b,ε,s)
n+1 (q; . )

]〉
µ

(b+1)
q

= rn,k
〈
Φ̃(b,ε)
k (q; . ), Φ̃(b,ε)

k (q; . )
〉
µ̃

(b,ε)
q

+ s
〈
{k}q

[
Φ(b+1)
k−1 (q; . )− χ(b,ε)

k (q) Φ(b+1)
k−2 (q; . )

]
,

rn,1Φ(b+1)
0 (q; . ) +

n+1∑
j=2

rn,j {j}]q
[
Φ(b+1)
j−1 (q; . )− χ(b,ε)

j (q) Φ(b+1)
j−2 (q; . )

]〉
µ

(b+1)
q

,

we obtain
0 = −s{k}q {k−1}q A(b+1)

k−2 (q)χ(b,ε)
k (q) rn,k−1

+
[
Ã

(b,ε)
k (q) + s{k}2

q

(
A

(b+1)
k−1 (q) + A

(b+1)
k−2 (q) |χ(b,ε)

k (q)|2
)]
rn,k

−s{k}q {k+1}q A(b+1)
k−1 (q)χ(b,ε)

k+1(q) rn,k+1.

We can write this as

−q(b,ε,s)
k (q) rn,k−1 + p

(b,ε,s)
k (q) rn,k − q

(b,ε,s)
k+1 (q) rn,k+1 = 0, 2 ≤ k ≤ n, n ≥ 2.

Hence, with rn,n+1 = 1 and rn,j = a
(b,ε,s)
n+1,j(q), j = 1, 2, . . . , n, we obtain the linear system

of equations T(b,ε,s)
n (q) a(b,ε,s)

n (q) = q
(b,ε,s)
n+1 (q) en. This completes the proof of the theorem.
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Since T(b,ε,s)
n (q) is a tridiagonal matrix, it is easily seen that

det(T(b,ε,s)
n (q)) = p(b,ε,s)

n (q) det(T(b,ε,s)
n−1 (q))− |q(b,ε,s)

n (q)|2 det(T(b,ε,s)
n−2 (q)), n ≥ 2,

with det(T(b,ε,s)
0 (q)) = 1 and det(T(b,ε,s)

1 (q)) = p
(b,ε,s)
1 (q). Thus,

det(T(b,ε,s)
n (q))

p
(b,ε,s)
n (q) det(T(b,ε,s)

n−1 (q))

1− det(T(b,ε,s)
n+1 (q))

p
(b,ε,s)
n+1 (q) det(T(b,ε,s)

n (q))

 = |q(b,ε,s)
n+1 (q)|2

p
(b,ε,s)
n (q) p(b,ε,s)

n+1 (q)
, n ≥ 1.

The sequence {d(b,ε,s)
n (q)}∞n=1, where

d(b,ε,s)
n (q) = |q(b,ε,s)

n+1 (q)|2

p
(b,ε,s)
n (q) p(b,ε,s)

n+1 (q)
, n ≥ 1, (2.28)

is a positive chain sequence. This will be confirmed later in the proof of Theorem 2.13.
This means that the sequence {m(b,ε,s)

n (q)}∞n=0, where

[1−m
(b,ε,s)
n−1 (q)]m(b,ε,s)

n (q) = d(b,ε,s)
n (q) and m

(b,ε,s)
n−1 (q) = 1− det(T(b,ε,s)

n (q))
p

(b,ε,s)
n (q) det(T(b,ε,s)

n−1 (q))
,

for n ≥ 1, is the minimal parameter sequence of {d(b,ε,s)
n (q)}∞n=1. Therefore,

0 < det(T(b,ε,s)
n (q)) < p(b,ε,s)

n (q) det(T(b,ε,s)
n−1 (q)), n ≥ 2.

Remark 2.11. The positiveness of the determinant det(T(b,ε,s)
n (q)) guarantees the unique

existence of the solution of the system T(b,ε,s)
n (q) a(b,ε,s)

n (q) = q
(b,ε,s)
n+1 (q) en, thus, also the

existence of the Sobolev-type orthogonal polynomials Ψ(b,ε,s)
n (q; . ).

The following result states that two consecutive Sobolev-type orthogonal polynomials
with respect to (2.24) are connected to an orthogonal polynomial corresponding to the
measure µ̃(b,ε)

q . This is the Property C stated in Section 2.1.

Theorem 2.12. The orthogonal polynomials Ψ(b,ε,s)
n (q; z) with respect to the Sobolev type

inner product
〈
f, g

〉
S

(b,ε,s)
q

given by (2.24) satisfy

Ψ(b,ε,s)
n (q; z)− β(b,ε,s)

n (q) Ψ(b,ε,s)
n−1 (q; z) = Φ̃(b,ε)

n (q; z), n ≥ 1. (2.29)

Moreover, the connection coefficients in (2.29) satisfy β(b,ε,s)
1 (q) = 0 and

β
(b,ε,s)
n+1 (q) = q

(b,ε,s)
n+1 (q)

p
(b,ε,s)
n (q)− q(b,ε,s)

n (q) β(b,ε,s)
n (q)

, n ≥ 1, (2.30)

where q
(b,ε,s)
k (q) and q

(b,ε,s)
k (q) are given by (2.25). Also,

χ
(b,ε)
n+1(q) β

(b,ε,s)
n+1 (q) > 0, n ≥ 1.
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Proof. By considering Φ̃(b,ε)
n+1(q; . ) as a linear combination of {Ψ(b,ε,s)

j (q; . )}n+1
j=0 we find

Ψ(b,ε,s)
n+1 (q; z)− β(b,ε,s)

n+1 (q) Ψ(b,ε,s)
n (q; z) = Φ̃(b,ε)

n+1(q; z), n ≥ 0,

where

β
(b,ε,s)
n+1 (q) = −

〈
Φ̃(b,ε)
n+1(q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q〈

Ψ(b,ε,s)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

, n ≥ 0. (2.31)

Here, by β(b,ε,s)
n+1 (q) we mean β(b,ε,s)

n+1 (q). We now look at the numerators in the right hand
side of (2.31). We have〈

Φ̃(b,ε)
1 (q; . ),Ψ(b,ε,s)

0 (q; . )
〉
S

(b,ε,s)
q

=
〈
Φ̃(b,ε)

1 (q; . ), 1
〉
µ̃

(b,ε)
q

+ s
〈
1, 0

〉
µ

(b+1)
q

= 0.

Moreover, for n ≥ 1,〈
Φ̃(b,ε)
n+1(q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

=
〈
Φ̃(b,ε)
n+1(q; . ),Ψ(b,ε,s)

n (q; . )
〉
µ̃

(b,ε)
q

+ s
〈
Dq[Φ̃(b,ε)

n+1(q; . )], Dq[Ψ(b,ε,s)
n (q; . )]

〉
µ

(b+1)
q

= s
〈
Dq[Φ̃(b,ε)

n+1(q; . )], Dq[Ψ(b,ε,s)
n (q; . )]

〉
µ

(b+1)
q

.

Hence, from (2.23)〈
Φ̃(b,ε)
n+1(q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

= s
〈
{n+1}q[Φ(b+1)

n (q; . )− χ(b)
n+1(q) Φ(b+1)

n−1 (q; , . )], Dq[Ψ(b,ε,s)
n (q; . )]

〉
µ

(b+1)
q

,

from which〈
Φ̃(b,ε)
n+1(q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

= −s {n}q{n+1}q χ(b,ε)
n+1(q)A

(b+1)
n−1 (q) = −q(b,ε,s)

n+1 (q), n ≥ 1.

Therefore, from (2.31) we find that β(b,ε,s)
1 (q) = 0 and also that χ(b,ε)

n+1(q)β
(b,ε,s)
n+1 (q) > 0 for

every n ≥ 1.
Now we analyze the denominators in the right hand side of (2.31). We have〈

Ψ(b,ε,s)
0 (q; . ),Ψ(b,ε,s)

0 (q; . )
〉
S

(b,ε,s)
q

=
〈
Φ̃(b,ε,s)

0 (q; . ), Φ̃(b,ε,s)
0 (q; . )

〉
µ̃

(b,ε)
q

= 1

and, for n ≥ 1,〈
Ψ(b,ε,s)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

=
〈
Φ̃(b,ε)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

= Ã(b,ε)
n (q) + s

〈
Dq[Φ̃(b,ε)

n (q; . )], Dq[Ψ(b,ε,s)
n (q; . )]

〉
µ

(b+1)
q

.

Hence, 〈
Ψ(b,ε,s)

1 (q; . ),Ψ(b,ε,s)
1 (q; . )

〉
S

(b,ε,s)
q

= Ã
(b,ε)
1 (q) + s

〈
1, 1

〉
µ

(b+1)
q

= Ã
(b,ε)
1 (q) + s.

For n ≥ 2, from

Dq[Ψ(b,ε,s)
n (q; . )] = Dq[Φ̃(b,ε)

n (q; . )] + β(b,ε,s)
n (q)Dq[Ψ(b,ε,s)

n−1 (q; . )]

= {n}q
[
Φ(b+1)
n−1 (q; . )− χ(b,ε)

n (q) Φ(b+1)
n−2 (q; . )

]
+ β(b,ε,s)

n (q)Dq[Ψ(b,ε,s)
n−1 (q; . )]
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and from (2.23), the above formula can be written as〈
Ψ(b,ε,s)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

= Ã(b,ε)
n (q) + s {n}2

q

[
A

(b+1)
n−1 (q) + |χ(b,ε)

n (q)|2 A(b+1)
n−2 (q)

]
−s {n}q{n−1}q A(b+1)

n−2 (q)χ(b,ε)
n (q) β(b,ε,s)

n (q)
= p(b,ε,s)

n (q)− q(b,ε,s)
n (q) β(b,ε,s)

n (q).

(2.32)

Thus, the recurrence formula for β(b,ε,s)
n (q) follows.

For n ≥ 1, using Theorem 2.6 we can also write

Ψ(b,ε,s)
n (q; z)−β(b,ε,s)

n (q)Ψ(b,ε;s)
n−1 (q; z) = (qλ+1cos ηq; q)n

(qb+1; q)n

[
R(b)
n (q; z)−2

(
1−m(b,ε)

n (q)
)
R

(b)
n−1(q; z)

]
.

2.5 Some Properties of the Sobolev-Type OPUC and
Connection Coefficients

In this section we present some propierties of Sobolev-type orthogonal polynomials
Ψ(b,ε,s)
n (q; z) and of connection coefficients β(b,ε,s)

n (q) given by (2.30).
The next theorem gives an upper bound and an asymptotic result for χ(b,ε)

n (q)β(b,ε,s)
n (q),

where χ(b,ε)
n (q) are given in (2.23).

Theorem 2.13. The connection coefficients β(b,ε,s)
n (q) in Theorem 2.12 satisfy

(a) 0 < χ(b,ε)
n (q)β(b,ε,s)

n (q) < {n}q
{n−1}q

|χ(b,ε)
n (q)|2, n ≥ 2.

(b) lim
n→∞

χ(b,ε)
n (q)β(b,ε,s)

n (q) = q1/2.

Here χ(b,ε)
n (q) are the connection coefficients in (2.23).

Proof. From〈
Ψ(b,ε,s)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

=
〈
Ψ(b,ε,s)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
µ̃

(b,ε)
q

+ s
〈
Dq[Ψ(b,ε,s)

n (q; . )], Dq[Ψ(b,ε,s)
n (q; . )]

〉
µ

(b+1)
q

,

for n ≥ 2 and from minimal norm characterization of monic orthogonal polynomials with
respect to a probability measure supported on the unit circle, we get〈

Ψ(b,ε,s)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

>
〈
Φ̃(b,ε,s)
n (q; . ), Φ̃(b,ε,s)

n (q; . )
〉
µ̃

(b,ε)
q

+ s{n}2
q

〈
Φ(b+1)
n−1 (q; . ),Φ(b+1)

n−1 (q; . )
〉
µ

(b+1)
q

, n ≥ 2.

Thus, 〈
Ψ(b,ε,s)
n (q; . ),Ψ(b,ε,s)

n (q; . )
〉
S

(b,ε,s)
q

> Ã(b,ε)
n (q) + s{n}2

qA
(b+1)
n−1 (q), n ≥ 2.
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Hence, from (2.32) we have

s{n}q{n−1}q A(b+1)
n−2 (q)χ(b,ε)

n (q)β(b,ε,s)
n (q) < s{n}2

q|χ(b,ε)
n (q)|2 A(b+1)

n−2 (q), n ≥ 2.

This proves item (a) of the theorem.
Now to show item (b), we first observe from Theorem 2.12 that one can write

d(b,ε,s)
n (q) = [1−m

(b,ε,s)
n−1 (q)]m(b,ε,s)

n (q), where d(b,ε,s)
n (q) are as in (2.28) and

m(b,ε,s)
n (q) = q

(b,ε,s)
n+1 (q)β(b,ε,s)

n+1 (q)
p

(b,ε,s)
n+1 (q)

= s {n}q{n+1}qA(b+1)
n−1 (q)χ(b,ε)

n+1(q) β
(b,ε,s)
n+1 (q)

Ã
(b,ε)
n+1(q) + s {n+1}2

q

[
A

(b+1)
n (q) + A

(b+1)
n−1 (q) |χ(b,ε)

n+1(q)|2
] ,

(2.33)

for n ≥ 1 with m
(b,ε,s)
0 (q) = 0. Since we can observe that m(b,ε,s)

n (q) > 0 and d(b,ε,s)
n (q) > 0 for

n ≥ 1, we also have 1−m(b,ε,s)
n (q) > 0 for n ≥ 1. Hence, we can state that {d(b,ε,s)

n (q)}n≥1
is a positive chain sequence and {m(b,ε,s)

n (q)}n≥0 is its minimal parameter sequence.
From (2.28) and the asymptotic behavior of Ã(b,ε)

n (q), A(b+1)
n (q) and χ(b,ε)

n (q) we now
easily find

lim
n→∞

d(b,ε,s)
n (q) = q

(1 + q)2 .

Since 0 < q < 1, by Theorem 1.7 one finds

lim
n→∞

m(b,ε)
n (q) = 1

2

[
1−

√
1− 4 q

(1 + q)2

]
= q

1 + q
.

On the other hand, if limn→∞ χ
(b,ε)
n (q)β(b,ε,s)

n (q) = `q, then from (2.33),

lim
n→∞

m(b,ε)
n (q) = `q q

1/2

1 + q
.

This immediately gives the asymptotic result for χ(b,ε)
n (q)β(b,ε,s)

n (q) stated in the theorem.

From Theorems 2.9 and 2.13, we also have

lim
n→∞

β(b,ε,s)
n (q) = 1. (2.34)

The coefficients β(b,ε,s)
n (q) in (2.30) also turn out to be interesting from the point of

view of orthogonal polynomials on the real line. We show that these coefficients can be
expressed as rational functions involving a sequence of polynomials that satisfy a standard
three term recurrence relation.

Definition 2.14. For given b and ε, let {S(b,ε)
n (q; y)}n≥0 be such that

S
(b,ε)
0 (q; y) = 1 and β

(b,ε,κ(b,ε)
q /y)

n+1 (q) = S
(b,ε)
n−1(q; y)
S

(b,ε)
n (q; y)

, n ≥ 1, (2.35)

where

κ(b,ε)
q = 2m̃(b,ε)

1 (q)(1− qλ+1cos ηq)(1− q2λ+2)
|1− qb+1|2

.
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Then the following can be stated.

Theorem 2.15. For n ≥ 0, S(b,ε)
n (y) in (2.35) is a polynomial in y of exact degree n.

More precisely, if Ŝ(b,ε)
n (q; y) = t(b,ε)n (q)S(b,ε)

n (q; y), n ≥ 0, with t
(b,ε)
0 (q) = 1 and

t(b,ε)n (q) = (1− m̃(b,ε)
n+1(q))

(1− m̃(b,ε)
1 (q))

(1− qλ+n+1cos ηq)
(1− qλ+1cos ηq)

(q2λ+2; q)n
(qb+2; q)n

n∏
k=1
{k}2

q, n ≥ 1,

then Ŝ(b,ε)
n (q; y) are monic polynomials such that

Ŝ
(b,ε)
1 (q; y) =

[
y + a

(b,ε)
0 (q)

]
Ŝ

(b,ε)
0 (q; y),

Ŝ(b,ε)
n (q; y) =

[
y + a

(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

]
Ŝ

(b,ε)
n−1(q; y) − a

(b,ε)
n−2(q) c

(b,ε)
n−1(q) Ŝ

(b,ε)
n−2(q; y),

(2.36)

for n ≥ 2. Here,

a
(b,ε)
n−1(q) =

2{n}2
q (1− qλ+n+1cos ηq) m̃(b,ε)

n+1(q)
(1− qn) ,

c(b,ε)
n (q) =

2{n}2
q(1− qλ+n+1cos ηq) (1− m̃(b,ε)

n+1(q))
(1− qn) ,

n ≥ 1.

Proof. Let us assume β(b,ε, κ(b,ε)
q /y)

n+1 = S
(b,ε)
n−1(y)/S(b,ε)

n (q; y), with S(b,ε)
0 (q; y) = 1. Hence, from

(2.30), one finds q
(b,ε, κ(b,ε)

q /y)
2 (q)S(b,ε)

1 (q; y) = p
(b,ε, κ(b,ε)

q /y)
1 (q)S(b,ε)

0 (q; y) and

q
(b,ε, κ(b,ε)

q /y)
n+1 (q)S(b,ε)

n (q; y) = p(b,ε, κ(b,ε)
q /y)

n (q)S(b,ε)
n−1(q; y)− q(b,ε, κ(b,ε)

q /y)
n (q)S(b,ε)

n−2(q; y), n ≥ 2.

With the use of (2.25) this leads to

yq
(b,ε, κ(b,ε)

q /y)
n+1 (q)
Ã

(b,ε)
n (q)

S(b,ε)
n (q; y) =

[
y +

κ(b,ε)
q {n}2

q

Ã
(b,ε)
n (q)

[
A

(b+1)
n−1 (q) + A

(b+1)
n−2 (q) |χ(b,ε)

n (q)|2
]]
S

(b,ε)
n−1(q; y)

− yq
(b,ε, κ(b,ε)

q /y)
n (q)
Ã

(b,ε)
n (q)

S
(b,ε)
n−2(q; y),

for n ≥ 2 and yq
(b,ε, κ(b,ε)

q /y)
2 (q)
Ã

(b,ε)
1 (q)

S
(b,ε)
1 (q; y) =

[
y +

κ(b,ε)
q

Ã
(b,ε)
1 (q)

A
(b+1)
0 (q)

]
S

(b,ε)
0 (q; y).

Clearly, yq(b,ε, κ(b,ε)
q /y)

n (q) are independent of y for all n ≥ 2. Thus, if

Ŝ
(b,ε)
0 (q; y) = S

(b,ε)
0 (q; y) and Ŝ(b,ε)

n (q; y) = S(b,ε)
n (q; y)

n∏
k=1

yq
(b,ε, κ(b,ε)

q /y)
k+1 (q)
Ã

(b,ε)
k (q)

, n ≥ 1,

then

Ŝ(b,ε)
n (q; y) =

[
y +

κ(b,ε)
q {n}2

q

Ã
(b,ε)
n (q)

[
A

(b+1)
n−1 (q) + A

(b+1)
n−2 (q) |χ(b,ε)

n (q)|2
]]
Ŝ

(b,ε)
n−1(q; y)

− yq
(b,ε, κ(b,ε)

q /y)
n (q)
Ã

(b,ε)
n (q)

yq
(b,ε, κ(b,ε)

q /y)
n (q)
Ã

(b,ε)
n−1(q)

Ŝ
(b,ε)
n−2(q; y),
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for n ≥ 2 and Ŝ
(b,ε)
1 (y) =

[
y +

κ(b,ε)
q

Ã
(b,ε)
1 (q)

A
(b+1)
0 (q)

]
Ŝ

(b,ε)
0 (y).

First, we observe from (2.23) and (2.26) that

κ(b,ε)
q {n}2

qA
(b+1)
n−1 (q)

Ã
(b,ε)
n (q)

=

κ(b,ε)
q |(1− q(b+1)|2

2m̃(b,ε)
1 (q)(1− qλ+1cos ηq)(1− q2λ+2)

2{n}2
qm̃

(b,ε)
n+1(q)(1− qλ+n+1cos ηq)

(1− qn)

for n ≥ 1. Thus, with the value of κ(b,ε)
q in the theorem, we then find

a
(λ,ε)
n−1(q) =

κ(b,ε)
q {n}2

qA
(b+1)
n−1 (q)

Ã
(b,ε)
n (q)

=
2{n}2

q m̃
(b,ε)
n+1(q) (1− qλ+n+1cos ηq)

(1− qn)

=
{n}2

q (1− q2λ+n+1)
2(1− qλ+ncos ηq)(1− m̃(b,ε)

n (q))
, n ≥ 1.

For the latter formula for a(λ,ε)
n−1(q) we use m̃

(b,ε)
n+1(q) = d̃

(b,ε)
n+1(q)/(1− m̃(b,ε)

n (q)). With the same
choice for κ(b,ε)

q , we also find

c(λ,ε)
n (q) =

κ(b,ε)
q {n+1}2

qA
(b+1)
n−1 (q)|χ(b,ε)

n+1(q)|2

Ã
(b,ε)
n+1(q)

=
2{n}2

q(1− qλ+n+1cos ηq)(1− m̃(b,ε)
n+1(q))

1− qn , n ≥ 1.

Moreover, we can verify that

yq
(b,ε,κ(b,ε)

q /y)
n+1 (q)
Ã

(b,ε)
n

= {n}2
q

(1− m̃(b,ε)
n+1(q))

(1− m̃(b,ε)
n (q))

(1− qλ+n+1cos ηq)
(1− qλ+ncos ηq)

(1− q2λ+n+1)
(1− qb+n+1)

and
yq

(b,ε,κ(b,ε)
q /y)

n+1 (q)
Ã

(b,ε)
n+1

= {n}2
q

(1− qb+n+1)
(1− qn) ,

for n ≥ 1. Thus, we also find

yq
(b,ε,κ(b,ε)

q /y)
n (q)
Ã

(b,ε)
n

yq
(b,ε,κ(b,ε)

q /y)
n (q)
Ã

(b,ε)
n−1

= a
(b,ε)
n−2(q) c

(b,ε)
n−1(q), n ≥ 2,

and

t(b,ε)n (q) =
n∏
k=1

yq
(b,ε, κ(b,ε)

q /y)
k+1 (q)
Ã

(b,ε)
k (q)

= (1− m̃(b,ε)
n+1(q))

(1− m̃(b,ε)
1 (q))

(1− qλ+n+1cos ηq)
(1− qλ+1cos ηq)

(q2λ+2; q)n
(qb+2; q)n

n∏
k=1
{k}2

q,

for n ≥ 1. Thus, we have shown the results of the theorem.
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From Theorem 2.15 and from (2.35), we can also write that

β
(b,ε,κ(b,ε)

q /y)
n+1 (q) = t(b,ε)n (q) Ŝ(b,ε)

n−1(q; y)
t
(b,ε)
n−1(q) Ŝ

(b,ε)
n (q; y)

= {n}2
q

(1− m̃(b,ε)
n+1(q))

(1− m̃(b,ε)
n (q))

(1− qλ+n+1cos ηq)
(1− qλ+ncos ηq)

(1− q2λ+n+1)
(1− qb+n+1)

Ŝ
(b,ε)
n−1(q; y)
Ŝ

(b,ε)
n (q; y)

,

(2.37)

for n ≥ 1.

Remark 2.16. The three-term recurrence relation (2.36) shows that {Ŝ(b,ε)
n (q; y)}n≥0

forms a sequence of MOP with respect to some positive measure on the real line. Since
the Sobolev inner product given by (2.24) is positive definite for 0 < s < ∞ and the
rational functions Ŝ(b,ε)

n−1(q; y)/Ŝ(b,ε)
n (q; y) are well defined for 0 < y < ∞, the support of

this measure is, as expected, the negative half of the real axis. The identification of such
a sequence of monic orthogonal polynomials is an open problem.

The following theorem gives bounds for β(b,ε,s)
n (q).

Theorem 2.17. The constants β(b,ε,s)
n (q), n ≥ 1, given by (2.30) for 0 < s <∞, 0 ≤ ε < 1

and Re(b) = λ > −1, are such that β(b,ε,s)
1 (q) = 0 and

∣∣∣β(b,ε,s)
n+1 (q)

∣∣∣ < 2[1− m̃(b,ε)
n+1(q)]

1− qλ+n+1cos ηq
|1− qb+n+1|

a
(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

a
(b,ε)
n−1(q) + c

(b,ε)
n−1(q) + κ

(b,ε)
q /s

, n ≥ 1,

where κ(b,ε)
q , {a(b,ε)

n−1(q)}n≥1 and {c(b,ε)
n (q)}n≥1 are as in (2.35) and Theorem 2.15. We also

set c(b,ε)
0 (q) = 0.

Proof. From the TTRR (2.36) one can consider the sequences {d̂(b,ε)
n+1(q; y)}n≥1 and

{m̂(b,ε)
n+1(q; y)}n≥0 such that

[
1− m̂(b,ε)

n (q; y)
]
m̂

(b,ε)
n+1(q; y) = d̂

(b,ε)
n+1(q; y) = a

(b,ε)
n−1(q) c(b,ε)

n (q)[
y + a

(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

][
y + a

(b,ε)
n (q) + c

(b,ε)
n (q)

]
and

1− m̂(b,ε)
n (q; y) = Ŝ(b,ε)

n (q; y)[
y + a

(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

]
Ŝ

(b,ε)
n−1(q; y)

, (2.38)

for n ≥ 1. For any y ≥ 0 the sequence {d̂(b,ε)
n+1(q; y)}n≥1 is a positive chain sequence and

{m̂(b,ε)
n+1(q; y)}n≥0 is its minimal parameter sequence. One way to verify this assertion is by

observing the following:
By using Theorem 1.27, the sequence {d̂(b,ε)

n+1(q; 0)}n≥1 is clearly a positive chain se-
quence and its minimal parameter sequence {m̂(b,ε)

n+1(q; 0)}n≥0 is given by

m̂(b,ε)
n (q; 0) = c

(b,ε)
n−1(q)

a
(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

, n ≥ 1.

Moreover,
d̂

(b,ε)
n+1(q; y) < d̂

(b,ε)
n+1(q; 0), n ≥ 1,

for y > 0. Thus, our assertion follows from Theorem 1.6.
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Furthermore, by Theorem 1.5, we also obtain that m̂(b,ε)
n+1(q; y) < m̂

(b,ε)
n+1(q; 0) for n ≥ 1

and y > 0. This means, from (2.38),

Ŝ(b,ε)
n (q; y)[

y + a
(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

]
Ŝ

(b,ε)
n−1(q; y)

>
Ŝ(b,ε)
n (q; 0)[

0 + a
(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

]
Ŝ

(b,ε)
n−1(q; 0)

= a
(b,ε)
n−1(q)

a
(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

,

for n ≥ 2. Thus, for y ≥ 0,

Ŝ
(b,ε)
n−1(q; y)
Ŝ

(b,ε)
n (q; y)

≤ a
(b,ε)
n−1(q) + c

(b,ε)
n−1(q)

a
(b,ε)
n−1(q) [y + a

(b,ε)
n−1(q) + c

(b,ε)
n−1(q)]

, n > 1. (2.39)

The equality holds when y = 0.
Substitution of this in (2.37) gives the required result of the theorem.

The following theorem gives information about the convergence and some monotonicity
properties associated with β(b,ε,s)

n .

Theorem 2.18. For any given n ≥ 2 the following results hold:

lim
s→∞

β(b,ε,s)
n (q) = 2[1− m̃(b,ε)

n (q)] 1− qλ+ncos ηq
1− qb+n .

Moreover, for b and ε fixed real numbers |β(b,ε,s)
n (q)| is a strictly increasing function of s

for s ∈ [0,∞).

Proof. We have from (2.35) and Theorem 2.15

∂

∂y
|β(b,ε, κ(b,ε)

q /y)
n+1 (q)| = −|t

(b,ε)
n (q)|
|t(b,ε)n−1(q)|

Ŝ(b,ε)′
n (q; y)Ŝ(b,ε)

n−1(q; y)− Ŝ(b,ε)
n (q; y)Ŝ(b,ε)′

n−1 (q; y)(
Ŝ

(b,ε)
n (q; y)

)2 ,

for n ≥ 1. Observe that Ŝ(b,ε)′
n (q; y)Ŝ(b,ε)

n−1(q; y) − Ŝ(b,ε)
n (q; y)Ŝ(b,ε)′

n−1 (q; y) is positive for every
real number y. This can be verified from the Theorem 1.22 which is the Christoffel-
Darboux identity that follows from (2.36). Thus, |β(b,ε, κ(b,ε)

q /y)
n+1 (q)| is a strictly decreasing

function of y and, consequently, |β(b,ε,s)
n+1 (q)| is a strictly increasing function of s.

Moreover, lims→∞ β
(b,ε,s)
n+1 (q) = limy→0 β

(b,ε, κ(b,ε)
q /y)

n+1 (q) and the limit value in the theorem
follows from (2.37) and (2.39).

With the results in Theorem 2.18 we can now address the asymptotic behavior of
Ψ(b,ε,s)
n (q; z) with respect to the parameter s.

Theorem 2.19. For any n ≥ 1,

lim
s→∞

Ψ(b,ε,s)
n (q; z) = R̂(b)

n (q; z)− 2n (qλ+1cos ηq; q)n
(qb+1; q)n

n∏
j=1

(
1− m̃(b,ε)

j (q)
)
.

Proof. By considering the orthogonal polynomials that follow from the limit inner product
lims→∞ s

−1〈f, g〉
S

(b,ε,s)
q

= 〈Dq[f ], Dq[g]〉
µ

(b+1)
q

, we first obtain from (2.15)

lim
s→∞

Ψ(b,ε,s)
n (z) = Ψ(b,ε,∞)

n (z) = R̂(b)
n (q; z) + ρ(b,ε)

n (q), n ≥ 1.
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The constants ρ(b,ε)
n (q) are still to be determined.

On the other hand, from (2.29)

Ψ(b,ε,∞)
n (q; z)− β(b,ε,∞)

n (q)Ψ(b,ε,∞)
n−1 (q; z) = Φ̃(b,ε)

n (q; z), n ≥ 1,

where β(b,ε,∞)
1 (q) = 0 and the values of β(b,ε,∞)

n = lims→∞ β
(b,ε,s)
n , n ≥ 2, are found in

Theorem 2.18.
Combining the above two formulas we get R̂(b)

1 (q; z) + ρ
(b,ε)
1 (q) = Φ̃(b,ε)

1 (q; z) and[
R̂(b)
n (q; z)− β(b,ε,∞)

n R̂
(b)
n−1(q; z)

]
+
[
ρ(b,ε)
n (q)− β(b,ε,∞)

n ρ
(b,ε)
n−1(q)

]
= Φ̃(b,ε)

n (z),

for n ≥ 2. Thus, comparing the above with (2.19) we immediately find

ρ
(b,ε)
1 (q) = −2[1− m̃(b,ε)

1 (q)] 1− qλ+1cos ηq
1− qb+1 and ρ(b,ε)

n (q) = β(b,ε,∞)
n ρ

(b,ε)
n−1(q), n ≥ 2.

The required result of the theorem follows.

Finally, we give an outer relative asymptotic result.

Theorem 2.20.
lim
n→∞

Ψ(b,ε,s)
n (q; z)

Φ̃(b,ε)
n (q; z)

= z

z − 1 ,

in every compact subset of C \ D.

Proof. From (2.29) we obtain

Ψ(b,ε,s)
n (q; z)

Φ̃(b,ε)
n (q; z)

− β(b,ε,s)
n (q)Φ̃(b,ε)

n−1(q; z)
Φ̃(b,ε)
n (q; z)

Ψ(b,ε,s)
n−1 (q; z)

Φ̃(b,ε)
n−1(q; z)

= 1, n ≥ 1, (2.40)

On the other hand, by using (2.20) limn→∞ Φ̃(b,ε)
n−1(q; z)/Φ̃(b,ε)

n (q; z) = 1/z. Thus, from
(2.34), we obtain (see the proof of Theorem 5.1 in [49])

lim
n→∞

Ψ(b,ε,s)
n (q; z)

Φ̃(b,ε)
n (q; z)

= U(z),

in every compact subset of C \ D. Taking the limits in (2.40)

U(z)− 1
z
U(z) = 1

from which U(z) = z/(z − 1). This completes the proof of the theorem.

Remark 2.21. According to the Hurwitz’s theorem, for n large enough, the zeros of the
polynomials Ψ(b,ε,s)

n (q; z) are located in the interior of the unit disk.



3 Coherent Pair of Moment
Functionals of Second Kind on the
Real Line

The aim in this chapter is to consider a characterization of pairs of positive measu-
res {ν0, ν1} on the real line for which {Pn(ν0; ·)}n≥0 and {Pn(ν1; ·)}n≥0, respectively the
corresponding sequences of MOP, satisfy

Pn(ν1;x)− τnPn−1(ν1;x) = 1
n+ 1P

′
n+1(ν0;x), n ≥ 1, (3.1)

where τn 6= 0 for n ≥ 1. We study this problem by dealing with a more general pro-
blem in the framework of quasi-definite moment functionals. We also present a matrix
characterization.

The work presented in this chapter, which has appeared in [29], was done while Gus-
tavo Andreto Marcato and myself were visiting Francisco Marcellán at the Department of
Mathematics of Universidad Carlos III de Madrid (UC3M). Our stay in UC3M, for a pe-
riod of one year during 2021-2022, was supported by doctoral sandwhich students grants
(respectively, 88887.570089/2020-00 and 88887.570304/2020-00) from the program CA-
PES/PrInt of Brazil. We are extremely grateful to UC3M for receiving all the necessary
support to undertake this research.

3.1 Coherent Pairs of the Second Kind
In order to arrive at information about pairs of positive measures {ν0, ν1} for which

there hold (3.1), in this section we study this problem in the framework of quasi-definite
moment functionals, where we introduce the concept of coherence of second kind on the
real line for quasi-definite moment functionals as follows.

Definition 3.1. Let v0 and v1 be quasi-definite moment functionals and let {P (0)
n }n≥0

and {P (1)
n }n≥0 be, respectively, the corresponding sequences of MOP. Then {v0,v1} is

said to be a coherent pair of moment functionals of the second kind (CPMF2K for short)
if there exist non-zero constants τn such that

1
n+ 1P

(0) ′
n+1(x) = P (1)

n (x)− τnP (1)
n−1(x), n ≥ 1. (3.2)

Let {β(0)
n , α

(0)
n+1}n≥1 and {β(1)

n , α
(1)
n+1}n≥1 be the coefficients in the TTRR

P
(i)
n+1(x) = (x− β(i)

n+1)P (i)
n (x)− α(i)

n+1P
(i)
n−1(x), n ≥ 1, i = 0, 1,
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with P (0)
0 (x) = P

(1)
0 (x) = 1 and P (i)

n (x) = x − β(i)
1 , i = 0, 1. Also let h (0)

n =
〈〈
v0, (P (0)

n )2
〉〉

and h (1)
n =

〈〈
v1, (P (1)

n )2
〉〉
for n ≥ 0.

Since {P (0)
n }n≥0 and {P (1)

n }n≥0 are a basis for P, their corresponding dual basis exist
and we denote, respectively, by {v(0)

n }n≥0 and {v(1)
n }n≥0. These sequences satisfy (1.10).

In the sequel we will write

P̃ (0)
n (x) = P

(0) ′
n+1(x)
n+ 1 , n ≥ 0,

and assume {ṽ(0)
n }n≥0 to be the dual basis given by〈〈

ṽ(0)
n , P̃ (0)

m

〉〉
= δn,m.

In the following result we state a relation between the elements of the dual bases of the
sequences {P (0)

n }n≥0, {P (1)
n }n≥0 and {P (0) ′

n+1(x)/(n+ 1)}n≥0, when {v0,v1} is a CPMF2K.

Proposition 3.2. Let v0 and v1 be quasi-definite moment functionals and let {P (0)
n }n≥0

and {P (1)
n }n≥0 be, respectively, the corresponding sequences of MOP. If {v0,v1} is a

CPMF2K, then

(a) v(1)
n = ṽ(0)

n − τn+1ṽ(0)
n+1, n ≥ 0.

(b) D
[
P (1)
n (x)
h (1)
n

v1

]
=
(n+ 2)τn+1

P
(0)
n+2(x)
h (0)
n+2

− (n+ 1)P
(0)
n+1(x)
h (0)
n+1

v0, n ≥ 0.

Here, τn is as in (3.2).

Proof. For n ≥ 0 if one writes
v(1)
n =

∞∑
j=0

λn,j ṽ(0)
j ,

then from (3.2)

λn,j =
〈〈
v(1)
n , P̃

(0)
j

〉〉
=
〈〈
v(1)
n , P

(1)
j

〉〉
− τj

〈〈
v(1)
n , P

(1)
j−1

〉〉
=


1, if j = n,

−τn+1, if j = n+ 1,
0, otherwise.

Hence, the first item of the theorem follows.
On the other hand, by Lemma 1.14, v(0)

n and v(1)
n satisfy

v(0)
n = P (0)

n (x)
h (0)
n

v0, v(1)
n = P (1)

n (x)
h (1)
n

v1, n ≥ 0, (3.3)

and by Lemma 1.15, ṽ(0)
n satisfies

D(ṽ(0)
n ) = −(n+ 1)v(0)

n+1 = −(n+ 1)P
(0)
n+1(x)
h (0)
n+1

v0, n ≥ 1.

Thus, taking derivatives in the first item of the proposition and using the above equality
there follows

D(v(1)
n ) = −(n+ 1)v(0)

n+1 + (n+ 2)τn+1v(0)
n+2, n ≥ 0.

Hence, the second result follows from (3.3).
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In the next result we state a first characterization for the pair of quasi-definite moment
functionals {v0,v1} which is a CPMF2Ks.
Proposition 3.3. Let v0 and v1 be quasi-definite moment functionals. Then, {v0,v1}
is a CPMF2K if and only if there exists an admissible pair of polynomials (A3, A2) with
deg(A3) ≤ 3 and deg(A2) = 2 such that

Dv1 = A2v0 and v1 = A3v0. (3.4)

Proof. First we assume that the pair of quasi-definite moment functionals {v0,v1} is such
that there exist polynomials

A2(x) = d2P
(0)
2 (x) + d1P

(0)
1 (x) + d0P

(0)
0 (x) and

A3(x) = c3P
(0)
3 (x) + c2P

(0)
2 (x) + c1P

(0)
1 (x) + c0P

(0)
0 (x),

(3.5)

such that Dv1 = A2v0 and v1 = A3v0. Then from

P
(0) ′
n+1(x)
n+ 1 = P (1)

n (x) +
n−1∑
j=0

λn,j P
(1)
j (x), n ≥ 1,

where (n+ 1)h (1)
j λn,j =

〈〈
v1, P

(0) ′
n+1 P

(1)
j

〉〉
=
〈〈
v1, (P (1)

j P
(0)
n+1)′ − P (1) ′

j P
(0)
n+1

〉〉
, we get

λn,j = − 1
(n+ 1)h (1)

j

[〈〈
Dv1, P

(1)
j P

(0)
n+1

〉〉
+
〈〈
v1, P

(1) ′
j P

(0)
n+1

〉〉]
,

for 0 ≤ j ≤ n− 1 and n ≥ 1. Here, with the use of Dv1 = A2v0 and v1 = A3v0, one finds

λn,j = − 1
(n+ 1)h (1)

j

[〈〈
v0, A2P

(1)
j P

(0)
n+1

〉〉
+
〈〈
v0, A3P

(1) ′
j P

(0)
n+1

〉〉]
,

for 0 ≤ j ≤ n− 1 and n ≥ 1. Therefore, by orthogonality,

λn,n−1 = − h (0)
n+1

(n+ 1)h (1)
n−1

[d2 + (n− 1)c3] and λn,j = 0, 0 ≤ j ≤ n− 2,

for n ≥ 2. Moreover, λ1,0 = −h (0)
2 d2/(2h (1)

0 ). Hence, by setting λn,n−1 = −τn we find
(n+ 1)−1P

(0) ′
n+1(x) = P (1)

n (x)− τn P (1)
n−1(x), n ≥ 1, where

τn = h (0)
n+1

(n+ 1)h (1)
n−1

[d2 + (n− 1)c3], n ≥ 1. (3.6)

In particular, the polynomials A2 and A3 are such that

d2 = 2h (1)
0

h (0)
2

τ1, c3 = 3h (1)
1

h (0)
3

τ2 −
2h (1)

0

h (0)
2

τ1. (3.7)

We now use Proposition 3.2, which was derived under the assumption that {v0,v1}
is a CPMF2K, to find the precise set of polynomials (A3, A2) for which (3.7) holds. Suc-
cessively setting n = 0 and n = 1 in the second item of Proposition 3.2 we find that the
polynomials

A2(x) = 2h (1)
0 τ1

h (0)
2

P
(0)
2 (x)− h (1)

0

h (0)
1
P

(0)
1 (x) and

A3(x) = 3h (1)
1 τ2

h (0)
3

P
(0)
3 (x)− 2h (1)

1

h (0)
2

P
(0)
2 (x)− A2(x)P (1)

1 (x)
(3.8)
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are such that Dv1 = A2v0 and v1 = A3v0. With the requirement τ1 6= 0 we must have
deg(A2) = 2. However, it is possible that deg(A3) ≤ 3.

From (3.6) we now observe that τn 6= 0 for n ≥ 1 if and only if d2 + (n− 1)c3 6= 0 for
n ≥ 1. That is, τn 6= 0 for n ≥ 1 if and only if (A3, A2) in (3.8) is also an admissible pair
of polynomials. This completes the proof of the proposition.

Now let us assume that the pair of quasi-definite moment functionals {v0,v1} satisfies
the conditions

D[A3v0] = A2v0 and v1 = A3v0, (3.9)
where A2 and A3 are as in (3.5). Hence, from the equality between (3.9) and (3.4), we
find that d2 and c3 satisfy (3.7).

From D[A3v0] = A2v0 we have, for any polynomial p, that

− 〈〈v0, A3p
′〉〉 = 〈〈v0, A2p〉〉 . (3.10)

Here, the choice p(x) = 1 gives 〈〈v0, A2〉〉 = 0 and hence the polynomial A2 is a first order
quasi-orthogonal polynomial of degree 2 with respect to the moment functional v0. Thus,
A2 takes the form

A2(x) = 2h (1)
0

h (0)
2

τ1P
(0)
2 (x) + d1P

(0)
1 (x).

Hence, from
〈〈
v0, A2P

(0)
1

〉〉
= −

〈〈
v0, A3P

(0)′
1

〉〉
= − 〈〈v1, 1〉〉, which follows from v1 = A3v0,

we also obtain
d1 = −h (1)

0 /h (0)
1 .

Thus, A2 has to be the same polynomial given in (3.8).
Now, choosing p(x) = P

(1)
1 (x) and p(x) = xP

(1)
1 (x) in (3.10), we get respectively,〈〈

v0, A3 + A2P
(1)
1

〉〉
= 0 and

〈〈
v0, [A3 + A2P

(1)
1 ]x

〉〉
= 0.

To obtain the second equality above one also needs to use
〈〈
v0, A3P

(1)
1

〉〉
=
〈〈
v1, P

(1)
1

〉〉
= 0,

which again follows from v1 = A3v0. Therefore, the polynomial A3 + A2P
(1)
1 is a first

order quasi-orthogonal polynomial of degree 3 with respect to the moment functional v0.
Thus, we can write

A3(x) + A2(x)P (1)
1 (x) = 3h (1)

1 τ2

h (0)
3

P
(0)
3 (x)− a2P

(0)
2 (x).

Hence, from 〈〈
v0, [A3 + A2P

(1)
1 ]P (0)

2

〉〉
=
〈〈
v0, A3P

(0)
2

〉〉
+
〈〈
D[A3v0], P (1)

1 P
(0)
2

〉〉
=
〈〈
v0, A3P

(0)
2

〉〉
−
〈〈
v0, A3[P (1)

1 P
(0)
2 ]′

〉〉
= −

〈〈
v0, A3P

(1)
1 P

(0)′
2

〉〉
= −2h (1)

1 ,

we find a2 = −2h (1)
1 /h (0)

2 . Thus, A3 is also the same polynomial given in (3.8).

Remark 3.4. Note that, a polynomial Rn(x) is quasi-orthogonal polynomial of order r if
it can be written as linear combination of orthogonal polynomials {Pk}nk=n−r with respect
to some quasi-definite moment functional v.
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We can now give the following more general statement regarding CPMF2K.

Theorem 3.5. The pair of quasi-definite moment functionals {v0,v1} is a CPMF2K if
and only if there exists an admissible pair of polynomials (A3, A2), with deg(A3) ≤ 3 and
deg(A2) = 2, such that one of the following equivalent conditions holds:

(a) D[A3v0] = A2v0 and v1 = A3v0;

(b) Dv1 = A2v0 and D[A3v1] = (A′3 + A2)v1.

Moreover, the pair of polynomials (A3, A2) must be as in (3.8) and that, with the additional
admissibility assumption, both v0 and v1 are semiclassical moment functionals of class at
most s = 1.

Proof. Item (a) has been verified above and also means that the pair (A3, A2) is as in
(3.8).

Now to verify the equivalence of items (a) and (b), we first obtain for any polynomial
p ∈ P, that

〈〈D[A3v1], p〉〉 = − 〈〈v1, A3p
′〉〉 = − 〈〈v1, (A3p)′〉〉 + 〈〈v1, A

′
3p〉〉

= 〈〈Dv1, A3p〉〉 + 〈〈v1, A
′
3p〉〉 .

Thus, if Dv1 = A2v0, then

〈〈D[A3v1], p〉〉 = 〈〈A2v0, A3p〉〉 + 〈〈v1, A
′
3p〉〉 = 〈〈A3v0, A2p〉〉 + 〈〈v1, A

′
3p〉〉 .

Hence, D[A3v1] = (A′3 + A2)v1 if and only if v1 = A3v0. This gives the equivalence of
items (a) and (b).

The admissibility of the pair (A3, A2) means d2 + (n− 1)c3 6= 0, n ≥ 1, where d2 and
c3 are the respective leading coefficients of A2 and A3. As we have observed from (3.6),
this admissibility condition is necessary to guarantee τn 6= 0, n ≥ 1. Thus, if {v0,v1} is a
CPMF2K, then from item (a) we can also say that moment functional v0 is semiclassical
of class at most s = 1.

Observe also that the leading coefficient of A′3 + A2 is d̃2 = 3c3 + d2. Hence,
d̃2 + (n− 1)c3 = d2 + (n+ 2)c3 6= 0, n ≥ 1. Hence, the pair of polynomials (A3, A

′
3 +A2) is

also admissible and, as a consequence, from (b), the moment functional v1 is semiclassical
of class at most s = 1. This completes the proof of the theorem.

From item (b) of Theorem 3.5 we also find

〈〈v1, A
′
3 + A2〉〉 = 〈〈D[A3v1], 1〉〉 = 0.

Thus, A′3 +A2 is a first order quasi-orthogonal polynomial of degree 2 with respect to v1.
By writing

A′3(x) + A2(x) = b2P
(1)
2 (x) + b1P

(1)
1 (x),

we also have

b2 = 9h (1)
1 τ2

h (0)
3

− 4h (1)
0 τ1

h (0)
2

and b1 = − 1
h (1)

1
〈〈v1, A3〉〉 = − 1

h (1)
1

〈〈
v0, A

2
3

〉〉
.
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Remark 3.6. We have observed that A′3 +A2 is a first order quasi-orthogonal polynomial
of degree 2 with respect to v1. Hence, if v1 is positive definite, then the zeros of A′3 +A2
are real and at least one of these zeros must lie within the support of v1. Likewise, we
have observed earlier that A2 is a first order quasi-orthogonal polynomial of degree 2 with
respect to v0. Hence, if v0 is positive definite then the zeros of A2 are real and at least
one of them lie within the support of v0.

From (3.8) and using (3.2), we can also write

A3(x) = c3P
(0)
3 (x) + c2P

(0)
2 (x) + c1P

(0)
1 (x) + c0P

(0)
0 (x),

where

c0 = h (1)
0

h (0)
0
6= 0, c1 = h (1)

0

2h (0)
1

[β(0)
2 − β

(0)
1 − 2τ1] = h (1)

0

h (0)
1

[β(1)
1 − β

(0)
1 ],

c2 = h (1)
0

h (0)
1
− 2h (1)

1

h (0)
2

+ 2h (1)
0 τ1

h (0)
2

[β(1)
1 − β

(0)
3 ], c3 = 3h (1)

1 τ2

h (0)
3

− 2h (1)
0 τ1

h (0)
2

.

3.2 Some Special Cases
In this section we look at some examples of {v0,v1} which are CPMF2Ks. These

quasi-definite moment functionals can be given by an integral representation as∫
E
p(x)w(x)dx,

where w(x) is weight function. In particular we look some examples of positive definite
moment functionals.

We remind that, as shown in Theorem 3.5, in a pair {v0,v1} of CPMF2K the associated
pair (A3, A2) of admissible polynomials are such that deg(A3) ≤ 3 and deg(A2) = 2. In
what follows, results are presented in accordance with the degree of A3 as in the next
table.

deg(A3) = 3
deg(A3) = 2
deg(A3) = 1
deg(A3) = 0

deg(A2) = 2

A3 is of degree 3
(i) P (0)

n are the Jacobi Polynomials:

We consider the CPMF2K {v0,v1}, in which v0 is the moment functional given by the
Jacobi weight function. We look for information about the companion moment functional
v1 by determining the associated polynomials A2 and A3.

Without any loss of generality we can assume v0 to be such that

〈〈v0, p〉〉 =
∫ 1

−1
p(x)(1− x)α(1− x)βdx =

∫ 1

−1
p(x)dν(α,β)(x),
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with α > −1 and β > −1. Then the corresponding sequence of MOPs {P (0)
n }n≥0 is given

by
P (0)
n (x) = Pn(ν(α,β);x) = 2nn! (α + β + 1)n

(α + β + 1)2n
P (α,β)
n (x), n ≥ 0,

where

P (α,β)
n (x) = (α + 1)n

n! 2F1

(
− n, n+ α + β + 1;α + 1; 1

2(1− x)
)
, n ≥ 0,

are the Jacobi polynomials as usually defined. Also we remind that by Pn(ν(α,β);x) we
mean the n-th degree monic orthogonal polynomial with respect to the Jacobi measure
ν(α,β).

The coefficients in the three term recurrence of {P (0)
n }n≥0 and the values of

h (0)
n =

〈〈
v0, (P (0)

n )2
〉〉
are known to be such that

β(0)
n = c(α,β)

n and α
(0)
n+1 = h (0)

n

h (0)
n−1

= d
(α,β)
n+1 for n ≥ 1,

where
c(α,β)
n = β2 − α2

(α + β + 2n− 2)(α + β + 2n) ,

d
(α,β)
n+1 = 4n(α + n)(β + n)(α + β + n)

(α + β + 2n− 1)(α + β + 2n)2(α + β + 2n+ 1) .

It is also well known that the moment functional v0 is classical and satisfies the
Pearson’s equation D[(x2 − 1)v0] = [(α + β + 2)x + α − β]v0. However, with a q that
we choose here to be in (−∞,−1] ∪ [1,∞), we can also write the alternative Pearson’s
equation

D[B(q)
3 v0] = C(α,β,q)

2 v0, (3.11)
where

B(q)
3 (x) = sgn(q)(x− q)(x2 − 1) and

C(α,β,q)
2 (x) = sgn(q)

[
(α + β + 3)x2 + [α− β − q(α + β + 2)]x− q(α− β)− 1

]
.

This latter Pearson’s equation can be easily obtained from
−
〈〈
v0, (x2 − 1)p′(x)

〉〉
= 〈〈v0, [(α + β + 2)x+ α− β]p(x)〉〉 ,

by substituting p(x) by (x − q)p(x). Observe that, with our choice of q , the moment
functional given by B(q)

3 v0 is also a positive definite moment functional.
The leading coefficient of C(α,β,q)

2 is d2 = sign(q)(α+β+ 3) and the leading coefficient
of B(q)

3 is c3 = sgn(q). Hence, d2 + (n − 1)c3 6= 0, n ≥ 1, and (B(q)
3 , C(α,β,q)

2 ) is also an
admissible pair of polynomials.

We can now use item (a) in Theorem 3.5, with A2(x) = C(α,β,q)
2 (x) and A3(x) = B(q)

3 (x),
to obtain information about the respective coherent pair {v0,v1} of moment functionals
of the second kind. We thus have

〈〈v1, p〉〉 =
∫ 1

−1
p(x)B(q)

3 (x)(1− x)α(1 + x)βdx

=
∫ 1

−1
p(x)[− sgn(q)](x− q)(1− x)α+1(1 + x)β+1dx

=
∫ 1

−1
p(x)dν̂(α+1,β+1,q)(x)

(3.12)
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and
1

n+ 1P
′
n+1(ν(α,β);x) = P (1)

n (x)− τnP (1)
n−1(x)

= Pn(ν̂(α+1,β+1,q);x)− τnPn−1(ν̂(α+1,β+1,q);x), n ≥ 1,
(3.13)

where from (3.6),

sgn(q) τn = h (0)
n+1

(n+ 1)h (1)
n−1

(α + β + n+ 2) > 0, n ≥ 1.

In particular, from

C(α,β,q)
2 (x) = A2(x) = 2τ1h (1)

0

h (0)
2

[
P

(0)
2 (x)− h (0)

2

2τ1h (0)
1
P

(0)
1 (x)

]
,

with the explicit expressions for the Jacobi polynomials P (0)
1 and P (0)

2 , and that the value
of h (0)

2 /h (0)
1 is the same as d(α,β)

3 , straightforward calculations show that the above equality
holds if

τ1 = 4(α + 2)(β + 2)
(α + β + 4)(α + β + 5)

1
[q(α + β + 4)− (β − α)] .

Now observe that d̃2 + (n− 1)c3 = d2 + (n + 2)c3 6= 0, n ≥ 1, where d̃2 is the leading
coefficient of B(q)′

3 + C(α,β,q)
2 . Hence, we obtain from item (b) of Theorem 3.5 that the

moment functional v1 is semiclassical of class at most s = 1.
We can also look at the connection coefficients τn in a alternative way. Since the monic

Jacobi polynomials P (0)
n (x) = Pn(ν(α,β);x) satisfy

P
(0)′
n+1(x) = (n+ 1)Pn(ν(α+1,β+1);x)

we have from the coherence formula (3.13),

Pn(ν(α+1,β+1);x) = Pn(ν̂(α+1,β+1,q);x)− τnPn−1(ν̂(α+1,β+1,q);x), n ≥ 1.

This is the connection formula between the MOPs with respect to the Jacobi measure
ν(α+1,β+1) and the MOPs with respect to the measure ν̂(α+1,β+1,q). Thus, one can determine
τn, n ≥ 1, recursively using the following:

d
(α+1,β+1)
n+2
τn+1

+ c
(α+1,β+1)
n+1 + τn = q , n ≥ 1, (3.14)

with d
(α+1,β+1)
2
τ1

+ c
(α+1,β+1)
1 = q . The identities in (3.14) were first observed in [54].

However, proofs of these can also be found in [7] and [45].

Remark 3.7. Note that in this example, if q 6= −1 or 1, then the polynomial A3 has
three simple zeros and further, the moment functional v1 is not classical. However, if q is
either 1 or −1, then A3 has a double zero and the moment functional v1 given by (3.12)
is classical and is such that:

• 〈〈v1, p〉〉 =
∫ 1

−1
p(x)(1− x)α+2(1− x)β+1dx, if q = 1 .

• 〈〈v1, p〉〉 =
∫ 1

−1
p(x)(1− x)α+1(1− x)β+2dx, if q = −1 .
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(ii) P (0)
n are the Jacobi Polynomials:

We now consider the CPMF2K {v0,v1}, where v1 is the moment functional given by
the Jacobi weight function. That is, we set v1 to be such that

〈〈v1, p〉〉 =
∫ 1

−1
p(x)(1− x)α+1(1− x)β+1dx =

∫ 1

−1
p(x)dν(α+1,β+1)(x),

with α > −1 and β > −1 (in general) and

P (1)
n (x) = Pn(ν(α+1,β+1);x), n ≥ 0.

We have for the moment functional v1, which is classical,

D[B(q)
3 v1] = C(α+1,β+1,q)

2 v1,

where, C(α,β,q)
2 and B(q)

3 are as in (3.11). Again, we assume q ∈ (−∞,−1] ∪ [1,∞).
We now use item (b) of Theorem 3.5 to obtain information about the companion

moment functional v0 by letting A3(x) = B(q)
3 (x) and A′3(x) + A2(x) = C(α+1,β+1,q)

2 (x).
Observe that

〈〈D[A3v1], p〉〉 = − 〈〈v1, A3p
′〉〉 = −

∫ 1

−1
p′(x)B(q)

3 (x)(1− x)α+1(1 + x)β+1dx.

Since d[B(q)
3 (x)(1− x)α+1(1 + x)β+1]/dx = C(α+1,β+1,q)

2 (x)(1− x)α+1(1 + x)β+1, using inte-
gration by parts we find

〈〈D[A3v1], p〉〉 =
∫ 1

−1
p(x)C(α+1,β+1,q)

2 (x)(1− x)α+1(1 + x)β+1dx.

On the other hand

〈〈(A′3 + A2)v1, p〉〉 =
∫ 1

−1
p(x)[sgn(q)(3x2 − 2qx− 1) + A2(x)] (1− x)α+1(1 + x)β+1dx.

Hence, from the requirement D[A3v1] = (A′3 +A2)v1 in item (b) of Theorem 3.5, we find∫ 1

−1
p(x)A2(x)(1− x)α+1(1 + x)β+1dx

=
∫ 1

−1
p(x)C̃(α+1,β+1,q)

2 (x)(1− x)α+1(1 + x)β+1dx,

where
C̃(α+1,β+1,q)

2 (x) = C(α+1,β+1,q)
2 (x)− sgn(q)(3x2 − 2qx− 1)

= sgn(q)(x− q)[(α + β + 2)x− (β − α)].

Hence, if we set A2(x) = C̃(α+1,β+1,q)
2 (x), then from the other requirement Dv1 = A2v0 in

item (b) of Theorem 3.5,

−
∫ 1

−1
p′(x)(1− x)α+1(1 + x)β+1dx =

〈〈
v0, C̃(α+1,β+1,q)

2 p
〉〉
.

Using integration by parts we then have

−
∫ 1

−1
p(x)[(α + β + 2)x− (β − α)](1− x)α(1 + x)βdx =

〈〈
v0, C̃(α+1,β+1,q)

2 p
〉〉
. (3.15)
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Thus, if we choose v0 such that

〈〈v0, p〉〉 =
∫ 1

−1
p(x)(1− x)α(1 + x)β

sgn(−q)(x− q) dx+ ε p(q) =
∫ 1

−1
p(x)dν̃(α,β,q ,ε)(x), (3.16)

then it satisfies (3.15) and v1 = A3v0. With ε > 0 and with the range of values chosen
for q , the moment functional v0 is also positive definite. However, it is important that if
q = 1 then α must be such that α > 0. Likewise, if q = −1 then β must be such that
β > 0.

Thus, we conclude that

1
n+ 1P

′
n+1(ν̃(α,β,q ,ε);x) = 1

n+ 1P
(0)′
n+1(x)

= Pn(ν(α+1,β+1);x)− τnPn−1(ν(α+1,β+1);x), n ≥ 1,
(3.17)

where from (3.6),

sgn(q) τn = h (0)
n+1

(n+ 1)h (1)
n−1

[α + β + n+ 1] > 0, n ≥ 1.

Since P ′n+1(ν(α,β);x) = (n+1)Pn(ν(α+1,β+1);x), n ≥ 0, observe also from the coherence
formula (3.17),

Pn+1(ν̃(α,β,q ,ε);x) = Pn+1(ν(α,β);x)− τ̃nPn(ν(α,β);x), n ≥ 1,

where τ̃n = (n + 1)τn/n, n ≥ 1. This is the connection formula between the MOP with
respect to the Jacobi measure ν(α,β) and the MOP with respect to the measure ν̃(α,β,q ,ε).
Hence, the required values of τ̃n can be generated from

q = d
(α,β)
n+1
τ̃n−1

+ c
(α,β)
n+1 + τ̃n, n ≥ 1, (3.18)

with τ̃0 = −c(α,β)
1 + q + 〈〈v0, x− q〉〉 /h (0)

0 . For the formulas in (3.18) we refer to [7], [45]
and [54].

Remark 3.8. In this example, if q 6= −1 or 1, then A3 has three simple zeros and v0 is
semiclassical of class s = 1. However, if q is either 1 or −1, this represents a situation in
which the polynomial A3 has a double zero and v0 given by (3.16) is classical if ε = 0.

(iii) P (0)
n are the Bessel Polynomials:

For α /∈ {0,−1,−2, . . .}, let the moment functional v0 be given by

〈〈v0, p〉〉 =
∫
T
p(x)w(α,β)(x)dx,

where T represents integration along the unit circle and

w(α,β)(x) = 1
2πi

∞∑
k=0

Γ(α)
Γ(k + α− 1)

(
− β

x

)k
.
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Following Krall and Frink [39] (see also [11], [25], [73], among others), the MOP with
respect v0 are the generalized monic Bessel polynomials. That is,

P (0)
n (x) = ŷn(x;α, β),

where ŷ0(x;α, β) = 1 and

ŷn(x;α, β) = βn
Γ(n+ α− 1)
Γ(2n+ α− 1) 2F0

(
− n, n+ α− 1; —;−x

β

)
, n ≥ 1.

Moreover, for the values of h (0)
n =

〈〈
v0, (P (0)

n )2
〉〉
, n ≥ 0, there follows

h (0)
0 = −β and h (0)

n = (−1)n+1n!β2n+1 Γ(α)Γ(n+ α− 1)
Γ(2n+ α− 1)Γ(2n+ α) , n ≥ 1.

For the corresponding moments (v0)(α,β)
n , from

(v0)(α,β)
n =

∫
T
xnw(α,β)(x)dx = 1

2πi

∫
T

(−β)n+1Γ(α)
Γ(α + n) x−1dx, n ≥ 0,

we easily find

(v0)(α,β)
n = (−β)n+1Γ(α)

Γ(α + n) and (v0)(α+N,β)
n = (α)N

(−β)N (v0)(α,β)
n+N ,

for n ≥ 0 and N = 0, 1, 2, . . .. Therefore, for any polynomial p and for any non-negative
integer N we have

(−β)N
(α)N

∫
T
p(x)w(α+N,β)(x)dx =

∫
T
p(x)xNw(α,β)(x)dx. (3.19)

It was also observed in [39] that the function w(α,β) satisfies

d[x2w(α,β)(x)]
dx

= (αx+ β)w(α,β)(x)− (α− 1)(α− 2)
2π x,

and hence,
−
〈〈
v0, x

2p′
〉〉

= 〈〈v0, (αx+ β)p〉〉 .

That is, v0 satisfies the well-known Pearson’s equations D[x2v0] = [αx+ β]v0.
Notice that, we can also write the alternative Pearson’s equation D[A3v0] = A2v0 for

v0, where
A3(x) = x3 and A2(x) = (α + 1)x2 + βx.

This is obtained by replacing p(x) with xp(x) in − 〈〈v0, x
2p′〉〉 = 〈〈v0, (αx+ β)p〉〉.

For the leading coefficients d3 and c2 of A3 and A2, respectively, we have
c2 + (n − 1)d3 = α + 1 + (n − 1) 6= 0, n ≥ 1. Hence, (A3, A2) is an admissible pair
of polynomials and we can use item (a) of Theorem 3.5 to get the CPMF2K {v0,v1},
where v1 = x3v0.

From (3.19) there follows

P (1)
n (x) = ŷn(x;α + 3, β), n ≥ 0,
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and
h (1)
n = (−β)3

(α)3
(−1)n+1n!β2n+1 Γ(α + 3)Γ(n+ α + 2)

Γ(2n+ α + 2)Γ(2n+ α + 3)

= (−1)nn!β2n+4 Γ(α)Γ(n+ α + 2)
Γ(2n+ α + 2)Γ(2n+ α + 3) ,

for n ≥ 0. Consequently, from (3.6)

1
n+ 1 ŷ

′
n+1(x;α, β) = ŷn(x;α + 3, β)− τn ŷn−1(x;α + 3, β), n ≥ 1,

where

τn = n+ α

n+ 1
h (0)
n+1

h (1)
n−1

= −β n

(2n+ α)(2n+ α + 1) , n ≥ 1.

Remark 3.9. The above results provide a nice example of a CPMF2K where both mo-
ment functionals are classical but are quasi-definite. Moreover, this represents a situation
in which A3 has a triple zero.

A3 is of degree 2
(i) P (0)

n are the Laguerre Polynomials:

We consider the CPMF2K {v0,v1}, in which v0 is given by the generalized Laguerre
weight function. Without any loss of generality we can set v0 to be such that

〈〈v0, p〉〉 =
∫ ∞

0
p(x)xαe−xdx =

∫ ∞
0

p(x)dν(α)(x),

where α > −1. Then for the corresponding sequence of MOPs {P (0)
n }n≥0 we have

P (0)
n (x) = Pn(ν(α);x) = (−1)nn!L(α)

n (x), n ≥ 0,

where L(α)
n are the generalized Laguerre polynomials as traditionally defined. That is,

L(α)
n (x) = (α + 1)n

n! 1F1
(
− n, α + 1;x

)
, n ≥ 0.

The coefficients in the three term recurrence of {P (0)
n } and h (0)

n =
〈〈
v0, (P (0)

n )2
〉〉
are such

that
β(0)
n = c(α)

n and α
(0)
n+1 = h (0)

n

h (0)
n−1

= d
(α)
n+1 for n ≥ 1,

where c(α)
n = α + 2n− 1 and d(α)

n+1 = n(α + n).
It is known that the moment functional v0, which is classical, satisfies the Pearson’s

equation D[xv0] = (α + 1 − x)v0. However, with a q which we choose here to be in
(−∞, 0], we also have the alternative Pearson’s equation

D[B(q)
2 v0] = C(α,q)

2 v0, (3.20)

where C(α,q)
2 (x) = −x2 + (q + α + 2)x − q(α + 1) and B(q)

2 (x) = x(x − q). Observe that,
with our choice of q , the moment functional given by B(q)

2 v0 is also a positive definite
moment functional.
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With A2(x) = C(α,q)
2 (x) and A3(x) = B(q)

2 (x), we can now use item (a) in Theorem 3.5
to determine information about the respective coherent pair of measures of the second
kind.

We then have {v0,v1} is a coherent pair of the second kind if

〈〈v1, p〉〉 = 〈〈A3v0, p〉〉 =
∫ ∞

0
p(x)(x− q)xα+1e−xdx

=
∫ ∞

0
p(x)dν̂(α+1,q)(x)

(3.21)

and
1

n+ 1P
′
n+1(ν(α);x) = P (1)

n (x)− τnP (1)
n−1(x)

= Pn(ν̂(α+1,q);x)− τnPn−1(ν̂(α+1,q);x), n ≥ 1.
(3.22)

From item (b) of Theorem 3.5, the moment functional v1 satisfies

D[x(x− q)v1] = [−x2 + (q + α + 4)x− q(α + 2)]v1.

Hence, v1 is semiclassical of class s = 1 if q ∈ (−∞, 0).
From (3.8)

A2(x) = 2τ1h (1)
0

h (0)
2

[
P

(0)
2 (x)− h (0)

2

2τ1h (0)
1
P

(0)
1 (x)

]
= C(α,q)

2 (x).

Hence, we can also verify that
τ1 = − (α + 2)

α + 2− q
.

From (3.6),

τn = − h (0)
n+1

(n+ 1)h (1)
n−1

< 0, n ≥ 1.

We can look at the connection coefficients τn in a alternative way. Since the monic
Laguerre polynomials P (0)

n (x) = Pn(ν(α);x) satisfy

P ′n+1(ν(α);x) = (n+ 1)Pn(ν(α+1);x),

we have from the associated coherence formula (3.22),

Pn(ν(α+1);x) = Pn(ν̂(α+1,q);x)− τnPn−1(ν̂(α+1,q);x), n ≥ 1.

This is the connection formula between the MOPs with respect to the measure ν(α+1)

and the MOPs with respect to the measure ν̂(α+1,q). Thus, one can determine τn, n ≥ 1,
recursively using the following:

d
(α+1)
n+2
τn+1

+ c
(α+1)
n+1 + τn = q , n ≥ 1, (3.23)

with d
(α+1)
2
τ1

+ c
(α+1)
1 = q . Again, for the formulas in (3.23) we refer to [7], [45] and [54].

Remark 3.10. In this example, if q 6= 0, then the polynomial A3, which is of degree 2,
has two simple zeros and further, the moment functional v1 is not classical. However, if
q = 0 then A3 has a double zero and v1 given by (3.21) is classical and is such that:

〈〈v1, p〉〉 =
∫ ∞

0
p(x)xα+2e−xdx.
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(ii) P (1)
n are the Laguerre Polynomials:

We consider the CPMF2K {v0,v1}, where v1 is given by the generalized Laguerre
weight function. We will assume v1 to be such that

〈〈v1, p〉〉 =
∫ ∞

0
p(x)xα+1e−xdx =

∫ ∞
0

p(x)dν(α+1)(x),

with (in general) α > −1.
Then for the corresponding sequence of MOPs {P (1)

n }n≥0 we have

P (1)
n (x) = Pn(ν(α+1);x) = (−1)nn!L(α+1)

n (x), n ≥ 0.

For the moment functional v1 we have D[B(q)
2 v1] = C(α+1,q)

2 v1, where C(α,q)
2 and B(q)

2 are
as in (3.20). Again, we assume q ∈ (−∞, 0].

We can now use item (b) of Theorem 3.5, with

A3(x) = B(q)
2 (x) and A′3(x) + A2(x) = C(α+1,q)

2 (x),

to obtain information about the companion functional v0. Observe that

〈〈D[A3v1], p〉〉 = − 〈〈v1, A3p
′〉〉 = −

∫ ∞
0

p′(x)B(q)
2 (x)xα+1e−xdx.

Since d[B(q)
2 (x)xα+1e−x]/dx = C(α+1,q)

2 (x)xα+1e−x, using integration by parts we then find

〈〈D[A3v1], p〉〉 =
∫ ∞

0
p(x)C(α+1,q)

2 (x)xα+1e−xdx.

On the other hand

〈〈(A′3 + A2)v1, p〉〉 =
∫ ∞

0
p(x)[(2x− q) + A2(x)]xα+1e−xdx.

From D[A3v1] = (A′3 + A2)v1 we then find∫ ∞
0

p(x)A2(x)xα+1e−xdx =
∫ ∞

0
p(x)C̃(α+1,q)

2 (x)xα+1e−xdx,

where C̃(α+1,q)
2 (x) = C(α+1,q)

2 (x) − (2x − q) = (x − q)(−x + α + 1). Thus, if we set
A2(x) = C̃(α+1,q)

2 (x), then from Dv1 = A2v0,

−
∫ ∞

0
p′(x)xα+1e−xdx = 〈〈v0, (x− q)(−x+ α + 1)p〉〉 .

Hence, using integration by parts∫ ∞
0

p(x)(−x+ α + 1)xαe−xdx = 〈〈v0, (x− q)(−x+ α + 1)p〉〉 .

Hence, for v0 given by

〈〈v0, p〉〉 =
∫ ∞

0
p(x)dν̃(α,q ,ε)(x) =

∫ ∞
0

p(x) x
αe−x

(x− q)dx+ ε p(q), (3.24)

there hold v1 = A3v0 and D[A3v0] = A2v0. Here, it is important that if q = 0, then α
must be such that α > 0.
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From (3.6),

τn = − h (0)
n+1

(n+ 1)h (1)
n−1

< 0, n ≥ 1.

Since P ′n+1(ν(α);x) = (n + 1)Pn(ν(α+1);x), n ≥ 0, observe also that the respective
coherence formula

1
n+ 1P

′
n+1(ν̃(α,q ,ε);x) = Pn(ν(α+1);x)− τnPn−1(ν(α+1);x), n ≥ 1,

is equivalent to

Pn+1(ν̃(α,q ,ε);x) = Pn+1(ν(α);x)− τ̃nPn(ν(α);x), n ≥ 1,

where τ̃n = (n + 1)τn/n, n ≥ 1. This is the connection formula between the MOP with
respect to the Laguerre measure ν(α) and the MOP with respect to the measure ν̃(α,q ,ε).
Hence, the required values of τ̃n can be generated from

q = d
(α)
n+1
τ̃n−1

+ c
(α)
n+1 + τ̃n, n ≥ 1, (3.25)

with τ̃0 = −c(α)
1 + q + 〈〈v0, x− q〉〉 /h (0)

0 . For (3.25) we refer to [7], [45] and [54].

Remark 3.11. In this example, if q 6= 0, then A3, which is of degree 2, has two simple
zeros and v0 is semiclassical of class s = 1. However, if q = 0, this represents a situation
in which the polynomial A3 has a double zero and v0 given by (3.24) is classical if ε = 0.

(iii) P (0)
n are the Truncated Laguerre Polynomials:

We consider the CPMF2K {v0,v1}, where v0 is the moment functional given by

〈〈v0, p〉〉 =
∫ t

0
p(x)xαe−xdx,

with α > −1 and t > 0. This moment functional is associated with the so called truncated
generalized Hermite linear functionals by using the symmetrization problem (see [20]) and
a particular case when the truncated normal probability measure appears has been studied
in [21].

In order to get he companion moment functional v1 we will obtain the associated
polynomials A2 and A3. Observe that

〈〈D [x(t− x) v0] , p〉〉 = − 〈〈v0 , x(t− x)p′〉〉 = −
∫ t

0
p′(x)x(t− x)xαe−x dx.

Thus, from integration by parts

〈〈D [x(t− x) v0] , p〉〉 =
∫ t

0
p(x)[x2 − (α + t+ 2)x+ t(α + 1)]xαe−x dx.

Hence,
D[A3 v0] = A2 v0,

where A3(x) = x(t−x) and A2(x) = x2− (α+ t+ 2)x+ t(α+ 1). Thus, v0 is semiclassical
of class s = 1.
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From item (a) of Theorem 3.5 there follows

〈〈v1, p〉〉 =
∫ t

0
p(x) (t− x)xα+1e−xdx

and {v0,v1} is a coherent pair of positive definite moment functionals of the second kind.
From item (b) of Theorem 3.5, we also have

D[x(t− x)v1] = [x2 − (α + t+ 4)x+ t(α + 2)]v1

and hence, v1 is also semiclassical of class s = 1.

(iv) P (0)
n are the MOP with Respect to the Weight Function xαe−(x+κ/x):

Let the moment functional v0 be given by

〈〈v0, p〉〉 =
∫ ∞

0
p(x)xαe−(x+κ/x)dx =

∫ ∞
0

p(x)dν(α,κ)(x), κ ≥ 0,

where α ∈ R. The corresponding orthogonal polynomials P (0)
n (x) = Pn(ν(α,κ);x) and

related formulas have been the subject of study in [79] and [80] as well as in Section
4.4 of [75], where the connection with alternate discrete Painlevé II equations for the
coefficients involved in the structure relation is given.

Using integration by parts one can easily show that

〈〈D[x2v0]; p〉〉 = −
∫ ∞

0
p′(x)xα+2e−(x+κ/x)dx

=
∫ ∞

0
p(x)[−x2 + (α + 2)x+ κ]xαe−(x+κ/x)dx.

Therefore, v0 satisfies the Pearson’s equation D[A3v0] = A2v0, where

A3(x) = x2 and A2(x) = −x2 + (α + 2)x+ κ.

Thus, by item (a) of Theorem 3.5 we have the CPMF2K {v0,v1}, where

〈〈v1, p〉〉 =
∫ ∞

0
p(x)dν(α+2,κ)(x) and P (1)

n (x) = Pn(ν(α+2,κ);x), n ≥ 0.

Moreover, v1 is semiclassical of class at most s = 1.

A3 is of degree 1
With α > −1 and κ real, let the moment functional v0 be given by

〈〈v0, p〉〉 =
∫ +∞

0
p(x)xαe−x2+κxdx.

Clearly, v0 is a positive definite moment functional and it represents a semiclassical exten-
sion of the Laguerre weight. The coefficients of the three term relation of the corresponding
sequences of orthogonal polynomials satisfy an asymmetric Painlevé IV equation d-PIV
(see, Section 5.1 in [75]).

Observe that

〈〈D [xv0] , p〉〉 = − 〈〈v0, xp
′〉〉 = −

∫ +∞

0
p′(x)xα+1e−x

2+κx dx.
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Thus, integration by parts gives

〈〈D [xv0] , p〉〉 =
∫ +∞

0
p(x)[−2x2 + κx+ α + 1]xαe−x2+κx dx.

That is, D[A3v0] = A2v0, where A3(x) = x and A2(x) = −2x2 + κx + α + 1. Clearly,
A3v0 is also a positive definite moment functional.

Thus, by item (a) of Theorem 3.5, the pair of moment functionals {v0,v1} is a
CPMF2K if v1 = A3v0.

A3 is a Constant
We have the case in which deg(A3) = 0 and deg(A2) = 2. Thus, we can take without

any loss of generality v1 = A3v0 = v0. We now have a self coherent moment functional
of the second kind v0 such that

1
n+ 1P

(0)′
n+1(x) = P (0)

n (x)− τnP (0)
n−1(x), n ≥ 1.

Then, (see Prop. 4.2 in [48]) there exists a set of complex numbers {%n}n≥1 with %1 = 0,
%n 6= 0 for n ≥ 2, such that

P ′n+1(x)
n+ 1 + %n+1

P ′n(x)
n

=
(
x− β̃n+1 + %n+1 + γ̃n+2

%n+2

)
Pn(x), n ≥ 0.

The only example of moment functional known in this case, which was first obtained in
[57], can be derived in the following form. With a, b, c complex, let

〈〈Dv0, p〉〉 = − 〈〈v0, p
′〉〉 = −

∫ ∞
−∞

p′(x)eax3+bx2+cxdx.

Then by integration by parts

〈〈Dv0, p〉〉 = −
[
p(x)eax3+bx2+cx

]∞
−∞

+
∫ ∞
−∞

p(x)A2(x)eax3+bx2+cxdx,

where A2 = 3ax2 + 2bx + c. Hence, for the existence of the respective integrals and that
for A2 to be a polynomial of exact degree 2 we must have either

• a purely complex and Re(b) < 0;

• a purely complex, Re(b) = 0 and c purely complex.

Hence, for example, by setting a = i and b = −1 we can state that {v0,v0} is a CPMF2K
if

〈〈v0, p〉〉 =
∫ ∞
−∞

p(x)eix3−x2+cxdx.

Hence, if c is such that v0 is quasi-definite, then v0 is self coherent of the second kind.
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3.3 Matrix Characterization for Coherent Pairs of
the Second Kind

In this section we focus the attention on the matrices associated with sequences of
MOP corresponding to moment functionals v0 and v1 which are coherent pairs of the
second kind.

We start with some preliminary results. In a matrix form the three-term recurrence
relation (1.12) reads

xp(x) = JP p(x),

where p(x) = [P0(x), P1(x), . . .]> and JP is the infinite tridiagonal matrix

JP =



β1 1 0 0 . . .
α2 β2 1 0 . . .
0 α3 β3 1 . . .
0 0 α4 β4 . . .
... ... ... ... . . .


called the monic Jacobi matrix associated with {Pn}n≥0.

In [76] a matrix characterization for the orthogonality of a sequence of polynomials has
been introduced. Following [76], we consider the sequence of monic polynomials {Pn}n≥0
given by

Pn(x) =
n∑
j=0

cn,jxj, cn,n = 1, n ≥ 0,

and define the infinite matrix C with entries cn,j, with 0 ≤ j ≤ n, n ≥ 0, and zero
otherwise, i.e.,

C =



1 0 0 0 . . .
c1,0 1 0 0 . . .
c2,0 c2,1 1 0 . . .
c3,0 c3,1 c3,2 1 . . .
... ... ... ... . . .

 .

Thus, C is a nonsingular lower triangular matrix whose nth row contains the coefficients
of Pn with respect to the canonical basis {xn}n≥0. C is said to be the matrix associated
with the sequence {Pn}n≥0. We say that the entry ci,j is in the diagonal of indexm = i−j.
Also, a matrix C is said to be (n,m)-banded if there exists a pair of integers (n,m), with
n ≤ m, and all the nonzero entries of C lie between the diagonals of indices n and m.

Let us define the matrices

X =



0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
... ... ... ... . . .

 , D =



0 0 0 0 . . .
1 0 0 0 . . .
0 2 0 0 . . .
0 0 3 0 . . .
... ... ... ... . . .

 , D̂ =



0 1 0 0 . . .
0 0 1/2 0 . . .
0 0 0 1/3 . . .
0 0 0 0 . . .
... ... ... ... . . .

 . (3.26)

Observe that X> is the right inverse of X, since XX> = I, where I is the identity matrix,
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and

X>X =



0 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
... ... ... ... . . .

 .

The following matrix characterization was given in [76].

Theorem 3.12. Let {Pn}n≥0 be a sequence of monic polynomials and let C be the matrix
associated with it. Then, {Pn}n ≥0 is a sequence of MOPs if and only if J = CXC−1 is a
(−1, 1)-banded matrix whose entries in the diagonals of indices 1 and −1 are all nonzero.

For an updated survey on the role of infinite matrices in the theory of orthogonal
polynomials, see [77].

There are several characterizations of semiclassical orthogonal polynomials in terms
of the so-called structure relations. We stated in the following the characterization given
in [52], [55].

Theorem 3.13 (Structure relation). Let v be a quasi-definite moment functional sa-
tisfying (1.13) and let {Pn}n≥0 be its corresponding sequence of MOPs. Then, v is semi-
classical of class s if and only if {Pn}n≥0 satisfies the following structure relation

φ(x)P ′n+1(x) =
n+deg(φ)∑
j=n−s

rn,jPj(x), n ≥ s, rn,n−s 6= 0, n ≥ s + 1. (3.27)

In a matrix form, the structure relation (3.27) can be expressed as

φ(x)p′(x) = X>R p(x),

where p′(x) = [P ′0 (x), P ′1 (x), . . .]>, X is given in (3.26) and R is a (−deg(φ), s)-banded
matrix whose elements, starting from the row s, are the coefficients appearing in (3.27).

In [27] the authors deal with the symmetric tridiagonal (Jacobi) matrix associated
with a positive definite semiclassical moment functional that constitutes a counterpart of
the so called Laguerre-Freud equations that the coefficients of the three term recurrence
relation of semiclassical moment functionals satisfy (see [6]). In the classical case, a matrix
approach was given in [76]. The following result establishes a relation between R and JP
in the framework of quasi-definite semiclassical moment functionals and its proof can be
found, for example, in [27].

Theorem 3.14. Let v be a semiclassical moment functional satisfying (1.13), {Pn}n≥0 be
its corresponding sequence of MOPs and let R be the (−deg(φ), s)-banded matrix appearing
in the structure relation (3.27). Then,

(i)
[
JP , (X>Rh)ah−1

]
= φ(JP ),

(ii) (X>Rh)sh−1 = −1
2ψ(JP ),

where
[
A,B

]
= AB − BA denotes the commutator of the matrices A,B and h =

diag(h0,h1, . . .). On the other hand, Ms and Ma denote, respectively, the symmetric and
antisymmetric components of the matrix M.
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The result given below provides a characterization of a coherent pairs of measures of
the second kind in terms of the associated matrices representing orthogonal polynomials
in terms of the monomial basis.

Theorem 3.15. Let v0 and v1 be quasi-definite moment functionals and let {P (0)
n }n≥0 and

{P (1)
n }n≥0 be, respectively, the corresponding sequences of MOPs. Consider, respectively,

C(0) and C(1) as the matrices associated with {P (0)
n }n≥0 and {P (1)

n }n≥0. Denote C̆(0) =
D̂C(0)D.

Then, {v0,v1} is a CPMF2K if and only if the matrix C̆(0)(C(1))−1 is lower bidiagonal
with ones in the main diagonal and nonzero entries in the subdiagonal.

Proof. Suppose {v0,v1} is a CPMF2K. Thus,

P
(0) ′
n+1(x)
n+ 1 = P (1)

n (x)− τnP (1)
n−1(x), n ≥ 1,

where by convention P (1)
−1 (x) = 0 and τ0 is a free parameter.

Consider the infinite matrices X, D and D̂ given in (3.26). One can show that C̆(0) and
X>C(1) are, respectively, the matrices associated with the sequences {P (0) ′

n+1/(n + 1)}n≥0

and {P (1)
n−1}n≥0. Then, the previous relation can be written in matrix form as

D̂C(0)D = C̆(0) = C(1) − ΛX>C(1) = (I− ΛX>)C(1),

where I is the identity matrix and Λ = diag(τ0, τ1, τ2, . . .).
Since C(1) is nonsingular, we have

C̆(0)(C(1))−1 = I− ΛX> =



1 0 0 0 . . .
−τ1 1 0 0 . . .

0 −τ2 1 0 . . .
0 0 −τ3 1 . . .
... ... ... ... . . .

 .

The proof of the converse statement is analogous.

The next theorem states a simple algebraic relation between the corresponding monic
Jacobi matrices. Consider

p(i)(x) = [P (i)
0 (x), P (i)

1 (x), . . .]>, i = 0, 1.

Then we have
xp(i)(x) = J(i)

P p(i)(x), i = 0, 1, (3.28)

where J(i)
P is the Jacobi matrix

J(i)
P =



β
(i)
1 1 0 0 . . .

α
(i)
2 β

(i)
2 1 0 . . .

0 α
(i)
3 β

(i)
3 1 . . .

0 0 α
(i)
4 β

(i)
4 . . .

... ... ... ... . . .


, i = 0, 1.
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From Theorem 3.13, {P (i)
n }n≥0 satisfies (3.27) which can be expressed in a matrix form

A3(x)p(i) ′(x) = X>R(i) p(i)(x), i = 0, 1, (3.29)

where R(i) is a (−deg(A3), 1)-banded matrix.
Writing (3.2) in a matrix form we get

p(0) ′(x) = X>Bp(1)(x), (3.30)

where

B =



1 0 0 0 . . .
−2τ1 2 0 0 . . .

0 −3τ2 3 0 . . .
0 0 −4τ3 4 . . .
... ... ... ... . . .

 .

Next we deduce a simple algebraic relation between the Jacobi matrices associated
with a pair of moment functionals of the second kind.

Theorem 3.16. Let v0 and v1 be quasi-definite moment functionals and let {P (0)
n }n≥0

and {P (1)
n }n≥0 be, respectively, the corresponding sequences of MOPs. If {v0,v1} is a

CPMF2K, then the monic Jacobi matrices associated with {P (0)
n }n≥0 and {P (1)

n }n≥0 satisfy

B
[
A3(J(1)

P )(R(1))−1 + J(1)
P X>

]
= J̃(0)

P X>B̃,

where J̃(0)
P and B̃ are, respectively, the matrices obtained by eliminating both the first row

and the first column of J(0)
P and B.

Proof. Differentiating both sides in (3.28) and using (3.30), we get

p(0)(x) =
[
J(0)
P X>B−X>BJ(1)

P

]
p(1)(x).

Thus, differentiating both sides and using (3.30), we have

X>Bp(1)(x) =
[
J(0)
P X>B−X>BJ(1)

P

]
p(1) ′(x).

Multiplying both sides by A3(x) and using (3.29), we obtain

X>BA3(J(1)
P )p(1)(x) =

[
J(0)
P X>B−X>BJ(1)

P

]
X>R(1) p(1)(x),

or, equivalently,
BA3(J(1)

P ) + BJ(1)
P X>R(1) = XJ(0)

P X>BX>R(1).

Since XJ(0)
P X> = J̃(0)

P and BX> = X>B̃, this is equivalent to the formula of the statement
of the Theorem.

Remark 3.17. Notice that J(1)
P X> and J̃(0)

P X> are, respectively, monic (0, 2)-banded
matrices obtained by eliminating the first column of the matrices J(1)

P and J̃(0)
P .



4 Symmetric Coherent Pair of
Moment Functionals of the Second
Kind on the Real Line

The principal aim here is to study an extension to the concept of coherent pairs of
measures on the real line studied on Chapter 3, now under the assumption that the
measures are symmetric. We will, in particular, establish a characterization for pairs
of symmetric positive measures {ν0, ν1} on the real line for which {Pn(ν0; ·)}n≥0 and
{Pn(ν1; ·)}n≥0, respectively, the corresponding sequences of MOP, satisfy

Pn(ν1;x)− τn−1Pn−2(ν1;x) = 1
n+ 1P

′
n+1(ν0;x), n ≥ 2,

where τn 6= 0 for n ≥ 1. In order to do this, we study this problem by dealing with a more
general problem in the framework of symmetric and quasi-definite moment functionals.

4.1 Symmetric Coherent Pairs of the Second Kind
Notice that, the sequences of MOP {P (0)

n }n≥0 and {P (1)
n }n≥0 with respect to symmetric

and quasi-definite moment functionals v0 and v1, respectively, satisfy the TTRR

P
(0)
n+1 = xP (0)

n − α
(0)
n+1P

(0)
n−1, α

(0)
n+1 6= 0,

P
(1)
n+1 = xP (1)

n − α
(1)
n+1P

(1)
n−1, α

(1)
n+1 6= 0,

n ≥ 1.

Thus, if n is even the polynomials P (0)
n and P (1)

n are even functions and if n is odd they
are odd functions. In this situation the property (3.2) only can be satisfied with τn = 0
for all n ≥ 1. Therefore, in the next definition we introduce the concept of coherence of
the second kind for symmetric quasi-definite moment functionals.

Definition 4.1. Let v0 and v1 be symmetric and quasi-definite moment functionals and
let {P (0)

n }n≥0 and {P (1)
n }n≥0 be, respectively, the corresponding sequences of MOP. Then

{v0,v1} is called a symmetric coherent pair of moment functionals of the second kind
(SCPMF2K for short) if there exist non-zero constants τn such that

1
n+ 1P

(0) ′
n+1(x) = P (1)

n (x)− τn−1P
(1)
n−2(x), n ≥ 2. (4.1)

Therefore our objective is to find information regarding pairs {v0,v1} of symmetric
quasi-definite moment functionals which are SCPMF2K.

82



The Main Results 83

In what follows we also denote

h (0)
n =

〈〈
v0, (P (0)

n )2
〉〉

and h (1)
n =

〈〈
v1, (P (1)

n )2
〉〉
, n ≥ 0. (4.2)

4.2 The Main Results
In this section we present the main results of this chapter in which we establish a

characterization for the pair of symmetric and quasi-definite moment functionals {v0,v1}
that is a SCPMF2K.

Now we denote, respectively, by {v(0)
n }n≥0, {v(1)

n }n≥0 and {ṽ(0)
n }n≥0 the corresponding

basis dual of {P (0)
n }n≥0, {P (1)

n }n≥0 and {P̃ (0)
n }n≥0 , where

P̃ (0)
n (x) = P

(0) ′
n+1(x)
n+ 1 .

In the following result we state a relation between the elements of the dual bases of the
sequences {P (0)

n }n≥0, {P (1)
n }n≥0 and {P (0) ′

n+1(x)(n+ 1)}n≥0 when {v0,v1} is a SCPMF2K.

Proposition 4.2. Let v0 and v1 be symmetric and quasi-definite moment functionals
and let {P (0)

n }n≥0 and {P (1)
n }n≥0 be, respectively, the corresponding sequences of MOP. If

{v0,v1} is a SCPMF2K, then

(a) v(1)
n = ṽ(0)

n − τn+1ṽ(0)
n+2, n ≥ 0.

(b) D
[
P (1)
n (x)
h (1)
n

v1

]
=
(n+ 3)τn+1

P
(0)
n+3(x)
h (0)
n+3

− (n+ 1)P
(0)
n+1(x)
h (0)
n+1

v0, n ≥ 0.

Proof. Analogous from Proposition 3.2.

In the next result we give the first characterization for the pair of symmetric and
quasi-definite moment functionals {v0,v1} to be a SCPMF2K.

Proposition 4.3. Let v0 and v1 be symmetric and quasi-definite moment functionals.
Then, {v0,v1} is a SCPMF2K if and only if there exists an admissible pair of polynomials
(A4, A3) , where A4 is an even polynomial with deg(A4) ≤ 4 and A3 is an odd polynomial
with deg(A3) = 3 such that

Dv1 = A3v0 and v1 = A4v0. (4.3)

Proof. First we assume that the pair of symmetric and quasi-definite moment functionals
{v0,v1} is such that there exist polynomials

A3(x) = d3P
(0)
3 (x) + d1P

(0)
1 (x) and

A4(x) = c4P
(0)
4 (x) + c2P

(0)
2 (x) + c0P

(0)
0 (x),

(4.4)

such that Dv1 = A3v0 and v1 = A4v0. From

P
(0) ′
n+1(x)
n+ 1 = P (1)

n (x) +
n−2∑
j=0

λn,j P
(1)
j (x), n ≥ 2,
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where (n+ 1)h (1)
j λn,j =

〈〈
v1, P

(0) ′
n+1 P

(1)
j

〉〉
=
〈〈
v1, (P (1)

j P
(0)
n+1)′ − P (1) ′

j P
(0)
n+1

〉〉
, we get

λn,j = − 1
(n+ 1)h (1)

j

[〈〈
Dv1, P

(1)
j P

(0)
n+1

〉〉
+
〈〈
v1, P

(1) ′
j P

(0)
n+1

〉〉]
,

for 0 ≤ j ≤ n− 2 and n ≥ 2. Here, with the use of Dv1 = A3v0 and v1 = A4v0, one finds

λn,j = − 1
(n+ 1)h (1)

j

[〈〈
v0, A3P

(1)
j P

(0)
n+1

〉〉
+
〈〈
v0, A4P

(1) ′
j P

(0)
n+1

〉〉]
,

for 0 ≤ j ≤ n− 2 and n ≥ 2. Therefore, by orthogonality,

λn,n−2 = − h (0)
n+1

(n+ 1)h (1)
n−2

[d3 + (n− 2)c4] and λn,j = 0, 0 ≤ j ≤ n− 3,

for n ≥ 3. Moreover, λ2,0 = −h (0)
3 d3/(3h (1)

0 ). Hence, by setting λn,n−2 = −τn−1 we find

P
(0) ′
n+1(x)
n+ 1 = P (1)

n (x)− τn−1 P
(1)
n−2(x), n ≥ 2,

where

τn−1 = h (0)
n+1

(n+ 1)h (1)
n−2

[d3 + (n− 2)c4], n ≥ 2. (4.5)

In particular, the polynomials A3 and A4 are such that

d3 = 3h (1)
0

h (0)
3

τ1, c4 = 4h (1)
1

h (0)
4

τ2 −
3h (1)

0

h (0)
3

τ1. (4.6)

Conversely, we now use Proposition 4.2, which was derived under the assumption that
{v0,v1} is a SCPMF2K, to find the precise set of polynomials (A4, A3) for which (4.6)
holds. Successively setting n = 0 and n = 1 in the second item of Proposition 4.2 we find
that the polynomials

A3(x) = 3h (1)
0 τ1

h (0)
3

P
(0)
3 (x)− h (1)

0

h (0)
1
P

(0)
1 (x) and

A4(x) = 4h (1)
1 τ2

h (0)
4

P
(0)
4 (x)− 2h (1)

1

h (0)
2

P
(0)
2 (x)− A3(x)P (1)

1 (x)
(4.7)

are such that Dv1 = A3v0 and v1 = A4v0. With the requirement τ1 6= 0 we must have
deg(A3) = 3. However, it is possible that deg(A4) ≤ 4.

From (4.5) we now observe that τn−1 6= 0 for n ≥ 2 if and only if d3 + (n − 2)c4 6= 0
for n ≥ 2. That is, τn−1 6= 0 for n ≥ 2 if and only if (A4, A3) in (4.7) is also an admissible
pair of polynomials. This completes the proof of the proposition.

We can now give the following more general statement regarding SCPMF2K.

Theorem 4.4. The pair of symmetric and quasi-definite moment functionals {v0,v1} is
a SCPMF2K if and only if there exists an admissible pair of polynomials (A4, A3), where
A4 is an even polynomial with deg(A4) ≤ 4 and A3 is an odd polynomial with deg(A3) = 3,
such that one of the following equivalent conditions holds:
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(a) D[A4v0] = A3v0 and v1 = A4v0.

(b) Dv1 = A3v0 and D[A4v1] = (A′4 + A3)v1.

Moreover, the pair of polynomials (A4, A3) must be as in (4.7) and that, with the additional
admissibility assumption, both v0 and v1 are semiclassical symmetric moment functionals
of class at most s = 2.

Proof. Item (a) in the theorem follows from Proposition 4.3 in which (4.3) can be rewritten
as

D[A4v0] = A3v0 and v1 = A4v0,

where A3 and A4 are as in (4.4). Moreover, the pair (A4, A3) is as in (4.7). Indeed, from
D[A4v0] = A3v0 we have for any polynomial p,

− 〈〈v0, A4p
′〉〉 = 〈〈v0, A3p〉〉 . (4.8)

The choice p(x) = x gives 〈〈v0, A3x〉〉 = − 〈〈v0, A4〉〉 = − 〈〈v1, 1〉〉, which follows from
v1 = A4v0. Therefore we obtain

d1 = −h (1)
0 /h (0)

1

and d3 that satisfy (4.6), is obtained directly from the equality between (a) and (4.3).
Thus, A3 is the same polynomial given in (4.7).

Again, from the equality between (a) and (4.3), c4 also satisfies (4.6). Since the
polynomials A3 and A4 are odd and even polynomials, respectively, we can write

A4(x) + xA3(x)= 4h (1)
1 τ2

h (0)
4

P
(0)
4 (x) + e2P

(0)
2 (x) + e0P

(0)
0 (x). (4.9)

Now, choosing p(x) = x in (4.8), we get

〈〈v0, A4 + xA3〉〉 = 0,

thus e0 = 0. Therefore, (4.9) can be write as

A4(x) + xA3(x) = 4h (1)
1 τ2

h (0)
4

P
(0)
4 (x) + e2P

(0)
2 (x).

Hence, from〈〈
v0, [A4 + xA3]P (0)

2

〉〉
=
〈〈
v0, A4P

(0)
2

〉〉
−
〈〈
v0, A4[xP (0)

2 ]′
〉〉

= −
〈〈
A4v0, xP

(0)′
2

〉〉
= −2

〈〈
v1, x

2
〉〉

= −2h (1)
1 ,

we find e2 = −2h (1)
1 /h (0)

2 . Thus, A4 is also the same polynomial given in (4.7).
We now prove the equivalence of (a) and (b), we first obtain for any polynomial p,

〈〈D[A4v1], p〉〉 = − 〈〈v1, A4p
′〉〉 = − 〈〈v1, (A4p)′〉〉 + 〈〈v1, A

′
4p〉〉

= 〈〈Dv1, A4p〉〉 + 〈〈v1, A
′
4p〉〉 .

Thus, if Dv1 = A3v0 then

〈〈D[A4v1], p〉〉 = 〈〈A3v0, A4p〉〉 + 〈〈v1, A
′
4p〉〉 = 〈〈A4v0, A3p〉〉 + 〈〈v1, A

′
4p〉〉 .
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Hence, D[A4v1] = (A′4 + A3)v1 if and only if v1 = A4v0. This gives the equivalence of
items (a) and (b).

The admissibility of the pair (A4, A3) means d3 + (n− 2)c4 6= 0, n ≥ 2, where d3 and
c4 are the respective leading coefficients of A3 and A4. As we have observed from (4.5),
this admissibility condition is necessary to guarantee τn−1 6= 0, n ≥ 2. Thus, if {v0,v1} is
a SCPMF2K, then from item (a) we can also say that the symmetric moment functional
v0 is semiclassical of class at most s = 2.

Notice that the leading coefficient of A′4 +A3 is d̃3 = 4c4 + d3. Hence, d̃3 + (n− 2)c4 =
d3 + (n+ 2)c4 6= 0, n ≥ 2. Hence, the pair of polynomials (A4, A

′
4 +A3) is also admissible

and, as a consequence, from (b), the symmetric moment functional v1 is semiclassical of
class at most s = 2. This completes the proof of the theorem.

Since v0 and v1 are symmetric and quasi-definite moment functionals, using (1.14) let
us define u0 and u1 by

〈〈u0, x
n〉〉 =

〈〈
v0, x

2n
〉〉
,

〈〈u1, x
n〉〉 =

〈〈
v1, x

2n
〉〉
,

n ≥ 0. (4.10)

Then the sequences of monic polynomials {Q(0)
n }n≥0, {Q̃(0)

n }n≥0, {Q(1)
n }n≥0 and {Q̃(1)

n }n≥0
defined by

P
(0)
2n (x) = Q(0)

n (x2), P
(0)
2n+1(x) = xQ̃(0)

n (x2)

P
(1)
2n (x) = Q(1)

n (x2), P
(1)
2n+1(x) = xQ̃(1)

n (x2),
(4.11)

are sequences of MOP with respect to u0, xu0, u1 and xu1, respectively. Consequently,
from the above relations we can deduce that

h (0)
2n =

〈〈
v0, (P (0)

2n )2
〉〉

=
〈〈
u0, (Q(0)

n )2
〉〉
, h (0)

2n+1 =
〈〈
v0, (P (0)

2n+1)2
〉〉

=
〈〈
xu0, (Q̃(0)

n )2
〉〉
,

h (1)
2n =

〈〈
v1, (P (1)

2n )2
〉〉

=
〈〈
u1, (Q(1)

n )2
〉〉
, h (1)

2n+1 =
〈〈
v1, (P (1)

2n+1)2
〉〉

=
〈〈
xu1, (Q̃(1)

n )2
〉〉
,
n ≥ 0.

In the next theorem we look a connection between a SCPMF2K and CPMF2K.

Theorem 4.5. If {v0,v1} is a SCPMF2K, then {u0, xu1} is a CPMF2K. That is, the
respectives associated MOP satisfy

1
n+ 1Q

(0) ′
n+1(x) = Q̃(1)

n (x)− τ2nQ̃(1)
n−1(x), n ≥ 1.

Moreover, the sequences of MPO {Q(1)
n }n≥0 and {Q̃(0)

n }n≥0 satisfy

Q(1)
n (x)− τ2n−1Q(1)

n−1(x) = 1
2n+ 1Q̃

(0)
n (x) + 2x

2n+ 1Q̃
(0) ′
n (x).

Proof. Using (4.1) we have

1
2n+ 2P

(0) ′
2n+2(x) = P

(1)
2n+1(x)− τ2nP

(1)
2n−1(x),

and from (4.11) we get

2x
2n+ 2Q

(0) ′
n+1(x2) = 1

2n+ 2
[
Q(0)
n+1(x2)

]′
= xQ̃(1)

n (x2)− τ2nxQ̃(1)
n−1(x2).
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Hence, the first equation of the theorem follows.
Again from (4.1) we have

1
2n+ 1P

(0) ′
2n+1(x) = P

(1)
2n (x)− τ2n−1P

(1)
2n−2(x),

and from (4.11) we get

Q(1)
n (x2)− τ2n−1Q(1)

n−1(x2) = 1
2n+ 1

[
xQ̃(0)

n (x2)
]′

= 1
2n+ 1[Q̃(0)

n (x2) + 2x2Q̃(0) ′
n (x2)].

Thus the second equation of the statement of the theorem follows.

We will give an alternative proof of the above result in terms of moment functionals.
Indeed, using (4.10) and (4.3) we get

〈〈u1, x
n〉〉 = 〈〈v1, x

2n〉〉 = 〈〈A4v0, x
2n〉〉

= 〈〈v0, x
2nA4〉〉 =

〈〈
u0, x

nÂ2
〉〉

=
〈〈
Â2u0, x

n
〉〉
,

for n = 0, 1, 2, . . ., where Â2(x2) = A4(x), i.e., Â2 is a polynomial of degree at most 2.
Thus, u1 = Â2(x)u0.

On the other hand, by applying D to moment functional xu1 and using (4.10) we get

〈〈D[xu1], xn〉〉 = −n
〈〈
xu1, x

n−1
〉〉

= −n 〈〈u1, x
n〉〉 = −n

〈〈
xv1, x

2n−1
〉〉

= 1
2
〈〈
D[xv1], x2n

〉〉
.

From (4.3) and D[xv1] = xv1 +Dv1 the above expression reads as

〈〈D[xu1], xn〉〉 = 1
2
(〈〈
xA3v0, x

2n
〉〉

+
〈〈
v1, x

2n
〉〉)

= 1
2
(〈〈

u0, Â3x
n
〉〉

+ 〈〈u1, x
n〉〉
)
,

where Â3(x2) = xA3(x), i.e., Â3 is a polynomial of degree 2.

As a consequence, D(xu1) = 1
2(Â3+Â2)u0. Hence, we can state the following theorem.

Theorem 4.6. If {v0,v1} is a SCPMF2K, then {u0, xu1} is a CPMF2K and u1 is a
Christoffel transformation of u0 of order 2.

4.3 Some Special Cases
In this section we look at some examples of {v0,v1} which are SCPMF2K. We remind

that, as shown in Theorem 4.4, in a pair {v0,v1} of SCPMF2K the associated pair (A4, A3)
of admissible polynomials are such that deg(A4) ≤ 4 and deg(A3) = 3. In what follows,
results are presented in accordance with the degree of A4 as in the next table.

deg(A4) = 4
deg(A4) = 2
deg(A4) = 0

deg(A3) = 3
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A4 is of degree 4
(i) P (0)

n are the Gegenbauer Polynomials:

Let the moment functional v0 be given by

〈〈v0, p〉〉 =
∫ 1

−1
p(x)(1− x2)λ−1/2dx =

∫ 1

−1
p(x)dν(λ)(x),

with λ > −1
2 . The corresponding monic orthogonal polynomials P (0)

n (x) = C(λ)
n (x) are

known as monic Gegenbauer polynomials. Their properties have been studied extensively
in the literature (see, for example, [1], [20], [33] and [74]).

It is also well known that the symmetric moment functional v0 is classical and satisfies
the Pearson equation D[(x2−1)v0] = [(2λ+1)x]v0. However, with q ∈ (−∞,−1]∪ [1,∞),
we can also write the alternative Pearson’s equation

D[B(q)
4 v0] = C(λ,q)

3 v0, (4.12)

where

B(q)
4 (x) = (x2 − q2)(x2 − 1) and C(λ,q)

3 (x) = (2λ+ 3)x3 − [q2(2λ+ 1) + 2]x.

This latter Pearson equation can be easily obtained from

−
〈〈
v0, (x2 − 1)p′

〉〉
= 〈〈v0, [(2λ+ 1)x]p〉〉 ,

by replacing p(x) by (x2 − q2)p(x). Observe that, with our choice of q , the moment
functional given by B(q)

4 v0 is also a positive definite moment functional.
The leading coefficient of C(λ,q)

3 is d3 = 2λ + 3 and the leading coefficient of B(q)
4 is

c4 = 1. Hence, d3 + (n − 2)c4 6= 0, n ≥ 2, and (B(q)
4 , C(λ,q)

3 ) is also an admissible pair
of polynomials. We can now use item (a) in Theorem 4.4, with A3(x) = C(λ,q)

3 (x) and
A4(x) = B(q)

4 (x), to obtain information about the respective symmetric coherent pair of
moment functionals of the second kind {v0,v1}. We thus have

〈〈v1, p〉〉 =
∫ 1

−1
p(x)B(q)

4 (x)(1− x2)λ−1/2dx

=
∫ 1

−1
p(x)(q2 − x2)(1− x2)λ+1/2 dx =

∫ 1

−1
p(x)dν̂(λ+1,q)(x).

Now observe that d̃3 + (n− 2)c4 = d3 + (n + 2)c4 6= 0, n ≥ 2, where d̃3 is the leading
coefficient of B(q)′

4 + C(λ,q)
3 . Hence, we obtain from item (b) of Theorem 4.4 that the

moment functional v1 is semiclassical of class at most s = 2.

(ii) P (1)
n are the Gegenbauer Polynomials:

Let the moment functional v1 be given by

〈〈v1, p〉〉 =
∫ 1

−1
p(x)(1− x2)λ+1/2dx =

∫ 1

−1
p(x)dν(λ+1)(x),

with λ > −1/2. The corresponding MOP P (1)
n (x) = C(λ+1)

n (x) are the monic Gegenbauer
orthogonal polynomials with respect to the measure ν(λ+1).
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The moment functional v1 is classical and satisfies the Pearson equation

D[B(q)
4 v1] = C(λ+1,q)

3 v1,

where C(λ,q)
3 (x) and B(q)

4 (x) are as in (4.12) and q ∈ (−∞,−1] ∪ [1,∞).
We now use item (b) of Theorem 4.4 to obtain information about the companion

moment functional v0 by letting A4(x) = B(q)
4 (x) and A′4(x) + A3(x) = C(λ+1,q)

3 (x).
Observe that

〈〈D[A4v1], p〉〉 = − 〈〈v1, A4p
′〉〉 = −

∫ 1

−1
p′(x)B(q)

4 (x)(1− x2)λ+1dx.

Since d[B(q)
4 (x)(1− x2)λ+1/2]/dx = C(λ+1,q)

3 (x)(1− x2)λ+1/2, using integration by parts we
find

〈〈D[A4v1], p〉〉 =
∫ 1

−1
p(x)C(λ+1,q)

3 (x)(1− x2)λ+1/2dx.

On the other hand

〈〈(A′4 + A3)v1, p〉〉 =
∫ 1

−1
p(x)[4x3 − 2(q2 + 1)x+ A3(x)] (1− x2)λ+1/2dx.

Hence, from the requirement D[A4v1] = (A′4 +A3)v1 in item (b) of Theorem 4.4, we find∫ 1

−1
p(x)A3(x)(1− x2)λ+1/2dx =

∫ 1

−1
p(x)C̃(λ+1,q)

3 (x)(1− x2)λ+1/2dx,

where
C̃(λ+1,q)

3 (x) = C(λ+1,q)
3 (x)− 4x3 + 2(q2 + 1)x

= (x2 − q2)[(2λ+ 1)x].

Hence, if we set A3(x) = C̃(λ+1,q)
3 (x), then from the other requirement Dv1 = A3v0 in

item (b) of Theorem 4.4,

−
∫ 1

−1
p′(x)(1− x2)λ+1/2dx =

〈〈
v0, C̃(λ+1,q)

3 p
〉〉
.

Using integration by parts we then have

−
∫ 1

−1
p(x)[(2λ+ 1)x](1− x2)λ−1/2dx =

〈〈
v0, C̃(λ+1,q)

3 p
〉〉
. (4.13)

Thus, if we choose v0 such that

〈〈v0, p〉〉 =
∫ 1

−1
p(x)(1− x2)λ−1/2

q2 − x2 dx+ ε p(q) + ε p(−q) =
∫ 1

−1
p(x)dν̃(λ,q ,ε)(x),

then it satisfies (4.13) and v1 = A4v0. With ε > 0 and the range of values chosen for q ,
the symmetric moment functional v0 is also positive definite. However, it is important
that if q = ±1, then λ must be such that λ > 1/2.

Note that, the pair (B(q)
4 , C̃(λ,q)

3 ) is an admissible pair of polynomials, since
d̂3 + (n − 2)c4 6= 0, n ≥ 2, where d̂3 = 2λ + 1 and c4 = 1 are the leading coefficient
of C̃(λ+1,q)

3 and B(q)
4 , respectively. Hence, we obtain from item (a) of Theorem 4.4 that the

moment functional v0 is semiclassical of class at most s = 2.
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(iii) P (0)
n from a Symmetric Jacobi-type Moment Functional:

With α, β > −1 and β 6= 0, let the symmetric moment functional v0 be given by

〈〈v0, p〉〉 =
∫ 1

−1
p(x)|x|2β+1(1− x2)α dx+Np(0).

Clearly, v0 is a positive definite moment functional and it represents a symmetrized Jacobi-
type moment functional, that is a particular case of the so-called Koornwinder moment
functional [38] (see, also [36]).

Observe that, for every p ∈ P, we have〈〈
D
[
x2(1− x2)v0

]
, p
〉〉

= −
〈〈
v0, x

2(1− x2)p′
〉〉

= −
∫ 1

−1
p′(x)|x|2β+3(1− x2)α+1 dx.

Thus, integration by parts gives

〈〈D [A4v0] , p〉〉 =
∫ 1

−1
p(x)[−(2β + 2α + 5)x3 + (2β + 3)x] |x|2β+1(1− x2)α dx

= 〈〈A3v0, p〉〉 ,

where A4(x) = x2(1 − x2) and A3(x) = −(2β + 2α + 5)x3 + (2β + 3)x. Clearly, A4v0 is
also a positive definite moment functional and the moment functional v0 is semiclassical
of class s = 2 (see, [22]).

Therefore, by item (a) of Theorem 4.4, the pair of moment functionals {v0,v1} is a
SCPMF2K if v1 = A4v0. Also, the symmetric moment functional v1 is semiclassical of
class at most s = 2.

A4 is of degree 2
(i) P (0)

n are the Hermite Polynomials:

Let the moment functional v0 be given by

〈〈v0, p〉〉 =
∫ ∞
−∞

p(x)e−x2
dx =

∫ ∞
−∞

p(x)dν(x),

The corresponding monic orthogonal polynomials P (0)
n (x) = Hn(x) and their properties

also have been studied extensive in the basic literature (see, for example, [1], [20], [33] and
[74]). The polynomials Hn(x) are known as the monic orthogonal polynomials of Hermite
the n-th degree with respect to the measure ν(x).

It is known that the symmetric moment functional v0, which is classical, satisfies the
Pearson equation D[v0] = (−2x)v0. However, with a q 6= 0 that we choose here to be in
R, we also have the alternative Pearson equation

D[B(q)
2 v0] = C(α,q)

3 v0, (4.14)

where C(q)
3 (x) = −2x3 − 2(q2 − 1)x and B(q)

2 (x) = x2 + q2. Observe that, with our choice
of q , the moment functional given by B(q)

2 v0 is also a positive definite symmetric moment
functional.



Some Special Cases 91

With A3(x) = C(α,q)
3 (x) and A4(x) = B(q)

2 (x), we can now use item (a) in Theorem
4.4 to determine information about the respective symmetric coherent pair of measures
of the second kind {v0,v1}. We thus have

〈〈v1, p〉〉 = 〈〈A4v0, p〉〉 =
∫ ∞
−∞

p(x)(x2 + q2)e−x2
dx

=
∫ ∞
−∞

p(x)dν̂(q)(x).

From item (b) of Theorem 4.4, the moment functional v1 satisfies

D[(x2 + q2)v1] = [−2x3 − 2(q2 − 2)x]v1.

Hence, v1 is semiclassical of class s = 2 if q 6= 0 but it is also semiclassical of class at
most s = 1 if q = 0.

(ii) P (1)
n are the Hermite Polynomials:

We will assume v1 to be such that

〈〈v1, p〉〉 =
∫ ∞
−∞

p(x)e−x2
dx =

∫ ∞
−∞

p(x)dν(x).

Then for the corresponding sequence of MOP {P (1)
n }n≥0 we have

P (1)
n (x) = Hn(x), n ≥ 0.

For the moment functional v1 we have D[B(q)
2 v1] = C(q)

3 v1, where, C(q)
3 (x) and B(q)

2 (x) are
as in (4.14). Again, we assume 0 6= q ∈ R.

We can now use item (b) of Theorem 4.4, with

A4(x) = B(q)
2 (x) and A′4(x) + A3(x) = C(q)

3 (x),

to obtain information about the companion symmetric functional v0. Observe that

〈〈D[A4v1], p〉〉 = − 〈〈v1, A4p
′〉〉 = −

∫ ∞
−∞

p′(x)B(q)
2 (x)e−x2

dx.

Since d[B(q)
2 (x)e−x2 ]/dx = C(q)

3 (x)e−x2 , using integration by parts we then find

〈〈D(A3v1), p〉〉 =
∫ ∞
−∞

p(x)C(q)
3 (x)e−x2

dx.

On the other hand

〈〈(A′4 + A3)v1, p〉〉 =
∫ ∞
−∞

p(x)[2x+ A3(x)]e−x2
dx.

From D[A4v1] = (A′4 + A3)v1 we then find∫ ∞
−∞

p(x)A3(x)e−x2
dx =

∫ ∞
−∞

p(x)C̃(q)
3 (x)e−x2

dx,

where C̃(q)
3 (x) = C(q)

3 (x)− 2x = −2x(x2 + q2). Thus, if we set A3(x) = C̃(q)
3 (x), then from

Dv1 = A3v0,
−
∫ ∞
−∞

p′(x)e−x2
dx =

〈〈
v0,−2x(x2 + q2)p

〉〉
.



Some Special Cases 92

Hence, using integration by parts∫ ∞
−∞

p(x)(−2x)e−x2
dx =

〈〈
v0,−2x(x2 + q2)p

〉〉
.

Therefore, for v0 given by

〈〈v0, p〉〉 =
∫ ∞
−∞

p(x)dν̃(q)(x) =
∫ ∞
−∞

p(x) e−x
2

x2 + q2dx,

there hold v1 = A4v0 and D[A4v0] = A3v0. Hence, we obtain from item (a) of Theorem
4.4 that the pair {v0,v1} is a SCPMF2K and the moment functional v0 is semiclassical
of class at most s = 2.

(iii) P (0)
n from a Generalized Hermite-type Moment Functional:

Let the moment functional v0 be given by

〈〈v0, p〉〉 =
∫ ∞
−∞

p(x)|x|2α+1e−x
2
dx+ εp(0) =

∫ ∞
−∞

p(x)dν(α)(x) + εp(0),

where α > −1. This is a generalized Hermite-type moment functional (see [42]).
Using integration by parts one can easily show that

〈〈D[x2v0]; p〉〉 = − 〈〈v0, x
2p′〉〉 = −

∫ ∞
−∞

p′(x)|x|2α+3e−x
2
dx

=
∫ ∞
−∞

p(x)[2x3 − (2α + 3)x]|x|2α+1e−x
2
dx.

Thus, v0 is semiclassical of class s = 2 (see [22]) which satisfies the Pearson equation
D[A4v0] = A3v0, where

A4(x) = x2 and A3(x) = 2x3 − (2α + 3)x.

Therefore, by item (a) of Theorem 4.4 we have the SCPMF2K {v0,v1}, where

〈〈v1, p〉〉 =
∫ ∞
∞

p(x)|x|2α+3e−x
2
dx and P (1)

n (x) = Pn(ν(α+1);x), n ≥ 0.

A4 is a Constant
Let the moment functional v0 be given by

〈〈v0, p〉〉 =
∫ ∞
−∞

p(x)e−x4
dx =

∫ ∞
−∞

p(x)dν0(x).

The corresponding orthogonal polynomials P (0)
n (x) = Pn(ν0;x) satisfy a three-term recur-

rence relation (see, [64, 65])

xPn(ν0;x) = Pn+1(ν0;x) + cnPn−1(ν0;x), n ≥ 1, (4.15)

with initial conditions P0(ν0;x) = 1 and P1(ν0;x) = x, where the parameters cn satisfy a
non-linear recurrence relation

n = 4cn(cn+1 + cn + cn−1), n ≥ 1,
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with initial conditions c0 = 0, c1 = Γ(3/4)Γ(1/4), where Γ(z) denotes the Euler’s Gamma
function. Furthermore, the sequence of MOP {Pn(ν0; ·)}n≥0 satisfies the structure relation

P ′n+1(ν0;x) = (n+ 1)Pn(ν0;x) + dn+1Pn−2(ν0;x), n ≥ 2, (4.16)

where dn+1 = 4cn+1cncn−1, n ≥ 2.
It is also well known that the moment functional v0 is a symmetric semiclassical

moment functional of class s = 2 (see [22]) and satisfies the Pearson equation

D[A4v0] = A3v0,

where A4(x) = 1 and A3(x) = −4x3. We have the case in which deg(A4) = 0 and
deg(A3) = 3. Thus, we can take without any loss of generality v1 = A4v0 = v0. and by
(4.16), we have a self coherent symmetric moment functional of the second kind v0 such
that

P
(0)′
n+1(x)
n+ 1 = P (0)

n (x)− τn−1P
(0)
n−2(x), n ≥ 2,

where τn−1 = −dn+1/(n+ 1).



5 Sobolev Orthogonal Polynomials
from SCPMF2K on the Real Line

The main objective in this chapter is to consider the sequence of orthogonal polyno-
mials {Sn}n≥0 with respect to the positive definite Sobolev inner product

〈f, g〉S = 〈〈v0, fg〉〉 + λ̃ 〈〈v1, f
′g′〉〉 , λ̃ > 0, (5.1)

where the pair of symmetric positive definite moment functionals {v0,v1} is a SCPMF2K
on the real line. The sequence {Sn}n≥0 is called the sequence of monic Sobolev orthogonal
polynomials (MSOP for short). We study some properties of this sequence of polynomials
and establish the connection formulas that these polynomials satisfy together with the
sequence of MOP corresponding to moment functional v0.

5.1 Introduction
Let {v0,v1} be a pair of symmetric and positive definite moment functional. If {v0,v1}

is a SCPMF2K from Proposition 4.3 there exists an admissible pair of polynomials (A4, A3)
with deg(A4) ≤ 4 and deg(A3) = 3 such that {v0,v1} satisfy (4.3). Moreover, the
constants τn in the coherence formula (4.1) satisfy

τn−1 = h (0)
n+1

(n+ 1)h (1)
n−2

[d3 + (n− 2)c4], n ≥ 2, (5.2)

where d3 is the leading coefficient of A3 and c4 is coefficient of degree 4 in A4. Here, h (0)
n

and h (1)
n are given as in (4.2).

We define the elements of sequences {pn}n≥1 and {qn}n≥1, which will play an important
role in the sequel. Let

qn+1 = λ̃(n+ 1)(n− 1)τn−1h (1)
n−2,

pn+1 = h (0)
n+1 + λ̃(n+ 1)2

[
h (1)
n + τ 2

n−1h (1)
n−2

]
,

n ≥ 2, (5.3)

with q2 = 0, p1 = h (0)
1 + λ̃h (1)

0 and p2 = h (0)
2 + 4λ̃h (1)

1 .
Throughout in this section, we will assume that the moment functionals v0 and v1

are symmetric and positive definite. Thus, there exist symmetric positive Borel measures
ν0 and ν1 supported on infinite subsets of the real line E0 ⊆ R and E1 ⊆ R, respectively,
such that

〈〈v0, p〉〉 =
∫
E0
p(x) dν0(x) and 〈〈v1, p〉〉 =

∫
E1
p(x) dν1(x), p ∈ P.
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In this case, the Sobolev inner product (5.1) can be rewritten as

〈f, g〉S = 〈f, g〉ν0 + λ̃〈f ′, g′〉ν1 , λ̃ > 0, (5.4)

where 〈f, g〉ν0 =
∫
E0
f(x)g(x)dν0(x) and 〈f, g〉ν1 =

∫
E1
f(x)g(x)dν1(x). Moreover, instead

of saying {v0,v1} is a SCPMF2K on the real line we will say {ν0, ν1} is a symmetric
coherent pair of positive measures of the second kind on the real line (as abbreviated,
SCPPM2K on the real line).

Remark 5.1. The Sobolev inner product (5.1) when the pair of positive definite moment
functionals {v0,v1} is CPMF2K on the real line was consider in the recent papers [29]
and [40].

The next result follows analogously from Theorem 2.10 which is a result on the unit
circle. For the sake of completeness, we also provide its proof.

Theorem 5.2. Let {ν0, ν1} be a SCPPM2K on the real line. Then the sequence of MSOP
{Sn}n≥0 with respect to the inner product (5.4) is such that

S0(x) = 1, S1(x) = P
(0)
1 (x), S2(x) = P

(0)
2 (x) and

S2n+2(x) = P
(0)
2n+2(x) +

n∑
j=1

a2n+2,jP
(0)
2j (x),

S2n+1(x) = P
(0)
2n+1(x) +

n∑
j=1

a2n+1,jP
(0)
2j−1(x),

n ≥ 1,

Here, an = [a2n+2,1, a2n+2,2, . . . , a2n+2,n]> is the solution of the system of linear equations

T2n an = q2n+2 en and n ≥ 1,

where en is the n-th column of the n × n identity matrix and T2n is the n × n real
symmetric tridiagonal matrix

T2n =



p2 −q4

−q4 p4 −q6

. . . . . . . . .

−q2n−2 p2n−2 −q2n

−q2n p2n


,

bn = [a2n+1,1, a2n+1,2, . . . , a2n+1,n]> is the solution of the system of linear equations

T2n−1 bn = q2n+1 en, n ≥ 1,

where en is the n-th column of the n × n identity matrix and T2n−1 is the n × n real
symmetric tridiagonal matrix

T2n−1 =



p1 −q3

−q3 p3 −q5

. . . . . . . . .

−q2n−3 p2n−3 −q2n−1

−q2n−1 p2n−1


.
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Proof. If we write

S2n+2(x) =
n+1∑
j=0

a2n+2,jP
(0)
2j (x) with a2n+2,n+1 = 1,

then by considering the orthogonality of S2n+2 we can deduce

0 = 〈P (0)
2k ,S2n+2〉S

= 〈P (0)
2k ,

n+1∑
j=0

a2n+2,jP
(0)
2j 〉ν0 + λ̃ 〈P (0) ′

2k ,
n+1∑
j=0

a2n+2,jP
(0) ′
2j 〉ν1

= h (0)
2k a2n+2,k + λ̃ 〈P (0) ′

2k ,
n+1∑
j=0

a2n+2,jP
(0) ′
2j 〉ν1

(5.5)

for n ≥ 0 and k = 0, 1, . . . , n. From this, with the observation P
(0) ′
0 (x) = 0 and

P
(0) ′
2 (x) = 2P (0)

1 (x) we find

a2n+2,0 = 0 and [h (0)
2 + 4λ̃h (1)

1 ]a2n+2,1 − 8λ̃h (1)
1 τ2a2n+2,2 = 0 for n ≥ 0.

Using (4.1) and substituting into (5.5) gives

0 = −4λ̃ (k − 1)kτ2k−2h (1)
2k−3a2n+2,k−1

+
[
h (0)

2k + 4λ̃k2
(
h (1)

2k−1 + τ 2
2k−2 h (1)

2k−3

)]
a2n+2,k − 4λ̃ k(k + 1)τ2kh (1)

2k−1a2n+2,k+1

= −q2ka2n+2,k−1 + p2ka2n+2,k − q2k+2a2n+2,k+1,

for k = 2, 3, . . . , n. Hence, since a2n+2,n+1 = 1, we obtain the required first system of
linear equations.

On the other hand, since S2n+1(x) is an odd function we can write

S2n+1(x) =
n+1∑
j=1

a2n+1,jP
(0)
2j−1(x) with a2n+1,n+1 = 1,

then by considering the orthogonality of S2n+1(x) we can deduce

0 = 〈P (0)
2k−1,S2n+1〉S

= 〈P (0)
2k−1,

n+1∑
j=1

a2n+1,jP
(0)
2j−1〉ν0 + λ̃ 〈P (0) ′

2k−1,
n+1∑
j=1

a2n+1,jP
(0) ′
2j−1〉ν1

= h (0)
2k−1a2n+1,k + λ̃ 〈P (0) ′

2k−1,
n+1∑
j=1

a2n+1,jP
(0) ′
2j−1〉ν1

(5.6)

for n ≥ 1 and k = 1, 2, . . . , n. From this, with the observation P (0) ′
1 (x) = 1 we find

[h (0)
1 + λ̃h (1)

0 ]a2n+1,1 − 3λ̃h (1)
0 τ1a2n+1,2 = 0 for n ≥ 1.

Using (4.1) and substituting into (5.6) gives

0 = −λ̃ (2k − 1)(2k − 3)τ2k−3h (1)
2k−4a2n+1,k−1 +

[
h (0)

2k−1 + λ̃(2k − 1)2h (1)
2k−2+

λ̃(2k − 1)2τ 2
2k−3 h (1)

2k−4

]
a2n+1,k − λ̃(2k − 1)(2k + 1)τ2k−1h (1)

2k−2a2n+1,k+1

= −q2k−1a2n+1,k−1 + p2k−1a2n+1,k − q2k+1a2n+1,k+1,
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for k = 2, 4, . . . , n. Hence, since a2n+1,n+1 = 1, we obtain the required second system of
linear equations. This completes the proof of the theorem.

Since T2n and T2n−1 are tridiagonal matrices, it is easily seen that

det(T2n) = p2ndet(T2n−2)− q2
2ndet(T2n−4),

det(T2n−1) = p2n−1det(T2n−3)− q2
2n−1det(T2n−5),

n ≥ 2,

with det(T−1) = 1, det(T0) = 1, det(T1) = p1 and det(T2) = p2. From this,

det(T2n)
p2ndet(T2n−2)

[
1− det(T2n+2)

p2n+2det(T2n)

]
= q2

2n+2
p2np2n+2

, n ≥ 1,

and
det(T2n−1)

p2n−1det(T2n−3)

[
1− det(T2n+1)

p2n+1det(T2n−1)

]
= q2

2n+1
p2n−1p2n+1

, n ≥ 1.

The sequences {d(2)
n }n≥1 and {d(1)

n }n≥1, where

d(2)
n = q2

2n+2
p2np2n+2

and d(1)
n = q2

2n+1
p2n−1p2n+1

, (5.7)

for n ≥ 1, are positive chain sequences. This we confirm later in this chapter. This means
the sequence {m(2)

n }n≥1, where

(1−m
(2)
n−1)m(2)

n = d(2)
n and m

(2)
n−1 = 1− det(T2n)

p2ndet(T2n−2) n ≥ 1, (5.8)

is the minimal parameter of {d(2)
n }n≥1, and the sequence {m(1)

n }n≥1, where

(1−m
(1)
n−1)m(1)

n = d(1)
n and m

(1)
n−1 = 1− det(T2n−1)

p2n−1det(T2n−3) n ≥ 1, (5.9)

is the minimal parameter of {d(1)
n }n≥1. Therefore,

0 <
det(T2n)

p2ndet(T2n−2) = 1−m
(2)
n−1 < 1,

0 <
det(T2n−1)

p2n−1det(T2n−3) = 1−m
(1)
n−1 < 1,

n ≥ 2.

Remark 5.3. Note that the matrices T2n and T2n−1 are positive definite. This fact
guarantees the existence of a unique solution for the systems T2n an = q2n+2 en and
T2n−1 bn = q2n+1 en. Consequently, one can use this to verify the existence of the sequence
of MSOP {Sn}n≥0 with respect to the inner product (5.4).

5.2 The Simple Connection Formulas
The following result states that two consecutive Sobolev polynomials are connected to

an orthogonal polynomial with respect to the measure ν0.
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Theorem 5.4. Let {ν0, ν1} be a SCPPM2K on the real line. Then the sequence of MSOP
{Sn}n≥0 with respect to the inner product (5.4) satisfies the simple connection formulas

S2n(x)− γ2n−2S2n−2(x) = P
(0)
2n (x),

S2n−1(x)− γ2n−3S2n−3(x) = P
(0)
2n−1(x),

n ≥ 1, (5.10)

where S0(x) = 1 and γn are such that

γ−1 = 0, γ0 = 0, γ2n = q2n+2

p2n − q2n γ2n−2
and γ2n−1 = q2n+1

p2n−1 − q2n−1 γ2n−3
, (5.11)

for n ≥ 1. Here, the elements pn and qn are as in (5.3).

Proof. Let us consider the expansion

P (0)
n (x) = Sn(x) +

n−2∑
j=0

an,jSj(x), n ≥ 3,

where S0(x) = 1, S1(x) = x, S2(x) = P
(0)
2 (x) and

an,j = 〈P
(0)
n ,Sj〉S
〈Sj,Sj〉S

=
〈P (0)

n ,Sj〉ν0 + λ̃〈P (0)′
n ,S ′j〉ν1

〈Sj,Sj〉S
= λ̃
〈P (0) ′

n ,S ′j〉ν1

〈Sj,Sj〉S
,

for j = 0, 1, . . . , n− 2 and n ≥ 3. Hence, substituting P (0) ′
n using (4.1) we get an,j = 0 for

n ≥ 3 and j = 0, 1, . . . , n− 3. Moreover,

−γn−2 = an,n−2 = λ̃
〈P (0) ′

n ,S ′n−2〉ν1

〈Sn−2,Sn−2〉S
, n ≥ 3.

Thus,

γ−1 = 0, γ0 = 0, γ2n = q2n+2

〈S2n,S2n〉S
and γ2n−1 = q2n+1

〈S2n−1,S2n−1〉S
, n ≥ 1. (5.12)

With the observation that Sk is monic, we have

〈Sk,Sk〉S = 〈Sk, P (0)
k 〉S

= h (0)
k + λ̃ 〈S ′k, P

(0) ′
k 〉ν1 .

Thus, from S ′k(x) = P
(0) ′
k (x) + γk−2 S ′k−2(x) and (4.1),

〈Sk,Sk〉S = h (0)
k + λ̃

[
k2h (1)

k−1 + k2τ 2
k−2h (1)

k−3

]
− λ̃ (k − 2)kτk−2h (1)

k−3γk−2

= pk − qk γk−2,

(5.13)

which gives the statement of the theorem, when k = 2n and k = 2n− 1.

The next theorem gives an upper bound for the ratio γn/τn.
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Theorem 5.5. The connection coefficients γn that appear in (5.10) and the coefficients
τn that appear in (5.2) satisfy

0 <
γn
τn

<
n+ 2
n

, n ≥ 1.

Proof. Observe that (5.12) gives qn+2γn > 0 for n ≥ 1. Hence, from (5.3)

τnγn > 0, n ≥ 1.

Now by combining (5.4) with the minimal norm properties of MOP, one finds

〈Sn,Sn〉S > 〈P (0)
n , P (0)

n 〉ν0 + λ̃n2 〈P (1)
n−1, P

(1)
n−1〉ν1 , n ≥ 1.

Then, from (5.13) we have

λ̃ n2τ 2
n−2h (1)

n−3 > λ̃ (n− 2)nτn−2h (1)
n−3γn−2, n ≥ 3.

This gives the inequality result of the theorem.

Now, by using (5.11) one can write

(1− g
(2)
n−1)g(2)

n = d(2)
n ,

(1− g
(1)
n−1)g(1)

n = d(1)
n ,

n ≥ 1,

where

g
(2)
n−1 = q2nγ2n−2

p2n
, g

(1)
n−1 = q2n−1γ2n−3

p2n−1
, d(2)

n = q2
2n+2

p2n+2p2n
and d(1)

n = q2
2n+1

p2n+1p2n−1
,

for n ≥ 1. Note that {d(2)
n }n≥1 and {d(1)

n }n≥1 are the same sequences given by (5.7). Thus,
from the knowledge that m

(2)
0 = m

(1)
0 = 0, m(2)

n > 0, m(1)
n > 0, d(2)

n > 0 and d(1)
n > 0 for

n ≥ 1, there also holds

0 < m(2)
n < 1 and 0 < m(1)

n < 1, n ≥ 1.

Hence, the sequences {d(2)
n }n≥1 and {d(1)

n }n≥1 are positive chain sequence and {m(2)
n }n≥0

and {m(1)
n }n≥0, respectively, are its minimal parameter sequences.

Comparing the above minimal parameter sequences with the minimal parameter se-
quences given by (5.8) and (5.9) we have

q2nγ2n−2

p2n
= 1− det(T2n)

p2ndet(T2n−2) and q2n−1γ2n−3

p2n−1
= 1− det(T2n−1)

p2n−1det(T2n−3) n ≥ 1.

5.3 The Coefficients γn as Rational Functions
In this section, we will show that the connection coefficients γn that appear in (5.10),

can be expressed as rational functions involving a sequence of polynomials that satisfy a
simple TTRR. Let {R̃n(t)}n≥0 and {Ãn(t)}n≥0 such that
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γ2n = R̃n−1(t)
R̃n(t)

and γ2n−1 = Ãn−1(t)
Ãn(t)

, n ≥ 1, (5.14)

where R̃0(t) = Ã0(t) = 1 and t = κ/λ̃. For the moment we assume κ 6= 0 to be arbitrary.
Then from (5.11)

q2n+2R̃n(t) = p2nR̃n−1(t)− q2nR̃n−2(t),

q2n+1Ãn(t) = p2n−1Ãn−1(t)− q2n−1Ãn−2(t),
n ≥ 2. (5.15)

with q4R̃1(t) = p2R̃0(t) and q3Ã1(t) = p1Ã0(t). Thus, from (5.3) we can state the
following theorems.

Theorem 5.6. For n ≥ 0, R̃n(t) in (5.14) is a polynomial in t of exact degree n. Precisely,
if Rn(t) = κnσnR̃n(t), n ≥ 0, with

σ0 = 1, σn = 4n(n+ 1)τ2nh (1)
2n−1

h (0)
2n

σn−1, n ≥ 1,

then Rn(t) are monic polynomials such that

Rn+1(t) = [t+ 4κ(an+1 + bn+1)]Rn(t)− 16κ2anbn+1Rn−1(t), n ≥ 1, (5.16)

with R0(t) = 1 and R1(t) = t+ 4κa1, where

an = n2h (1)
2n−1

h (0)
2n

, bn+1 = (n+ 1)2τ 2
2nh (1)

2n−1

h (0)
2n+2

, n ≥ 1.

Proof. Manipulating the formulas in (5.3) and substituting in (5.15) gives

tq4

h (0)
2
R̃1(t) = t+ 4κh (1)

1

h (0)
2

tq2n+2

h (0)
2n
R̃n(t) =

[
t+ 4n2κ

h (0)
2n

(h (1)
2n−1 + τ 2

2n−2h (1)
2n−3)

]
R̃n−1(t)− h (0)

2n−2

h (0)
2n

tq2n

h (0)
2n−2
R̃n−2(t), n ≥ 2.

Since tq2n+2 for n ≥ 1 are independent of t, with

κnσn =
n∏
k=1

[
tq2k+2

h (0)
2k

]
, n ≥ 1,

we obtain the required recurrence relation for {Rn}n≥0. From this recurrence relation one
can also observe that Rn are monic polynomials in t.

Theorem 5.7. For n ≥ 0, Ãn(t) in (5.14) is a polynomial in t of exact degree n. Precisely,
if An(t) = κnσ̃nÃn(t), n ≥ 0, with

σ̃0 = 1, σ̃n = (2n+ 1)(2n− 1)τ2n−1h (1)
2n−2

h (0)
2n−1

σ̃n−1, n ≥ 1,
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then An(t) are monic polynomials such that

An+1(t) = [t+ κ(en+1 + fn+1)]An(t)− κ2enfn+1An−1(t), n ≥ 1, (5.17)

with A0(t) = 1 and A1(t) = t+ κe1, where

en = (2n− 1)2h (1)
2n−2

h (0)
2n−1

, fn+1 = (2n+ 1)2τ 2
2n−1h (1)

2n−2

h (0)
2n+1

, n ≥ 1.

Proof. Manipulating the formulas in (5.3) and substituting in (5.15) gives

tq3

h (0)
1
Ã1(t) = t+ κh (1)

0

h (0)
1

tq2n+1

h (0)
2n−1
Ãn(t) =

[
t+ κ(2n− 1)2

h (0)
2n−1

(h (1)
2n−2 + τ 2

2n−3h (1)
2n−4)

]
Ãn−1(t)− h (0)

2n−3

h (0)
2n−1

tq2n−1

h (0)
2n−3
Ãn−2(t), n ≥ 2.

Since tq2n+1 for n ≥ 1 are independent of t, with

κnσ̃n =
n∏
k=1

tq2k+1

h (0)
2k−1

 , n ≥ 1,

we obtain the required recurrence relation for {An}n≥0. From this recurrence relation one
can also observe that An are monic polynomials in t.

Remark 5.8. Since the elements of TTRR (5.16) and (5.17) are such that anbn+1 > 0
and enfn+1 > 0 for n ≥ 1, by using Favard’s Theorem 1.19 we can conclude that {Rn}n≥0
and {An}n≥0 are sequences of MOP with respect to some positive measures supported on
the real line.

5.4 An Example
Let {Pn(ν0; ·)}n≥0 the sequence of MOP with respect to the Freud weight function

e−x
4 , that is

〈p, q〉ν0 =
∫ ∞
−∞

p(x)q(x)e−x4
dx =

∫ ∞
−∞

p(x)q(x)dν0(x).

According to the Section 4.3 when A4 is constant the pair {ν0, ν0} is a SCPPM2K.
Now we consider the Sobolev inner product 〈f, g〉S given by

〈f, g〉S = 〈f, g〉ν0 + λ̃〈f ′, g′〉ν0 , λ̃ > 0, (5.18)

this inner product has been introduced in [12] and algebraic and asymptotic properties of
{Sn}n≥0 sequence of MSOP with respect to (5.18) were obtained. Later on, in [63] was
proved that the polynomials {Sn}n≥0 have all their zeros real and simple.

From Theorem 5.4 the sequence of MSOP {Sn}n≥0 satisfies the connection formula
(see [12])

Sn(x)− γn−2Sn−2(x) = Pn(ν;x), n ≥ 3,
where

−γn−2 = 4λ̃(n− 2)
∫∞
−∞P2

n(ν;x)e−x4
dx

〈Sn−2,Sn−2〉S
> 0,
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and Si(x) = Pi(ν;x), i = 0, 1, 2. Moreover, the connection coefficients γn satisfy a non-
linear recurrence relation in terms of cn given in (4.15), that is

−γn = 4λ̃ncn+2cn+1cn

cn + λ̃[n2 + 16c2
ncn−1cn−2] + 4(n− 2)λ̃cnγn−2

, n ≥ 3,

with γ1 = −4λ̃c3c2c1

c1 + λ̃
and γ2 = −8λ̃c4c3c2

c2 + 4λ̃
.

By using Theorems 5.6 and 5.7 we can write the connection coefficients γn as rational
functions which are related to a sequence of MOP satisfying a simple TTRR (see [12]).
Let κ 6= 0 be an arbitrary real number such that t = κ/λ̃ and write

γ2n = κσn
σn−1

Rn−1(t)
Rn(t) , γ2n−1 = κσ̃n

σ̃n−1

An−1(t)
An(t) , n ≥ 1,

where

σ0 = σ̃0 = 1, σn = −8nc2n+2c2n+1σn−1 and σ̃n = −4(2n− 1)c2n+1c2nσ̃n−1, n ≥ 1.

Then {Rn}n≥0 and {An}n≥0 are sequences of MOP satisfying the TTRR

Rn+1(t) = [t+ 4κ(an+1 + bn+1)]Rn(t)− 16κ2anbn+1Rn−1(t),

An+1(t) = [t+ κ(en+1 + fn+1)]An(t)− κ2enfn+1An−1(t),
n ≥ 1.

with R0(t) = A0(t) = 1, R1(t) = t+ 4κa1 and A1(t) = t+ κe1, where

an = n2

c2n
, bn+1 = 4c2n+2c2n+1c2n,

en = (2n− 1)2

c2n−1
, fn+1 = 16c2n+1c2nc2n−1,

n ≥ 1.



6 Concluding Remarks and Future
Work

Conclusions
The topics studied in this work have been focussed to study a concept known as “cohe-

rent pairs of measures of the second kind” both on the unit circle and on the real line.
The main results established can be summarized as follows:

• We have presented an extension to the study of the concept of coherence of the second
kind on the unit circle, where in the formula that defines the concept of coherence we
replace the derivative operator by a q-difference operator. Specifically, we have considered
a special pair of measures on the unit circle {µ̃(b,ε)

q , µ(b+1)
q } for which the corresponding

sequences of orthogonal polynomials {Φ̃(b,ε)
n (q; ·)}n≥0 and {Φ(b+1)

n (q; ·)}n≥0 satisfy

Dq[Φ̃(b,ε)
n+1(q; z)] = {n+ 1}q

[
Φ(b+1)
n (q; z)− τnΦ(b+1)

n−1 (q; z)
]
, τn 6= 0, n ≥ 1,

where Dq[F (z)] = F (q−1/2z)−F (q1/2z)
q−1/2z−q1/2z

and {n}q is such that Dq[zn] = {n}q zn−1. The proba-
bility measures µ(b+1)

q and µ̃(b,ε)
q where b = λ+ iη and 0 < q < 1, are defined as follows:

(i) µ(b+1)
q is the probability measure given by

dµ(b+1)
q (ζ) = 1

i2πζ τ
(b+1)
q

|(q1/2ζ; q)∞|2
|(qb+3/2ζ; q)∞|2

dζ,

with

τ (b+1)
q = (q; q)∞(qb+b+3; q)∞

(qb+2; q)∞(qb+2; q)∞
= |Γq(b+ 2)|2

Γq(b+ b̄+ 3)
.

(ii) µ̃(b,ε)
q is such that

〈
f, g

〉
µ̃

(b,ε)
q

= (1− ε)τ̃ (b)
q

∫
T
f(ζ)g(ζ) |(qζ; q)∞|2

|(qb+1ζ; q)∞|2
1

i2πζ dζ + ε f(1)g(1),

where 0 ≤ ε < 1 and

τ̃ (b)
q = (1− qb+1)(1− qλ+1cos ηq)(q; q)∞(q2λ+2; q)∞

(1− qλ+1cos ηq) 2φ1(q, q−b; qb+2; q, qb+1)
1

|(qb+1; q)∞|2
, ηq = −η ln(q).
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• Motivated by this extension of the concept of coherence of the second kind on the
unit circle, we have provided an extensive study of properties of Sobolev-type orthogonal
polynomials Ψ(b,ε,s)

n (q; z) with respect to Sobolev-type inner product〈
f, g

〉
S

(b,ε,s)
q

=
〈
f, g

〉
µ̃

(b,ε)
q

+ s
〈
Dq[f ], Dq[g]

〉
µ

(b+1)
q

, s > 0. (6.1)

• By considering measures defined on the real line, we have established a characterization
of pairs of positive measures that satisfy the concept of coherence of the second kind on the
real line. We showed that a pair of positive measures {ν0, ν1} supported on the real line
is a coherent pair of positive measures of the second kind (CPPM2K) if and only if there
exists an admissible pair of polynomials (A3, A2), with deg(A3) ≤ 3 and deg(A2) = 2,
such that

−
∫
p′(x)dν1(x) =

∫
p(x)A2(x)dν0(x) and

∫
p(x)dν1(x) =

∫
p(x)A3(x)dν0(x),

(6.2)

for every polynomial p. Recall that the admissibility condition of (A3, A2) holds if
d2 + nc3 6= 0 for n ≥ 0, where d2 is the leading coefficient of A2 and c3 is coefficient
of degree 3 in A3. The characterization formula (6.2) shows that ν0 and ν1 are semiclas-
sical positive measures of class at most s = 1. Many illustrative examples has been also
given.

• An extension of the concept of coherent pairs of measures on the real line where the
measures are assumed to be symmetric has also been treated. We showed that a pair of
symmetric positive measures {ν0, ν1} supported on the real line is a symmetric coherent
pair of positive measures of the second kind (SCPPM2K) if and only if there exists an
admissible pair of polynomials (A4, A3), with deg(A4) ≤ 4 and deg(A3) = 3, such that

−
∫
p′(x)dν1(x) =

∫
p(x)A3(x)dν0(x) and

∫
p(x)dν1(x) =

∫
p(x)A4(x)dν0(x),

(6.3)

for every polynomial p. Recall that the admissibility condition of (A4, A3) holds if
d3 +(n−1)c4 6= 0 for n ≥ 1, where d3 is the leading coefficient of A3 and c4 is coefficient of
degree 4 in A4. The characterization formula (6.3) shows that ν0 and ν1 are semiclassical
positive measures of class at most s = 2. Many illustrative examples have also been given.

• The results obtained in this work also contribute to the study of the monic orthogonal
polynomials Sn(ν0, ν1;x) with respect to Sobolev inner product

〈f, g〉S =
∫
f(x)g(x)dν0(x) + s

∫
f ′(x)g′(x)dν1(x), s > 0,

where the pair of positive measures {ν0, ν1} is a coherent pair or symmetric coherent pair
of positive measures of second kind on the real line. Some properties of Sobolev orthogo-
nal polynomials Sn(ν0, ν1;x) have been analyzed in the symmetric case.

As mentioned in the Introduction of this work, some of the main results contained in
this thesis have also appeared in the following texts, which we have also listed within the
bibliography at the end of this thesis:
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[29] M. Hancco Suni, G. A. Marcato, F. Marcellán, A. Sri Ranga, Coherent pairs
of moment functionals of the second kind and associated orthogonal polynomials
and Sobolev orthogonal polynomials, J. Math. Anal. Appl., 525 (2023), 127118.
DOI: https://doi.org/10.1016/j.jmaa.2023.127118

[30] M. Hancco Suni, F. Marcellán, A. Sri Ranga, Pastro polynomials and Sobolev-type
orthogonal polynomials on the unit circle based on a q-difference operator, J. Differ.
Equ. Appl., 29 (2023), 315–343.
DOI: https://doi.org/10.1080/10236198.2023.2198041

Future Work
Here we discuss some future directions of research that we plan to undertake.

Zeros of Sobolev-Type OPUC Based on the Dq Operator
An interesting question for a future work is to analyze, for a fixed n the dynamical

behavior of the zeros of the orthogonal polynomial Ψ(b,ε,s)
n (q; z) with respect to Sobolev-

type inner product (6.1) in terms of the parameters b, ε and s.

Associated Fourier Approximation
One of our object of studies for the near future is to carry out an analysis of the

Fourier expansions of functions in terms of the sequences of polynomials orthogonal with
respect to the Sobolev inner product 〈· , ·〉S when {ν0, ν1} is a CPPM2K on the real line.

To be more precise, assume f to be a function such that 〈f, xj〉S exist for 0 ≤ j ≤ N .
Let QS

N denote the best approximation of f by a polynomial of degree N with respect to
the norm ‖f‖S = (〈f, f〉S)1/2. In other words,

‖f −QS
N‖S = min

π∈PN
‖f − π‖S,

where PN denotes the set of all polynomials of degree N with real coefficients.
Let {hS

n }n≥0 be the positive constants such that

〈Sm,Sn〉S = hS
n δm,n, m, n = 0, 1, 2, . . . .

By least squares method one finds

QS
N(x) =

N∑
j=0

bSj Sj(x),

where
bSj = 〈f,Sj〉S

hS
j

, j = 0, 1, 2, . . . , N.

We observe that hS
j and 〈f,Sj〉S can be recursively obtained using (see [29]):

hS
1 = h ν0

1 + sh ν1
0 ,

hS
j = −γ2

j−1hS
j−1 + h ν0

j + sj2[h ν1
j−1 + τ 2

j−1h ν1
j−2], j ≥ 2,
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and
〈f,S0〉S = 〈f, 1〉ν0 , 〈f,S1〉S = 〈f,P1(ν0; ·)〉ν0 + s〈f ′, 1〉ν1 ,

〈f,Sj〉S = γj−1〈f,Sj−1〉S + 〈f,Pj(ν0; ·)〉ν0

+ sj〈f ′,Pj−1(ν1; ·)〉ν1 − sjτj−1〈f ′,Pj−2(ν1; ·)〉ν1 , j ≥ 2.

Thus, the easy determination of the Fourier coefficients bSn makes this a conveni-
ent technique of approximation. This constitutes a nice future problem that should be
further explored in which one can also consider the symmetric case, i.e., when {ν0, ν1} is
a SCPPM2K on the real line.

The SCPPM2K-H and Associated Hermite-Sobolev Orthogonal
Polynomials

In Section 4.3 we have stated two special examples of a SCPPM2K on the real line
{ν0, ν1} in which one of the measures is given by the Hermite measure (see Table 1.1).
Precisely, these examples are such that:

SCPPM2K-H1:
dν0(x) = e−x

2
dx,

dν1(x) = (x2 + q2)e−x2
dx.

The real number q is such that q 6= 0. As shown, the pair SCPPM2K-H1 verifies (6.3)
with

A3(x) = −2x3 − 2(q2 − 1)x and
A4(x) = x2 + q2.

SCPPM2K-H2: :
dν0(x) = e−x

2

x2 + q2dx,

dν1(x) = e−x
2
dx.

As shown, the pair SCPPM2K-H2 verifies (6.3) with

A3(x) = −2x(x2 + q2) and
A4(x) = x2 + q2.

Another interesting and important future work will be to use the results contained in
Chapter 5 of this thesis to study the Sobolev orthogonal polynomials and the associated
connection coefficients that follow from the pairs SCPPM2K-H1 and SCPPM2K-H1.



References

[1] G. E. Andrews, R. Askey, R. Roy, “Special Functions”, Encyclopedia of Mathematics
and its Applications, vol. 71, Cambridge University Press, Cambridge, 2000.

[2] I. Area, E. Godoy, R. L. Lamblém, A. Sri Ranga, Basic hypergeometric polynomials
with zeros on the unit circle, Appl. Math. Comput., 225 (2013), 622-630.

[3] J. Arvesú, J. Atia, F. Marcellán, On semiclassical linear functionals: The symmetric
companion, Commun. Anal. Theory Contin. Fract. 10 (2002), 13–29.

[4] R. Askey (editor), “Gabor Szegő: Collected Papers. Volume 1”, Contemporary
Mathematics, Amer. Math. Soc., Providence, RI, 1982.

[5] R. Askey, M. E. H. Ismail, A generalization of ultraspherical polynomials, Studies in
Pure Mathematics (P. Erdös, Ed.), pp. 55-78, Birkhäuser, Basel, 1983.

[6] S. Belmehdi, A. Ronveaux, Laguerre-Freud’s equations for the recurrence coefficients
of semi-classical orthogonal polynomials, J. Approx. Theory 76 (1994), 351–368.

[7] A. C. Berti, C. F. Bracciali, A. Sri Ranga, Orthogonal polynomials associated
with related measures and Sobolev orthogonal polynomials, Numer. Algorithms, 34
(2003), 203-216.

[8] C. F. Bracciali, J. V. da Silva, A. Sri Ranga, A class of Sobolev orthogonal polyno-
mials on the unit circle and associated continuous dual Hahn polynomials: Bounds,
asymptotics and zeros, J. Approx. Theory, 268 (2021), Article No. 105604.

[9] C. F. Bracciali, A. Sri Ranga, A. Swaminathan, Para-orthogonal polynomials on
the unit circle satisfying three term recurrence formulas, Appl. Numer. Math., 109
(2016), 19–40.

[10] A. Branquinho, A. Foulquié Moreno, F. Marcellán, M. N. Rebocho, Coherent pairs
of linear functionals on the unit circle, J. Approx. Theory, 153 (2008), 122-137.

[11] J. L. Burchnall, The Bessel polynomials, Canad. J. Math., 3 (1951), 62–68.

[12] A. Cachafeiro, F. Marcellán, J. J. Moreno-Balcázar, On asymptotic properties of
Freud–Sobolev orthogonal polynomials, J. Approx. Theory, 125 (2003), 26–41.

[13] K. Castillo, M. S. Costa, A. Sri Ranga, D. O. Veronese, A Favard type theorem for
orthogonal polynomials on the unit circle from a three term recurrence formula, J.
Approx. Theory, 184 (2014), 146-162.

107



References 108

[14] O. Ciaurri, J. Mínguez, Fourier series of Gegenbauer-Sobolev polynomials, SIGMA
Symmetry Integrability Geom. Methods Appl., 14 (2018), Paper No. 024, 11 pp.

[15] O. Ciaurri, J. Mínguez Ceniceros, Fourier series of Jacobi-Sobolev polynomials, In-
tegral Transforms Spec. Funct., 30 (2019), 334–346.

[16] O. Ciaurri, J. Mínguez Ceniceros, Fourier series for coherent pairs of Jacobi measures,
Integral Transforms Spec. Funct., 32 (2021), 437–457.

[17] M. S. Costa, H. M. Felix, A. Sri Ranga, Orthogonal polynomials on the unit circle
and chain sequences, J. Approx. Theory, 173 (2013), 14–32.

[18] M. S. Costa, E. Godoy, R. L. Lamblém, A. Sri Ranga, Basic hypergeometric functions
and orthogonal Laurent polynomials, Proc. Amer. Math. Soc., 140 (2012), 2075-2089.

[19] R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two parameter
quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711-L718.

[20] T. S. Chihara, “An Introduction to Orthogonal Polynomials”, Mathematics and its
Applications Series, Gordon and Breach, New York, 1978.

[21] R. C. Y. Chin, A domain decomposition method for generating orthogonal poly-
nomials for a Gaussian weight on a finite interval, J. Comput. Phys., 99 (1992),
321–336.

[22] A. M. Delgado, F. Marcellán, Semiclassical linear functionals of class 2: the symme-
tric case, Diff. Eq., Special Functions and Orthogonal Polynomials, (2007), 122–130.
World Sci. Publ., Hackensack, NJ, 2007.

[23] A. M. Delgado, F. Marcellán, Companion linear functionals and Sobolev inner pro-
ducts: a case study, Methods Appl. Anal., 11 (2004), 237–266.

[24] H. Dueñas-Ruiz, F. Marcellán, A. Molano, On symmetric (1,1)-coherent pairs and
Sobolev orthogonal polynomials: an algorithm to compute Fourier coefficients, Rev.
Colombiana Mat., 53 (2019), 139-164.

[25] H. Exton, On the orthogonalty of the Bessel polynomials, Riv. Mat. Univ. Parma,
12 (1986), 213–215.

[26] G. Gasper, M. Rahman, “Basic Hypergeometric Series”, Second edition. Encyclo-
pedia of Mathematics and its Applications, vol. 96, Cambridge University Press,
Cambridge, 2004.

[27] L. G. Garza, L. E. Garza, F. Marcellán, N. C. Pinzón-Cortés. A matrix approach for
the semiclassical and coherent orthogonal polynomials, Appl. Math. Comput., 256
(2015), 459–471.

[28] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math.
Nachr., 2 (1949), 4–34.

[29] M. Hancco Suni, G. A. Marcato, F. Marcellán, A. Sri Ranga, Coherent pairs
of moment functionals of the second kind and associated orthogonal polynomials and
Sobolev orthogonal polynomials, J. Math. Anal. Appl., 525 (2023), 127118.



References 109

[30] M. Hancco Suni, F. Marcellán, A. Sri Ranga, Pastro polynomials and Sobolev-type
orthogonal polynomials on the unit circle based on a q-difference operator, J. Differ.
Equ. Appl., 29 (2023), no. 3, 315–343.

[31] A. Iserles, P. E. Koch, S. P. Nørsett, J. M. Sanz-Serna, On polynomials orthogonal
with respect to certain Sobolev inner products, J. Approx. Theory, 65 (1991), no. 2,
151-175.

[32] A. Iserles, J. M. Sanz-Serna, P. E. Koch, S. P. Nørsett, Orthogonality and approxi-
mation in a Sobolev space, in Algorithms for Approximation, II (Shrivenham, 1988),
117-124, Chapman and Hall, London, 1990.

[33] M. E. H. Ismail, “Classical and Quantum Orthogonal Polynomials in one Variable”,
in Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge Univ. Press,
Cambridge, 2005, First paperback edition 2009.

[34] M. N. de Jesus, J. Petronilho, Sobolev orthogonal polynomials and (M,N)-coherent
pairs of measures, J. Comput. Appl. Math., 237 (2013), no. 1, 83101.

[35] W. B. Jones, O. Njåstad, W. J. Thron, Moment theory, orthogonal polynomials,
quadrature, and continued fractions associated with the unit circle, Bull. Lond. Math.
Soc., 21 (1989), 113–152.

[36] H. Kiesel, J. Wimp, A note on Koornwinder’s polynomials with weight function
(1− x)α(1 + x)β +Mδ(x+ 1) +Nδ(x− 1), Numer. Algorithms, 11 (1996), 229-241.

[37] R. Koekoek, P. A. Lesky, R. F. Swarttouw, “Hypergeometric Orthogonal Polynomials
and their q-Analogues”, Springer Monographs in Mathematics, Springer, Heidelberg,
2010.

[38] T. H. Koornwinder, Orthogonal polynomials with weight function (1−x)α(1 +x)β +
Mδ(x+ 1) +Nδ(x− 1), Canad. Math. Bull., 27 (1984), 205-214.

[39] H. L. Krall, O. Frink, A new class of orthogonal polynomials: The Bessel polynomials,
Trans. Amer. Math. Soc., 65 (1949), 100–115.

[40] G. A. Marcato, F. Marcellán, A. Sri Ranga, Yen Chi Lun, Coherent pairs of measures
of the second kind on the real line and Sobolev orthogonal polynomials. An applica-
tion to a Jacobi case, Stud. Appl. Math., to appear (DOI: 10.1111/sapm.12583).

[41] F. Marcellán, A. Branquinho, J. Petronilho, Classical orthogonal polynomials: a
functional approach, Acta Appl. Math., 34 (1994), no. 3, 283–303.

[42] F. Marcellán, P. Maroni, Sur l’adjonction d’une masse de Dirac à une forme régulière
et semi-classique, Ann. Mat. Pura Appl., 162 (1992), 1–22.

[43] F. Marcellán, J.J. Moreno-Balcázar, Asymptotics and zeros of Sobolev orthogonal
polynomials on unbounded supports, Acta Appl. Math., 94 (2006), no. 2, 163-192.

[44] F. Marcellán, T. E. Pérez, M. A. Piñar, Orthogonal polynomials on weighted Sobolev
spaces: the semiclassical case, Ann. Numer. Math., 2 (1995), 93–122.

[45] F. Marcellán, J. Petronilho, Orthogonal polynomials and coherent pairs: the classical
case, Indag. Mathem., 6 (1995), 287-307.



References 110

[46] F. Marcellán, Y. Quintana, A. Urieles, On W 1,p-convergence of Fourier-Sobolev ex-
pansions, J. Math. Anal. Appl., 398 (2013), 594–599.

[47] F. Marcellán, Y. Quintana, A. Urieles, On the Pollard decomposition method applied
to some Jacobi-Sobolev expansions, Turkish J. Math., 37 (2013), 934–948.

[48] F. Marcellán, R. Sfaxi, Inverse finite-type relations between sequences of polynomials,
Rev. Acad. Colomb. Cienc., 32 (123), (2008) 245–255.

[49] F. Marcellán, A. Sri Ranga, Sobolev orthogonal polynomials on the unit circle and
coherent pairs of measures of the second kind, Results Math., 71 (2017), 1127-1149.

[50] F. Marcellán, Yuan Xu, On Sobolev orthogonal polynomials, Expo. Math., 33 (2015),
308–352.

[51] P. Maroni, Sur quelques espaces de distributions qui sont des formes linéaires sur
l’espace vectoriel des polynômes, (French), in Orthogonal Polynomials and Applica-
tions (Bar-le-Duc, 1984), 184-194, Lecture Notes in Math., 1171, Springer, Berlin,
1985.

[52] P. Maroni, Prolégomènes à l’ étude des polynômes orthogonaux semi-classiques, Ann.
Mat. Pura Appl., 149 (1987), 165-184.

[53] P. Maroni, Le calcul des formes linéaires et les polynômes orthogonaux semi-
classiques, (French), in Orthogonal Polynomials and their Applications (Segovia,
1986), 279-290, Lecture Notes in Math., 1329, Springer, Berlin, 1988.

[54] P. Maroni, Sur la suite polynômes orthogonaux associée à la forme u = δc+(x−c)−1L,
(French), Period. Math. Hungar., 21 (1990), no. 3, 223-248.

[55] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux
polynômes orthogonaux semi-classiques, in Orthogonal Polynomials and their Appli-
cations (Erice, 1990), 95-130, IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel,
1991.

[56] P. Maroni, Variations around classical orthogonal polynomials. Connected problems,
J. Comput. Appl. Math., 48 (1993), 133-155.

[57] P. Maroni, Un exemple d’une suite orthogonal semi-classique de classe 1, Publ. Labo.
d’Analyse Numérique, Université Pierre et Marie Curie, Paris VI, CNRS 89033, 1989.

[58] A. Martínez-Finkelshtein, Asymptotic properties of Sobolev orthogonal polynomials,
J. Comput. Appl. Math. 99 (1998), 491–510.

[59] A. Martínez-Finkelshtein, Analytic aspects of Sobolev orthogonal polynomials revi-
sited, J. Comput. Appl. Math., 127 (2001), 255–266.

[60] A. Martínez-Finkelshtein, J.J. Moreno-Balcázar, T.E. Pérez, M.A. Piñar, Asympto-
tics of Sobolev orthogonal polynomials for coherent pairs of measures, J. Approx.
Theory, 92 (1998), no. 2, 280-293.

[61] H. G. Meijer, Determination of all coherent pairs, J. Approx. Theory, 89 (1997),
321-343.



References 111

[62] H. G. Meijer, M. de Bruin, Zeros of Sobolev orthogonal polynomials following from
coherent pairs, J. Comput. Appl. Math., 139 (2002), 253–274.

[63] J. J. Moreno-Balcázar, A note on the zeros of Freud-Sobolev orthogonal polynomials.
J. Comput. Appl. Math. , 207 (2007), no. 2, 338–344.

[64] P. Nevai, Orthogonal polynomials associated with exp(−x4), Proc. Canad. Math.
Soc., 3 (1983), 263–285.

[65] P. Nevai, Asymptotics for orthogonal polynomials associated with exp(−x4), SIAM
J. Math. Anal. 15 (1984), no. 6, 1177-1187.

[66] P. I. Pastro, Orthogonal polynomials and some q-beta integrals of Ramanujan, J.
Math. Anal. Appl., 112 (1985), 517-540.

[67] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor
formulas, Results Math., 73 (2018), no. 1, Paper No. 39, 22 pp.

[68] J. Shohat, A differential equation for orthogonal polynomials, Duke Math. J., 5
(1939), 401-417.

[69] B. Simon, “ Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory”,
Amer. Math. Soc. Colloq. Publ., 54, Part 1. Amer. Math. Soc., Providence, RI, 2005.

[70] L. J. Slater, “Generalized Hypergeometric Functions”, Cambridge Univ. Press, Cam-
bridge, 1966.

[71] A. Sri Ranga, Orthogonal polynomials with respect to a family of Sobolev inner
products on the unit circle, Proc. Amer. Math. Soc., 144 (2016), 1129-1143.

[72] A. Sri Ranga, Szegő polynomials from hypergeometric functions, Proc. Amer. Math.
Soc., 138 (2010), 4259-4270.

[73] H. M. Srivastava, Orthogonality relations and generating functions for the generalized
Bessel polynomials, Appl. Math. Comput., 61 (1994), 99–134.

[74] G. Szegő, “Orthogonal Polynomials”, 4th Edition, Amer. Math. Soc. Colloq. Publ.,
Vol. 23, Amer. Math. Soc. Providence, RI, 1975.

[75] W. Van Assche, “Orthogonal Polynomials and Painlevé Equations”, Australian
Mathematical Society Lecture Series, 27, Cambridge University Press, Cambridge,
2018.

[76] L. Verde-Star, Characterization and construction of classical orthogonal polynomials
using a matrix approach, Linear Algebra Appl., 438 (2013), 3635–3648.

[77] L. Verde-Star, Infinite matrices in the theory of orthogonal polynomials, in Orthogo-
nal polynomials: current trends and applications, 309-327, SEMA-SIMAI Springer
Ser., 22, Springer, Cham, 2021.

[78] H. S. Wall, “Analytic Theory of Continued Fractions”, Van Nostrand, New York,
1948.



References 112

[79] S. Yakubovich, On the theory of orthogonal polynomials for the weight xvexp(−x−
t/x). I, Integral Trans. Spec. Funct., 33 (2022), no. 9, 735–746.

[80] S. Yakubovich, On the theory of orthogonal polynomials for the weight xvexp(−x−
t/x). II, Integral Trans. Spec. Funct., 33 (2022), no. 11, 846–866.


	Introduction and Historical Remarks
	Basic Background
	Positive Chain Sequences
	Special Functions
	q-Difference Operators
	Orthogonal Polynomials on the Real Line
	Orthogonal Polynomials on the Unit Circle
	Para-orthogonal Polynomials on the Unit Circle and Positive Chain Sequences

	Pastro Polynomials and Sobolev-Type OPUC Based on the difference Operator 
	Introduction
	Preliminary Results on q-Hypergeometric Polynomials
	Some Further Properties
	The Sobolev-Type OPUC
	Some Properties of the Sobolev-Type OPUC and Connection Coefficients

	Coherent Pair of Moment Functionals of Second Kind on the Real Line
	Coherent Pairs of the Second Kind
	Some Special Cases
	Matrix Characterization for Coherent Pairs of the Second Kind

	Symmetric Coherent Pair of Moment Functionals of the Second Kind on the Real Line
	Symmetric Coherent Pairs of the Second Kind
	The Main Results
	Some Special Cases

	Sobolev Orthogonal Polynomials from SCPMF2K on the Real Line
	Introduction
	The Simple Connection Formulas
	The Coefficients gamma as Rational Functions
	An Example

	Concluding Remarks and Future Work
	References

