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In the present work we study a long superconducting wire with a columnar defect in the presence
of an applied magnetic �eld. The cross section of the cylinder is assumed to be circular. The �eld
is taken uniform and parallel to the cylinder axis. We use the London theory to investigate the
vortex lattice inside the wire. Although this theory is valid in the limit of low vortex density, that
is, when the nearest neighbor vortex distance is much larger than the coherence length, we can
obtain a reasonable qualitative description of lattice properties. We calculate: (1) the vortex lattice
structure using the simulated annealing technique; (2) the magnetization curve as a function of the
applied �eld.

I Introduction

Recent progresses in nanotechnology have made possi-

ble the fabrication of mesoscopic superconducting ma-

terials with the size comparable to the coherence length

(�) and London penetration depth (�). This has mo-

tivated both experimental and theoretical physicists to

investigate the magnetic properties of these small su-

perconductors. The properties of the vortex lattice,

for instance, in superconductors of con�ned geometries

change radically with respect to the behavior in the

bulk.

Previous works have been dedicated to the investi-

gation of a superconducting wire[1, 2, 3]. In this paper

we extend these studies to the case of a superconducting

wire with a columnar defect.

II The local magnetic �eld

The geometry of the problem we will consider in this

work is illustrated in Fig. 1. The applied magnetic �eld

H is parallel to the cylinder axis and is denoted by H .

The internal and external radius of the cylinder are a

and b respectively.
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Figure 1. Cross section of a long superconducting cylin-
der with a columnar defect. The dots represent the applied
magnetic �eld which is directed along the cylinder axis.

The starting point of our study is the London equa-
tion for the local magnetic �eld of a very strong type-II
superconductor for which the Ginzburg-Landau param-
eter � = �

�
� 1. For our purposes, this equation can

be more conveniently written in cylindrical coordinates
as
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where �i is the position of the i-vortex line.

This is a Dirichlet problem in which the boundary
conditions are given by

h(a; ') = h(b; ') = H : (2)

The solution of the London equation under these
boundary conditions may be found by means of the
Green's function method. For the local magnetic �eld,
we have
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h(�; ') = �0

NX
i=1

G(�; '; �i; 'i) + h1(�) : (3)

The solution contains two distinct parts[4]. The �rst
term is a particular solution of the London equation as
if no applied �eld were present. The second term is the
solution of the homogeneous London equation in the
absence of any vortex line (Meissner state).

The Green's function G((�; '; �0; '0) has the form

G(�; '; �0; '0) =
1

2�

1X
m=�1

eim('�'0)gm(�; �
0) ; (4)

where the Fourier coeÆcients are given by
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where

�m(x; y) = Km(x=�)Im(y=�)�Km(y=�)Im(x=�) :
(6)

Here Km(x) and Im(x) are the Bessel functions of
second kind.

The homogeneous solution can be easily found by
using standard methods of solution of di�erential equa-
tions. One has

h1(�) = H

�
�0(a; �)��0(b; �)

�0(a; b)

�
: (7)

III The free energy

We will move forward on the determination of the Lon-
don free energy (the Helmholtz free energy in the ther-
modynamic context). In the London approximation
this energy (per unit volume) is given by
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where A = �(b2 � a2) is the area of the cross section of
the cylindrical shell.

The London free energy F is a thermodynamic func-
tion of the magnetic induction B, which is inconvenient
for calculations involving a �xed applied magnetic �eld.
Therefore, it is necessary to use a Legendre transforma-
tion for the Gibbs free energy

G = F �
BH

4�
; (9)

where B is the magnetic induction which is de�ned as
a spatial average of the local magnetic �eld

B =
1

A

Z
h d2� : (10)

By means of these de�nitions of F and B, after a
tedious but straightforward calculation, we �nd for the
Gibbs free energy
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where we used th following de�nition

Æm(x; y) = Km(x)Im+1(y) +Km+1(y)Im(x) : (12)

IV The limit of a thin wire

We will now take the limit of a very thin supercon-
ducting wire with a columnar de�ect. We take both

a � � and b � �. The following results are also valid
for both a small disc (if a = 0) and a small ring (if
a 6= 0)[3]. Within this limit the local magnetic �eld
and the Gibbs free energy are enormously simpli�ed.
For the local magnetic �eld we obtain
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where we have used the complex notation Z = �

b
ei'.

For the Gibbs free energy we �nd
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where G0 is the Gibbs free energy in the Meissner state.
These results are in agreement with those of [3] in the
particular case a = 0.

V Results and Discussion

In the mixed state the magnetization shows a series of
picks as a function of the applied magnetic �eld. Each
pick is generally interpreted as an indication of the en-
trance of an individual vortex in the sample. Soon after
the entrance of a vortex, they rearrange themselves in
order to lower the Gibbs free energy. This con�guration
corresponds to the global optimum. Each entrance of
a vortex is associated with a critical �eld, the so called
matching �eld. These �elds were found as follows. As
we have stated previously, the vortices penetrate one at
the time. At the transition fromN to N+1 vortices, we
assume that the Gibbs free energy is continuous, that
is, GN (H) = GN+1(H). The solution of this equation
provides the value of the matching �eld. Full details of
how to determine these matching �elds can be found in
Ref. [2].

The matching �elds were determined up to N = 24
vortices. Next, we calculated numerically the magneti-

zation 4�M = B �H . The result is depicted in Fig. 2.
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Figure 2. Magnetization versus the applied �eld for � = 100,
a = �, and b = 10�. The �elds are in units of the upper crit-
ical �eld Hc2.

As can be seen in this �gure, the magnetization
changes in small steps. Each pick signals the pene-
tration of a vortex line. In addition, the magnetization
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remains negative for all values of H until N = 24. Re-
cently, some authors [3, 5] suggested that for con�ned
geometries of dimensions comparable to the fundamen-
tal lengths (�; �), the magnetization presents a positive
sign. This indicates that the vortex system may be in
a paramagnetic Meissner state. This has been inter-
preted as a manifestation of either a metastability[3, 5]
of the vortex system or the formation of a giant vortex
state[6]. Within our approach, we will never be able to
detect the formation these vortex states. First, we can-
not �nd giant vortex states due to a limitation of Lon-
don theory which supposes that the nearest neighbor
distances between the vortices is much larger than the
coherence length �. Second, we cannot �nd metastabil-
ity since we use the simulated annealing method which
rarely stops at a local minimum of the vortex state.
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Figure 3. Distribution of the local magnetic �eld h(�;') for
N = 10 vortices. The lengths are in units of b. The darker
regions indicate where the �eld is more intense.

We also determined the distribution of the local
magnetic �eld for two values of N . As we can see in
Fig. 3, the vortices are distributed in a ring around the
columnar de�ect. However, for N = 11 this single ring
breaks into two rings (see Fig. 4). This jump from a

regime of a single- to a multi-ring vortex state can be
clearly seen in Fig. 2 in form of a pick at H = 0:45Hc2

.
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Figure 4. The same as Fig. 3, except that now N = 11.
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