Early activation of splenic macrophages by tumor necrosis factor alpha is important in determining the outcome of experimental histoplasmosis in mice.

B A Wu-Hsieh, G S Lee, M Franco and F M Hofman

Updated information and services can be found at:
http://iai.asm.org/content/60/10/4230

These include:

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), [more](http://iai.asm.org/content/60/10/4230

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Early Activation of Splenic Macrophages by Tumor Necrosis Factor Alpha Is Important in Determining the Outcome of Experimental Histoplasmosis in Mice

BETTY A. WU-HSIEH,† GER-SHUNG LEE,‡ MARCELLO FRANCO,§ AND FLORENCE M. HOFMAN

Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90024; Faculdade de Medicina, Campus de Botucatu, Universidade Estadual Paulista, Botucatu-SP, Brazil; and Department of Pathology, University of Southern California School of Medicine, Los Angeles, California 90033

Received 17 January 1992/Accepted 8 July 1992

Experimental infection of animals with Histoplasma capsulatum caused a massive macrophage infiltration into the spleen and induced the production of tumor necrosis factor alpha (TNF-α) locally. The cytokine was also produced in vitro by peritoneal exudate macrophages exposed to a large inoculum of yeast cells. Depletion of the cytokine by injection of polyclonal sheep anti-TNF-α antibody was detrimental to sublethally infected mice. Fungous burdens in the spleens of TNF-α-depleted mice were higher than they were in the infected control mice at days 2, 7, and 9 after infection, and the antibody-treated animals succumbed to the infection. Histopathological study of spleen sections revealed that splenic macrophages were not able to control proliferation of intracellular yeasts as a result of TNF-α depletion. It seems that TNF-α plays a role in early activation of macrophages which is important in controlling the outcome of an infection.

The zoopathogenic fungus Histoplasma capsulatum is a facultative intracellular parasite of the mononuclear phagocytes of a host (43). Yeast cells of the fungus reside primarily in macrophages of the infected individual, and a cellular basis for acquired immunity to histoplasmosis is well documented in the experimental murine model (43). Adoptive transfer of lymphoid cells from immunized mice confers immunity to naive recipients and protects these mice from an otherwise lethal challenge (33, 37). Communication between lymphocytes and normal macrophages is effected by soluble protein(s) secreted into the culture supernatants, and one of these proteins is gamma interferon (IFN-γ) (41, 42). Recombinant murine IFN-γ activates mouse resident peritoneal macrophages to inhibit the intracellular growth of H. capsulatum (42).

Smith et al. (30) have recently shown that another soluble protein, tumor necrosis factor alpha (TNF-α), is produced in response to H. capsulatum infection. TNF-α is found in bronchial lavage fluid of mice intranasally infected by H. capsulatum and by normal exudate macrophages after coculture with H. capsulatum yeast cells. They also reported that depletion of this cytokine accelerates mortality of infected animals (30).

The purpose of this study was to understand the functional role of TNF-α in host defense against H. capsulatum infection. By depleting the cytokine in question, we studied how the immune function of the host was compromised. We have shown that TNF-α was produced locally in infected spleens by macrophages and that depletion of this cytokine was detrimental to the infected host. It appears that depletion of TNF-α affected macrophage activation in the early phase of an infection and that such early activation had a great influence on the outcome of the disease.

MATERIALS AND METHODS

Animals. Inbred male C57BL/6 mice were purchased from the Jackson Laboratory (Bar Harbor, Maine). Age-matched 6- to 9-week-old mice were used throughout the study.

Fungus. H. capsulatum UCLA 505 was used in the experiments. The yeast phase of the fungus was grown on blood-cysteine-glucose agar slants at 37°C for 72 h (41). In experiments in which yeast cells were used to induce TNF-α in vitro, the fungus was grown and passed in HMM broth medium (39) on a rotary shaker. Cells were harvested, washed, and suspended in RPMI 1640 medium (GIBCO, Grand Island, N.Y.) for standardization. For sublethal infection, mice were injected intravenously with 2 × 10⁹ yeast cells.

Antibody treatment of animals. Sheep polyclonal anti-murine TNF-α antibody was kindly provided by Tom Leist, who at that time was in the Department of Microbiology & Immunology, University of California, Los Angeles (15). A total of approximately 1.0 × 10⁶ to 1.6 × 10⁶ neutralizing units of anti-TNF-α antibody was given to mice intraperitoneally in four injections on days 0, 1, 3, and 5 after infection with H. capsulatum or to normal uninfected mice. Immunocytochemical study (see “Immunohistocytochemical staining”) of spleen sections from mice at 7 days after infection and 2 days after the last antibody injection confirmed that TNF-α was nearly completely depleted by such treatment. Other groups of mice included mice infected with the same inoculum of H. capsulatum and given normal lamb serum and normal uninfected mice given normal lamb serum intraperitoneally according to the same schedule as that described above for anti-TNF-α antibody treatment.

Fungous burden in tissues. At days 2, 7, and 10 after infection, two mice from the appropriate groups were killed. The spleens were ground in a tissue grinder with 1 ml of RPMI 1640 medium (GIBCO). Serial 1:10 dilutions were made from the tissue suspensions, and 0.1 ml of each dilution was streaked onto HMM agar plates.
consecutive dilutions was plated on glucose-peptone agar (43). Colony counts (byphorous) were enumerated after incubation of plates at 30°C for 14 days.

Induction of TNF-α by H. capsulatum in vitro. Peritoneal exudate cells were collected from mice injected with 1 ml of sterile mineral oil (Sigma, St. Louis, Mo.) 3 days before harvest. Approximately 8 × 10^6 cells were seeded into each well of flat-bottom 96-well plates, and the cells were allowed to adhere for 5 h. Monolayers were washed and incubated overnight in RPMI 1640 medium with 10% heat-inactivated fetal bovine serum (HyClone, Logan, Utah). The endotoxin level in the batch used in the experiment was 19 pg/ml of serum. *H. capsulatum* yeast cells were harvested from HMM broth culture and washed. Five million yeast cells suspended in 0.1 ml of the RPMI 1640 medium described above were added to each well. Lipopolysaccharide (LPS; a trichloroacetic acid extract from *Escherichia coli* serotype O26:B6; Sigma) at 20 μg/ml was added to selected wells. Controls included wells containing LPS pretreated with polymyxin B sulfate (Sigma) or *H. capsulatum* pretreated with polymyxin B sulfate (for 1 h at room temperature). Culture supernatants from wells with the same inducing agent or controls were pooled and spun down at designated times, and supernatants were collected. These supernatants were stored at 4 to 8°C before assay. Bioassays were always done within the same week.

Phenotyping of peritoneal exudate cells. To determine the phenotype of cells that produced TNF-α in vitro, peritoneal exudate cells were allowed to adhere for 2 h on Formvar-coated coverslips. Monolayers were washed with Hank's balanced salt solution containing 1% heat-inactivated fetal bovine serum and 0.1% sodium azide. Two hundred microliters of neat supernatant from F4/80 hybridoma cultures (1) (rat immunoglobulin G2b [IgG2b], specific for 160,000-M, surface antigen on mature mouse macrophages in various tissues; ATCC HB 198) was added to the monolayers. After 1 h at 4°C, monolayers were washed and overlaid with 200 μl of a 1:1 mixture of goat anti-rat IgG (H + L) (Caltag Laboratories, South San Francisco, Calif.) at a 1:10 dilution. After another 1 h at 4°C, monolayers were again washed and fixed in 1% paraformaldehyde. Control coverslips were stained with the secondary antibody alone or with another primary antibody without pretreatment of monolayers. Monolayers were read in a fluorescent microscope to score the percentage of positively stained cells. At least 200 cells per coverslip were read. Fluorescence in the control monolayers was negative.

TNF assay. (i) **Bioassay.** Fibrosarcoma cell lines Lm(S) and Lm(R) were a gift from Elizabeth Carswell and Barbara Williamson (Memorial Sloan-Kettering Cancer Center, New York, N.Y.). The two cell lines are sensitive [Lm(S)] or resistant [Lm(R)] to lysis by TNF-α (38). Ten thousand Lm(S) cells or fifteen thousand Lm(R) cells in 100 μl were seeded in flat-bottom 96-well plates. After overnight incubation, culture supernatants at different dilutions and recombinant murine TNF-α (Genzyme, Boston, Mass.) at 5, 10, and 20 U/ml in combination with actinomycin D (final concentration of 1 μg/ml) were added to wells containing Lm(S) and Lm(R) cells. Cultures were incubated for another 20 h before 20 μl of MTT [3(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; Sigma] dye at 5 mg/ml was added. A 4-h incubation at 37°C was allowed for dye reduction by viable cells. Supernatants were decanted, and acidified isopropyl alcohol was added to the wells to solubilize and dissolve the red dye. The A590 of the samples was measured in a Titertek Multiskan MCC/340 reader (Flow Laboratories, Inc., McLean, Va.). Percent cell viability was calculated on the basis of comparison to the cell control. A standard curve was established with recombinant TNF-α at 5, 10, and 20 U/ml in each experiment so that the actual level of TNF-α in each sample could be determined. Diluted supernatants which caused 50% lysis of Lm(S) and no lysis of Lm(R) cells were considered to contain 1 U of TNF-α per well (0.1 ml), or 10 U/ml.

(ii) **ELISA.** The TNF-α level in spleen cell supernatants (41) was determined by an enzyme-linked immunosorbent assay (ELISA) (Genzyme Corp.). Three antibodies—(i) hamster monoclonal anti-murine TNF antibody, (ii) goat polyclonal anti-murine TNF antibody, and (iii) donkey anti-goat Ig—were used to sandwich TNF present in the samples. Peroxidase enzyme acting on a peroxide substrate and a chromogen o-phenylenediamine were used to detect bound TNF. Increased A4231 due to bound, immunoreactive TNF was quantified with a Titertek MCC/340 reader. The TNF concentration in experimental samples was determined by comparison of their absorbance with that obtained from the known amount of TNF provided in the standard.

Assessment of growth-inhibitory activity of macrophages stimulated by recombinant TNF-α. Resident peritoneal (42) and spleen (27) cells were harvested from normal mice. Macrophages were enriched by adherence on Formvar-coated coverslips in RPMI 1640 medium (GIBCO) containing 10% fetal bovine serum (Hyclone). Recombinant murine TNF-α (Genzyme) at various concentrations was added to the monolayer. After 18 h of pretreatment, an inoculum of *H. capsulatum* yeast cells was added to the monolayer for phagocytosis in the presence of TNF-α. The monolayers were washed free of extracellular yeasts after 2 h of incubation. The control monolayer cultured in medium was fixed in methanol at this time point (T0) as a baseline for calculation of growth. The rest of the monolayers were incubated for another 18 h (T18) in media containing various concentrations of TNF-α or in medium alone. At the end of incubation, the monolayers were washed and fixed in methanol. The difference in the number of intracellular yeast cells between T0 and T18 was recorded as growth. Percent inhibition of growth was calculated as (1 — growth in TNF-α-treated monolayers divided by the growth in medium alone) × 100.

Immunohistocytochemical staining. Spleens from mice were snap frozen in liquid nitrogen immediately after removal from the animals and then stored at −70°C. The processing and staining procedure has been published previously (17, 18). Briefly, cryostat sections, 8 to 10 μm in thickness, were cut, dried overnight, and fixed in reagent-grade acetone for 5 min at 25°C. The slides were stained with a primary antibody—polychromat oval mouse anti-mouse TNF-α at room temperature (IgG and IgM; Genzyme) or monoclonal rat anti-mouse macrophage antibody (rat IgG, neat supernatant from hybridoma F4/80), anti-L3T4 monoclonal antibody (rat IgG2b heavy chain; Becton Dickinson, Burlingame, Calif.), or anti-Lyt-2 monoclonal antibody (rat IgG2a heavy and light chains; Becton Dickinson) at 37°C for 30 min in a humidified chamber. The slides were then washed in phosphate-buffered saline (PBS) and incubated with biotin-labeled secondary antibody for another 30 min. An avidin-biotin-peroxidase complex (Vector Laboratories Inc., Burlingame, Calif.) was added to the slides and incubated for 20 min. The substrate aminothiobarbous was then applied to the slides. The slides were washed 10 min later in tap water, stained in Mayer's hematoxylin for 1 min, and mounted in a glycerol-PBS mixture (1:1). Normal rabbit...
serum and isotype-matched irrelevant anti-mouse antibodies in place of specific antibodies were used as controls for staining. The staining was negative for all the groups tested.

Histology. The response to infection with *H. capsulatum* and the effect of antibody treatment on that response were assessed in sections of spleen. The spleens were fixed in 10% buffered formaldehyde. The sections were stained with hematoxylin-eosin.

RESULTS

Infection by *H. capsulatum* changes the distribution of cells in the spleen. Yeast cells of *H. capsulatum* injected intravenously into mice proliferate for a time as facultative intracellular parasites of macrophages. Three to six days after infection, host cells begin to migrate from the thymus, bone marrow, and peripheral blood to the spleen of each animal.
a migration that results in a developing splenomegaly which reaches a peak 2 to 3 weeks after infection (36, 45). Our results show that this characteristic splenomegaly was a result of changes in the distribution of cells in the spleen. Immunocytochemically stained spleen sections from mice 7 days after infection are shown in Fig. 1. It is revealed that there was an apparent expansion of the macrophage population (Fig. 1A). Such a histological picture was in marked contrast to that in the controls (Fig. 1B), in which macrophages were confined to the marginal zones. The change of macrophage distribution was accompanied by one in the lymphocyte population as well (Fig. 2A and B). The numbers of CD4+ and CD8+ T cells were low and were sparsely scattered throughout the spleens of infected mice. In contrast, both CD4+ and CD8+ T cells were present in large numbers and were arranged in the customary follicular pattern in normal spleens (Fig. 2C and D). The histological pictures presented here demonstrate that H. capsulatum caused an accumulation of macrophages and a depletion of T cells in the spleen. It seems likely that cytokines produced by the macrophages would have an influence on the disease.

TNF-α is produced locally in the spleen of an animal host experimentally infected by H. capsulatum. We demonstrated by immunocytochemistry that mice experimentally infected by H. capsulatum produced TNF-α in their spleens (Fig. 3A). Regions that stained positive for TNF-α appeared to coincide with the overwhelming presence of macrophage in the infected spleen. It seemed that the staining was most prominent in the intercellular spaces, which suggested that anti-TNF-α antibody was binding to a secreted product and was not associated with any particular cell. Staining of normal spleens showed that the intensity of TNF-α staining was much less (Fig. 3B) than that in the infected tissue (Fig. 3A). An ELISA was used to document quantitatively the level of TNF-α in infected spleens. Ten million spleen cells from mice 7 days after infection by H. capsulatum produced 1,000 to 1,500 pg of TNF-α per ml in culture supernatants, while normal uninfected controls produced a background level of approximately 120 to 190 pg/ml. The range of TNF-α reported was that among four infected or four normal mice.

TNF-α is produced in vitro by macrophages stimulated by H. capsulatum yeast cells. It was clear that TNF-α was produced locally in an infected spleen. However, it was not demonstrated directly which cell population was responsible for its production. Data shown in Table 1 demonstrate that the adherent macrophage populations were responsive to in vitro stimulations by H. capsulatum as well as LPS to produce TNF-α. Peritoneal exudate cells elicited by mineral oil injection were allowed to adhere to the plastic chamber overnight. The adherent cells were then stimulated with H. capsulatum yeast cells, with yeast cells pretreated with polymyxin B, with LPS, or with LPS pretreated with polymyxin B. Both LPS and H. capsulatum yeast cells induced the production of TNF-α as measured by bioactivity in the TNF-α-sensitive [Lm(S)] and -resistant [Lm(R)] cell lines. The production of TNF-α induced by LPS and by H. capsulatum followed a different time course, and the levels of activity were different. LPS-induced production of TNF-α reached its peak (113.0 ± 14.1 U/ml) as early as 2 h after stimulation. The level of TNF-α activity dropped to half (56.5 ± 14.1 U/ml) by 16 h in culture. The peak of TNF-α

![Image](http://iai.asm.org/)

Figure 3. In situ production of TNF-α in spleen of H. capsulatum-infected mouse. Spleen sections from a mouse infected 7 days previously by H. capsulatum (A) and a control uninfected mouse (B) were stained for TNF-α (magnification, ×66).

![Table 1](http://iai.asm.org/)

<table>
<thead>
<tr>
<th>Stimulant</th>
<th>Time in culture (h)</th>
<th>TNF-α level (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPSd</td>
<td>2</td>
<td>80.0 ± 10.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>113.0 ± 14.1</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>56.6 ± 14.1</td>
</tr>
<tr>
<td>LPS + polymyxin B'</td>
<td>2</td>
<td><2.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td><2.0</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td><3.2</td>
</tr>
<tr>
<td>H. capsulatumf</td>
<td>2</td>
<td>139.3 ± 24.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1,280.0 ± 26.4</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>519.8 ± 23.0</td>
</tr>
<tr>
<td>H. capsulatum + polymyxin B'</td>
<td>4</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1,039.7 ± 32.5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>519.8 ± 42.8</td>
</tr>
</tbody>
</table>

a Approximately 8 × 10^6 peritoneal exudate cells were added to each well.

b Supernatants were collected after peritoneal exudate cells were incubated with stimulants for the designated time.

c TNF-α levels were assayed by cell cultures of Lm(S) and Lm(R) (see Materials and Methods) and are the means plus or minus the standard deviations. Each determination was the average of results from three experiments. ND, not done.

d One hundred microliters of LPS at 20 μg/ml was added to the wells.

e Polymyxin B at 40 μg/ml was mixed with 20 μg of LPS or Histoplasma yeast cells per ml and incubated at room temperature for 1 h before being added to wells.

f Five million H. capsulatum yeast cells in 0.1 ml were added to wells.
production induced by H. capsulatum yeast cells was at 16 h after stimulation, and the level of activity was as high as 1,280 ± 26.4 U/ml. Since samples of culture supernatants from either LPS- or H. capsulatum-stimulated cultures lysed the Lm(S) cells but not Lm(R) cells (data not shown), the active component in the culture supernatants was TNF-α and not a nonspecific toxin or TNF-β (38). In addition, the data in Table 1 show that polymyxin B neutralized the stimulating effect of LPS but not that of H. capsulatum yeast cells. This result confirmed that the ability of H. capsulatum to induce TNF-α production was not due to LPS contamination. Ninety percent of the cells composing the monolayers stained positive with F4/80 and phycoerythrin-conjugated goat anti-rat Ig. This result indicates that exudate cells producing TNF-α were of macrophage lineage (1).

TNF-α is essential to host resistance to experimental histoplasmosis. The importance of TNF-α produced during infection to recovery from histoplasmosis was demonstrated by depleting the cytokine at the time of and after infection. Mice were infected by a normally sublethal dose of H. capsulatum yeast cells intravenously. Half of them received multiple injections of anti-TNF-α antibody, and half received normal lamb serum intraperitoneally on days 0, 1, 3, and 5 after infection. Animal survival was monitored for up to 30 days after infection. The data in Fig. 4 showed that 100% of the mice given normal lamb serum after a sublethal dose of H. capsulatum survived the infection. Most of the animals given anti-TNF-α antibody died within a short time (10 to 14 days) after infection. Only 1 of 12 (17%) survived the infection beyond day 30.

A heavy burden of fungus was found in the tissues of animals that died. As shown in Fig. 5, mice infected with a sublethal dose of H. capsulatum had log₁₀ 6.4 ± 0.2 and log₁₀ 6.4 ± 0.2 CFU of fungus per g of spleen on days 2 and 7 of infection. These animals reduced the number of fungi after day 7. By day 9 the counts became log₁₀ 5.8 ± 0.2. Mice injected with anti-TNF-α antibody did not control the growth of the fungus as did the control mice (given lamb serum). Fungal counts in log₁₀ CFU per gram (± standard errors of the mean) of tissue from H. capsulatum-infected mice (shaded bars) and infected mice treated with anti-TNF-α antibody (open bars) at days 2, 7, and 9 after infection. The numbers represent counts from six mice in each group.
Methods.

...in and that macrophages and information provided by...antibody-treated animals. Hematoxylin-eosin stain of spleen sections from a mouse infected by *H. capsulatum* (A) and an infected mouse treated with anti-TNF-α antibody (B). Arrows point to *H. capsulatum* yeast cells in the cytoplasm of macrophages.

neutrophils was increased. Most obviously, the number of fungi was much greater. The fungal cells were located mainly inside the cytoplasm of the macrophages (Fig. 6B). Comparing the number of intracellular yeasts in splenic macrophages from sublethally infected mice (Fig. 6A) and infected mice with antibody treatment (Fig. 6B), it is obvious that macrophages in antibody-treated animals did not restrict proliferation of the fungus. The histological picture displayed in the liver was similar to that observed in the spleens (data not shown).

Recombinant TNF-α does not efficiently activate macrophages to an antihistoplasma state. The lack of TNF-α affected the ability of animals to clear *H. capsulatum* from their tissues. We proceeded to determine whether this cytokine had a direct effect on yeast cell growth within macrophages in vitro. Results of such experiments are recorded in Table 2. The levels of TNF-α used spanned a wide range, from 5 to 20,000 U/ml. Growth of yeast cells in resident and splenic peritoneal macrophages stimulated by TNF-α in the concentrations used was not inhibited. Thus, it appears that TNF-α alone did not efficiently activate resident murine peritoneal or splenic macrophages to an antihistoplasma state.

DISCUSSION

It has been established in experimental histoplasmosis that T cells from an immune animal transfer immunity against lethal challenge to a naive recipient and that such cells activate normal macrophages via soluble factor(s) (19, 41). One of the macrophage-activating factors that has been characterized is IFN-γ (41, 42). The CD4+ T cells in the spleen of an immune animal are responsible for the production of IFN-γ (40). Early production of IFN-γ by a resistant mouse correlates with the ability to clear the infection (40). However, depletion of this cytokine did not result in death of sublethally infected animals, although the fungous burden was increased 10-fold (44). In this study, we have demonstrated that TNF-α is also produced in the spleens of mice infected by *H. capsulatum* and is a controlling element in the outcome of the infection. The depletion of TNF-α resulted in the death of sublethally infected animals and in an increase of the fungous burden in the tissues.

Mature tissue macrophages, such as pulmonary, hepatic, peritoneal, and bone marrow macrophages, but not monocytes in peripheral blood are known to be the major producers of cachectin (TNF-α) in response to LPS (5, 8). Other cell types, like the T lymphocytes and natural killer cells, can also produce this cytokine upon stimulation by calcium ionophores in conjunction with phorbol myristate acetate (7, 9). We show in this study by immunohistocytochemical staining that at 7 days after infection, macrophages infiltrated the spleen (Fig. 1A) and TNF-α was produced (Fig. 3A). It seems that the macrophage population that appears in the spleen after an infection was the result of an influx of migrating cells rather than an expansion of resident cells. In order to study whether elicited macrophages can be stimulated by *H. capsulatum* to produce TNF-α, we employed mineral oil-induced peritoneal exudate cells because of our inability to obtain chemically elicited splenic macrophages. Results of such study presented in Table 2 show that these

FIG. 6. Uncontrolled proliferation of *H. capsulatum* in spleen macrophages of antibody-treated animals. Hematoxylin-eosin stain of spleen sections from a mouse infected by *H. capsulatum* (A) and an infected mouse treated with anti-TNF-α antibody (B). Arrows point to *H. capsulatum* yeast cells in the cytoplasm of macrophages.

TABLE 2. Effect of TNF-α on macrophage antihistoplasma activity

<table>
<thead>
<tr>
<th>Source of macrophages</th>
<th>TNF-α level (U/ml) *</th>
<th>Mean no. of yeast cells/infected macrophage at T18</th>
<th>Growth</th>
<th>% Inhibition of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peritoneum</td>
<td>0</td>
<td>5.6 ± 1.4</td>
<td>3.7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.6 ± 1.2</td>
<td>3.7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>5.9 ± 1.0</td>
<td>4.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>5.4 ± 1.0</td>
<td>3.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5,000</td>
<td>5.2 ± 0.7</td>
<td>3.3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>20,000</td>
<td>5.3 ± 0.8</td>
<td>3.4</td>
<td>8</td>
</tr>
<tr>
<td>Spleen</td>
<td>0</td>
<td>7.0 ± 0.8</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td>6.8 ± 0.9</td>
<td>4.9</td>
<td>4</td>
</tr>
</tbody>
</table>

* The activity of recombinant TNF-α was determined according to the information provided by the manufacturer for the specific lot.

a Growth is the difference in the mean numbers of yeast cells between T18 and T0. The number of yeast cells in peritoneal macrophages at T0 is 1.9 ± 0.2, and that in splenic macrophages is 1.9 ± 0.1. The data on peritoneal and splenic macrophages were derived from separate experiments. The difference in intracellular growth in the two sorts of macrophages was not consistently seen in other experiments and reflects slight differences in experimental detail.

* Calculation of percent inhibition of growth is described in Materials and Methods.
pneumophila (6), and that macrophages we reached a peak with detectable capsulatum stimulated macrophages differed by example, to 4 of exposure despite h and (31) stimulus. The ing seemingly contradicting phages that macrophages and their in production H. killing involved in monocytes amount 16 of exposure, and the influx of macrophages in spleens of mice infected by H. capsulatum. Thus, macrophages and their product(s) may play an important role in the pathogenesis of histoplasmosis.

It was important to confirm that the ability of H. capsulatum yeast cells to induce TNF-α in vitro was not due to possible contamination of LPS. Data presented in Table 1 show that TNF-α production patterns in response to the two stimuli were different. In response to LPS, soluble TNF-α levels reached a peak at 4 h but were reduced to half of that amount 16 h after exposure. This observation coincides with the reported kinetics of cachectin (TNF-α) mRNA appearance (5). The concentration of cachectin mRNA rises to a detectable level within minutes after exposure to LPS and reaches a peak at 2 to 3 h after stimulation. Cachectin mRNA declines slowly to the level of noninduced cells after 15 to 20 h of exposure despite the continuous presence of the inducing stimulus. The production of cachectin itself ceases within 4 to 6 h following contact with LPS. In contrast, the level of TNF-α produced in response to H. capsulatum stimulation reached a peak at 16 h. Besides the difference in the kinetics, the amount of soluble TNF-α induced by these two stimuli differed by a magnitude of severalfold. In addition, polymyxin B neutralized the inducing effect of LPS but not that of H. capsulatum yeast cells. Thus, we concluded that H. capsulatum stimulated macrophages to produce TNF-α in vitro and that it was not due to LPS contamination.

It has been shown in other infections that TNF-α is induced and plays an important role in host defense. TNF-α production is induced in vitro by macrophages infected with Coccidioides immitis (29), and treatment of human mononuclear monocytes with recombinant human TNF-α results in killing of intracellular endospores of C. immitis (3). TNF-α is involved in host defense against Listeria monocytogenes (15, 16, 23, 26), Leishmania sp. (4, 25, 28, 34), Legionella pneumophila (6), and Trypanosoma cruzi (10, 32). In contrast, there are also reports on TNF-α as a mediator for pathological changes caused by Mycobacterium tuberculosis (31) and in cerebral malaria (12-14, 22). Resolution of these seemingly contradicting effects awaits further study.

The roles of TNF-α in host defense are various. For example, macrophages activated by TNF-α kill Leishmania and Listeria spp. (21, 25) but only inhibit intracellular multiplication of T. cruzi and have no effect on Toxoplasma gondii (10). Bancroft et al. demonstrated that TNF-α activates macrophages in scid mice in a T-cell-independent pathway (2). We conducted experiments to investigate the macrophage-activating activity of TNF-α by treating resident peritoneal and splenic red pulp macrophages with recombinant murine TNF-α. Results of such experiments recorded in Table 2 showed that TNF-α alone did not activate either peritoneal or splenic macrophages to an impressive antiphagocytosis state. However, preliminary data from an ongoing study of splenic macrophages showed that activation of these macrophages requires two signals, one of which can be recombinant TNF-α (24).

The histopathological pictures recorded in Fig. 6 displayed that splenic macrophages in animals depleted of TNF-α, in contrast to those in the control animals, did not have the ability to restrict proliferation of intracellular H. capsulatum. This result and that presented in Table 2 suggest that TNF-α does not activate by itself but that it is required, possibly as a priming agent, in activation of splenic macrophages which are in the frontline of host defense against disseminated histoplasmosis. This conclusion is substantiated by data shown in Fig. 5. The fungous burden in mice treated with anti-TNF-α antibody was greater than that in the untreated control mice as early as 2 days after infection. The difference of fungous counts became wider between the two groups at later time points. The inability to prime macrophages at this early time point before the production of IFN-γ by CD4+ T cells (40) appears to have contributed to the overwhelming outcome of the sublethal infection.

TNF-α along with interleukin-1 and interleukin-6 has been associated with inflammation and granuloma formation. The combination of cytokines causes neutrophil migration and accumulation and edema formation during inflammation (11, 20, 35). Depletion of TNF-α in Listeria-infected mice diminishes the involvement of mononuclear cells in the infected foci in the liver, in contrast to granulomata which are populated by large numbers of mononuclear cells in control mice (16). We have shown in this study that depletion of TNF-α in H. capsulatum-infected animals did not change the inflammatory pattern in the spleen nor the liver but that the granulomata were more extensive, edematous, and exudative in the cytokine depleted-animals.

We have confirmed the observation by Smith et al. (30) that TNF-α is important in host defense against experimental histoplasmosis. We provide evidence to suggest that TNF-α is produced by macrophages in the infected spleen and that depletion of this cytokine affected the ability of macrophages to control proliferation of the intracellular fungus and thus affected the ability of the animal to control infection by H. capsulatum.

ACKNOWLEDGMENTS

We are thankful to Dexter H. Howard for reading the manuscript and providing helpful comments and to Sylvia Odesa and Scott McCallum for their excellent technical assistance. The generous gift of polyclonal sheep anti-TNF-α antibody from Tom Leist is gratefully acknowledged.

These studies were supported by funds from Public Health Service grants AI-22963 (B.W.-H.) and EYO 8144 (F.M.H.) from the National Institutes of Health.

REFERENCES

3. Beaman, L. 1991. Effects of recombinant gamma interferon and
tumor necrosis factor on in vitro interactions of human- mono-
phagocytes with Coccidioides immitis. Infect. Immun.
59:4227-4229.

1990. IL-2. A cofactor for induction of activated macrophage

Comparison of the effects of IL-1α and TNF-α on phagocyte
123:9-22.

gamma cooperates with LPS or TNF-alpha to activate mouse
American Society for Microbiology, Washington, D.C.

1993. Tumor necrosis factor (TNF-α) in leishmaniasis. I. TNF-α
mediates host protection against cutaneous leishmaniasis.
Immunology 69:570-573.

tumor necrosis factor (cachectin) is essential to host resistance
against Listeria monocytogenes infection. Infect. Immun. 56:
2563-2569.

27. Nusrat, A. R., S. D. Wright, A. A. Aderem, R. M. Steinman,

Burchett. 1990. Modulation of in vitro monocyte cytokine re-
sponses to Leishmania major. Leishmania major prevents parasite-induced inhibition of interleukin production and primes
monocytes to respond to Leishmania by producing both tumor
necrosis factor-alpha and interleukin 1. J. Clin. Invest. 85:1914-
1924.

of tumor necrosis factor alpha by spherules of Coccidioides immitis.

1990. Tumor necrosis factor-α plays a role in host defense

Production of tumor necrosis factor alpha by monocytes from
patients with pulmonary tuberculosis. Infect. Immun. 58:3286-
3292.

32. Tarleton, R. L. 1988. Tumor necrosis factor (cachectin) produc-
73:186-190.

33. Tewari, R. P., D. Sharma, M. Solotorovsky, R. Lafermina, and
J. Balint. 1977. Active transfer of immunity from mice immu-
nized with ribosomes or live cells of Histoplasma capsulatum.

factor plays a protective role in experimental murine cutaneous

between tumor necrosis factor α and interleukin-1 in the induc-
tion of polymorphonuclear leukocyte migration during inflam-

1983. Immunoregulation in experimental disseminated histo-
plasmosis: flow microfluorometry (FMF) studies of the thy-
by phenotypes of T lymphocytes from infected mice. J. Immunol.
131:984-990.

transfer of immunity to Histoplasma capsulatum in athymic

38. Williamson, B. D., E. A. Carswell, B. Y. Rubin, J. S. Prender-
gast, and L. J. Old. 1983. Human tumor necrosis factor pro-
bduced by human B-cell lines: synergistic cytotoxic interaction
with human interferon. Proc. Natl. Acad. Sci. USA 80:5397-
5401.

of Histoplasma capsulatum without addition of conditioned

strains C57BL/6 and A/J to infection with Histoplasma capsul-

of Histoplasma capsulatum by lymphokine-stimulated macro-