Cancer development is a long-term multistep process which allows interventional measure before the clinical disease emerges. The detection of natural substances which can block the process of carcinogenesis is as important as the identification of anti-tumoral drugs since they might be used in chemoprevention of cancer in high-risk groups. In vivo rodent models of chemical carcinogenesis have been used to study plant-derived inhibitors of carcinogenesis such as indols, coumarins, isoctiocyanates, flavones, phenols and allyl-sulfides. Since the standard in vivo rodent bioassay is prolonged and expensive, shorter reliable protocols are needed. Two in vivo medium-term protocols for evaluation of modifiers of carcinogenesis are presented, one related to liver and the other to bladder cancer. Both protocols use rats, last 8 and 36 weeks and are based on the two-step concept of carcinogenesis: initiation and promotion. The protocols use respectively the development of altered foci of hepatocytes expressing immunohistochemically the placental form of glutathion-S-transferase and the appearance of pre-neoplastic urothelium and papillomas as the "end-points". The use of these protocols for detection of plant-derived inhibitors of carcinogenesis appear warranted.

Key words: carcinogenesis – chemoprevention – bladder cancer – liver cancer – plant – derived inhibitors
breast cancer and lung/forestomach cancer using respectively the organ-specific carcinogens dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene led to the recognition of the anti-carcinogenic property of indols and isothiocyanates (Wattenberg, 1977; Wattenberg & Loub, 1978). These are naturaly occurring substances in cruciferous vegetables like Brussel sprouts, cabbage, cauliflower and broccoli. Since in these early studies the protecting substances were provided to the animals just before or at the same time as the carcinogen they did exert their protective action by altering the initiation step, probably by inducing the Phase I and/or II of the detoxifying sisms which led to biochemical transformations of the carcinogen.

The close relationship between results in animal assays and activity at human level is well demonstrated by studies on organic allyl sulfides (OAS), which are components of plants of the genus Allium (onions and garlic). Data obtained so far indicate inhibition by OAS of rodent chemically-induced carcinogenesis in six tissues, i.e., forestomach, lung, large bowel, esophagus, skin and liver. Carcinogens belonging to three chemical classes i.e., polycyclic aromatic hydrocarbons, hydrazymes and nitrosamines have been inhibited as well as tumor promotion (Belman, 1983; Hayes et al., 1987; Sparnins et al., 1988). It is not surprising that a recent epidemiological survey showed reduction of cancer risk parallel to increased consumption of allium vegetables. That was recently reported for gastric cancer in a high-risk area for this type of neoplasia in China. Protective effects were seen for garlic, onions and other allium foods (You et al., 1989). Therefore, experimental studies using in vivo rodent protocols are of value either for the better understanding of the balance of factors involved in the neoplastic response to environmental carcinogens as well as to identify potential naturally-derived chemoprotectors for cancer. Once identified, these anti-carcinogenic substances might be used for chemoprotection of high-risk groups like cancer-prone families, smokers, workers at chemical industries, handlers of substances with carcinogenic potential, etc... (Weinstein, 1988; Swanson, 1988; Lispin, 1988).

Another improvement in the design of in vivo assays for carcinogenesis was the recent development of protocols which allow to evaluate independently the action of substances either at the initiation or at the promotion/progression step (Shirai et al., 1987; Ito et al., 1988; Ward & Ito, 1988) (Figure). These protocols also allow to reduce the experimental duration in such a way that they can be classified as medium-term assays, i.e., bioassays shorter than the conventional two-year standard study. The relatively shorter period of time (weeks to months) save laboratory facilities, time and money (Ward & Ito, 1988).

![Diagram](https://via.placeholder.com/150)

General protocols for in vivo rodent chemoprevention studies based on the two-stage concept of carcinogenesis. Protocol 1: for studies on initiation. Protocol 2: for studies on promotion. The end-point lesions should be actual neoplasia or definite well-known preneoplastic alterations. Appropriate control groups should also be run.

Herein two medium-term bioassays designed to evaluate the modifying effects of chemicals on the rat liver and bladder carcinogenesis processes are presented. Their designs are presented in the Table. The shortage of time was accomplished by using specific procedures like partial hepatectomy or mechanical trauma to the urothelium by uracil crystals respectively in the liver foci assay and in the bladder cancer assay (Shirai et al., 1987; Ito et al., 1988). These procedures induce strong diffuse cellular proliferation, including of the carcinogen-initiated cells, which is an essential step for promotion of carcinogenesis (Colburn et al., 1987; Bogen, 1989).

Previous studies have validated these assays in such a way that foci of hepatocytes expressing the placentonal form of the enzyme glutatination S-transferase (GTS-P) were defined as precursors of the rat hepatocellular carcinoma (Sato et al., 1984), and urothelial lesions like nodular and papillary hiperplasia were established as actual
Two in vivo medium-term rodent assays for detection of modifying agents of chemical carcinogenesis

<table>
<thead>
<tr>
<th>Two in vivo medium-term rodent assays for detection of modifying agents of chemical carcinogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver foci assay (Ito et al., 1988)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Test animal</td>
</tr>
<tr>
<td>Duration of the assay</td>
</tr>
<tr>
<td>Initiating agent</td>
</tr>
<tr>
<td>Enhancing procedure for cell proliferation</td>
</tr>
<tr>
<td>Test-substance</td>
</tr>
<tr>
<td>Assay end-point</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

a: GST-P focis = foci of hepatocytes which express immunohistochemically the enzyme glutathione-S-peroxidase, placental form.

preneoplastic lesions (Fukushima et al., 1982). Both assays demand for a well-trained pathologist and a system for image analysis. The results for the liver foci assay are expressed in number and size of foci per cm² of analysed liver; in the bladder assay the results are expressed in number of lesions per linear centimeter of urothelial basement membrane. The final report may be issued as late as 4 weeks after completion of the assay.

In the last decade the idea that cancer is an environmental disease became well established (Doll & Peto, 1981). This environmentalist view of cancer has emphasized the importance of prevention and early interventional measures (Doll & Peto, 1981; Weinstein, 1988; Farber, 1988; Swanson, 1988), besides the classical late therapeutic approach. Therefore, the detection of natural substances which can block the process of carcinogenesis is as important as the identification of antitumor drugs since the former might be used in chemoprevention of cancer in high-risk groups. The scientific community involved in evaluation of biological properties of natural substances should take advantage of protocols like those presented here.

ACKNOWLEDGEMENTS

To Dr Nobuyuki Ito, Chairman of the First Department of Pathology, Nagoya City University Medical School and to the Foundation for Promotion of Cancer Research, Tokyo, both sponsors of the author's scientific tenure of one year in Japan.

REFERENCES

