GLUTATHION REDUCTASE ACTIVITY AND ITS RELATION WITH RIBOFLAVIN LEVELS MEASURED BY METHEMOGLOBIN REDUCTION BY CYSTAMINE IN PATIENTS WITH MALARIA (PRELIMINARY REPORT)

Benedito BARRAVIERA (1), Paulo Eduardo de Abreu MACHADO (2) & Domingos Alves MEIRA (3).

KEY WORDS: Malaria; Riboflavin; Glutathion reductase; Plasmodium falciparum.

Malaria caused by Plasmodium falciparum is characterized by resistance to multiple drugs. Thus, the search for new treatments has included the study of riboflavin-inhibiting drugs as a possible alternative for the control of this endemic disease 5, 6, 7.

The effect of riboflavin deficiency has been studied since 1944, when SEELER & OTT 10 demonstrated that chickens previously fed riboflavin-free diets and injected with Plasmodium lophurae developed attenuated infection and low parasitemia. KAIKAI & THURNHAM 8 reported that the development of Plasmodiumberghei in the blood of infected rats was impaired when the animals had been previously fed riboflavin-deficient diets.

BATES et al 4, in a study of children up to 2 years of age in Gambia, detected riboflavin deficiency, and the same phenomenon was observed by THURNHAM et al 11 among children aged up to 18 months in Papua, New Guinea. On the basis of the above information THURNHAM et al 11 and THURNHAM 12 proposed that, even though these findings may be interpreted as geographical coincidence of tropical countries, they may also reflect a physiological adaptation that would result in decreased severity of malaria.

In view of the above data, in August 1983 in the township of Humaitá, Brazilian Amazon region, we studied 31 patients with malaria caused by Plasmodium falciparum and 11 normal individuals native to the Amazon region who had never suffered from malaria. Of the 31 patients, 12 were native to the Amazon region and 19 were migrants from non-endemic regions of Brazil. The control group consisted of 91 normal individuals residing in Anhembi, State of São Paulo, a region where malaria is not endemic. All individuals were adult males and each was tested for glutathion reductase (E.C.1.6.4.2) activity according to the method described by BARRAVIERA 2, 3. This method utilizes the methemoglobin as a substrate and the cystamine stimulating the glutathion reductase.

The results presented below demonstrate that most of the native Amazonians (81.81%) who had never had malaria and native patients of Amazon region (75.00%) have decreased glutathion reductase activity, whereas most migrants patients with malaria (89.47%) have normal glutathion reductase activity.

(1) Professor Assistente Doutor do Departamento de Moléstias Infecciosas e Parasitárias, Dermatologia e Radiologia da Faculdade de Medicina de Botucatu.
(2) Professor Titular do Departamento de Clínica Médica da Faculdade de Medicina de Botucatu.
(3) Professor Titular do Departamento de Moléstias Infecciosas e Parasitárias, Dermatologia e Radiologia da Faculdade de Medicina de Botucatu.
Address for correspondence: Dr. Benedito Barraviera, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP). CEP 18610, Botucatu, São Paulo, Brasil.
The native Amazonian population studied here has peculiar feeding habits, i.e. the basic diet consists of manioc flour and fish, with low consumption of vegetables, legumes, fruit, eggs or dry legumes, foods that are rich in riboflavin. Furthermore, in this population there is high parasitic infestation by *Ascaris lumbricoides* 1, a helminth which, in addition to consuming albumin and vitamin C, also consumes riboflavin.

Taken together, these data and observations permit us to suggest that the deficiency in glutathion reductase detected here probably occurred owing to a deficiency of flavin-adenine-dinucleotide (FAD), a phosphorylated riboflavin derivative. This because the population basically consumes the peculiar diet, has an elevated prevalence of worm infestation and furthermore is submitted to selective malaria pressure 9.

According to THURNHAM 12, in areas where malaria is endemic, nutritional deficiencies may be advantageous for the host by suppressing the infection. In this respect, it is possible that the riboflavin deficiency detected in the native population is an additional protecting factor against malaria. Although we know that there are other factors acting in this protection.

Finally, these considerations should be taken into account when indicating riboflavin-inhibiting drugs for the treatment of malaria.

REFERENCES


Received for publication on 7/1/1988.