Primers for Clinical Detection of Paracoccidioides brasiliensis

Gioconda San-Blas, Gustavo Niño-Vega, Laura Barreto, Flavia Hebeler-Barbosa, Eduardo Bagaglia, Rosa Olivero de Briceño and Rinaldo Poncio Mendes

Updated information and services can be found at: http://jcm.asm.org/content/43/8/4255

These include:

REFERENCES
This article cites 16 articles, 10 of which can be accessed free at: http://jcm.asm.org/content/43/8/4255#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»
Primers for Clinical Detection of *Paracoccidioides brasiliensis*

Gioconda San-Blas, Gustavo Niño-Vega, Laura Barreto, Flavia Hebeler-Barbosa, Eduardo Bagagli, Rosa Olivero de Briceno, and Rinaldo Poncio Mendes

Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Apartado 21827, Caracas 1020A, Venezuela; Instituto de Bioquímicas, UNESP, Botucatu, São Paulo, Brazil; Escuela de Medicina, Universidad de Carabobo, Valencia, Venezuela; and Facultad de Medicina, UNESP, Botucatu, São Paulo, Brazil

Received 9 March 2005/Returned for modification 22 April 2005/Accepted 4 May 2005

Paracoccidioidomycosis (PCM), caused by *Paracoccidioides brasiliensis*, is a chronic granulomatous systemic mycosis prevalent in rural areas of Latin America (16). PCM is routinely diagnosed by culture observation and microscopic detection of yeast cells in clinical specimens (10) and by serological tests, particularly with gp43, a reference *P. brasiliensis* antigen (17, 18).

Molecular methods (2, 6, 11, 19) allow the identification of many fungi without the need of culturing. They are rapid, highly specific and sensitive (3). The molecular identification of Pathogens with a high specificity and sensitivity for fungi is performed (4, 5, 7, 9, 13, 14). Two specific DNA fragments (0.72 kb) common to and specific for all *Paracoccidioides brasiliensis* have been reported (4, 5, 7, 9, 13, 14). From a 0.72-kb fragment universally generated in *Paracoccidioides brasiliensis* strains, primers were designed and tested on genomic DNA of this and other pathogenic fungi. They were specific and highly sensitive for *P. brasiliensis* DNA. Positive results were obtained when these were tested in clinical samples.

Paracoccidioidomycosis (PCM), caused by *Paracoccidioides brasiliensis*, is a chronic granulomatous systemic mycosis prevalent in rural areas of Latin America (16). PCM is routinely diagnosed by culture observation and microscopic detection of yeast cells in clinical specimens (10) and by serological tests, particularly with gp43, a reference *P. brasiliensis* antigen (17, 18).

Molecular methods (2, 6, 11, 19) allow the identification of many fungi without the need of culturing. They are rapid, highly specific and sensitive (3). The molecular identification of *P. brasiliensis* with primers of diverse origin has been reported (4, 5, 7, 9, 13, 14). Two specific DNA fragments (0.72 and 0.83 kb) common to and specific for all *Paracoccidioides brasiliensis* samples are generated when the arbitrary primer OPG18 (Operon Biotechnology) is used (5). We report specific primers designed on the 0.72-kb fragment, capable of identifying *P. brasiliensis* DNA from sputum and cerebrospinal fluid (CSF) of PCM patients.

P. brasiliensis DNA (strain Pb73; ATCC 32071) was prepared as described before (5). Other DNA samples were *Histoplasma capsulatum* (strains 7090, G222B, and G217B), *Aspergillus terreus*, *Aspergillus fumigatus*, *Aspergillus nidulans*, *Blastomyces dermatitidis* (strains 4.1 and 4.2), *Candida albicans* (strains B102A and 3), *Candida krusei* (strain W0701), *Candida parapsilosis* (strain 8992), *Candida tropicalis* (strain W0739), *Candida guilliermondii* (strain 6742), *Candida pseudotropicalis* (strain W0696), *Candida dubliniensis*, *Cryptococcus neoformans* (strain 90-2), *Penicillium marneffei* (strain 4.1), *Aspergillus oryzae* (strain A), *Mycobacterium tuberculosis*, *Mycobacterium bovis*, and *Mycobacterium smegmatis*.

Primers were designed on the 0.72-kb fragment generated by PCR with the arbitrary primer OPG18 (Operon Biotechnologies) (5). They were as follows: MG2(1)F, 5'-GAGGATTCCCC TAGGCAAAACCATTTGTTA-3'; MG2(1)R, 5'-GTGACAGTTATCCACAAGCCATATCC-3'; MG2(2)F, 5'-ATGCTAATTTATGTCATTCCGCGTCTG-3'; and MG2(2)R, 5'-ATGCTAATTTATGTCATTCCGCGTCTG-3'.

PCR amplifications were carried out in 25-μl reaction mixtures with 2.5 μl 10× PCR buffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl) containing 20 ng genomic DNA, 20 pmol of each primer, 0.75 μl 50 mM MgCl₂, 1.25 μl 1 mM dNTP, and 0.5 μl Taq DNA polymerase (Life Technologies). Amplifications were performed in a thermocycler (MJ Research, Inc.) with an initial cycle of 94°C (5 min), 30 cycles of 94°C (30 s), 65°C (30 s), and 72°C (1 min), and a final extension for 5 min at 72°C. Negative controls (water instead of fungal DNA) were included in all reactions. Sensitivity of the PCR assay was tested with *P. brasiliensis* genomic DNA at concentrations from 5 ng to 1 pg.

For diagnostic purposes, seven sputa and one CSF sample from PCM patients (Table 1) and three sputum samples from subjects without PCM were tested, undiluted and in 1:5 and 1:10 dilutions. An initial PCR with 5 μl DNA and the primer pair MG2(1)F-MG2(1)R was carried out, followed by amplification (2 μl) under the same conditions. Southern hybridization with the specific 0.72-kb probe (5) was carried out according to the methods in reference 15.

To evaluate the method, control sputa were spiked with *P. brasiliensis* yeast cells (0, 10, 10², and 10⁴ cells/ml). Samples were treated according to the methods in reference 8, although modifications were needed. (i) The lysis buffer consisted of 0.1 M Tris-HCl, pH 7.5; 5% sodium dodecyl sulfate; 30 mM EDTA; and both chitinase (from *Streptomyces griseus*, 1 mg/ml; Sigma, St. Louis, MO) and β-glucanase (yeast lytic enzyme, 2 mg/ml; ICN Biomedicals Inc., Aurora, OH) as lytic enzymes to soften the *P. brasiliensis* cell wall. It was added 1:1 (vol/vol) for 2 h at 37°C and a further 15 min at 100°C. (ii) Centrifugation conditions were modified to 12,000 rpm for 5 min after the potassium acetate step, 5,000 rpm at 4°C for 10 min after the phenol-chloroform extract, and 8,000 rpm at 4°C for 5 min following overnight incubation at −20°C.

Patients (Table 1) were farmers from rural areas nearby the Valencia Lake, in the north-central region of Venezuela (patients 1 through 7), or Lara State, the central-western region of the country (patient 8). Samples were treated in the same fashion as spiked samples. The project was submitted to and approved by the Bioethics Commission of the Venezuelan Institute for Scientific Research.
DNA from all microorganisms listed above were used for PCR assays with primer pairs MG2(1)F-MG2(1)R and MG2(2)F-MG2(2)R. Figure 1 shows results obtained with *P. brasiliensis*, *B. dermatitidis*, *H. capsulatum*, *C. albicans*, *A. dubliniensis*, *A. nidulans*, and *A. fumigatus*. All other fungal and mycobacterial DNAs and DNA from control samples were negative. Specific *P. brasiliensis* bands of 285 bp [MG2(1)F-MG2(1)R] and 288 bp [MG2(2)F-MG2(2)R] were generated. Southern hybridization (not shown) was positive for the *P. brasiliensis* multibudding yeast cells in sputum and positive serology.)

Clinical and/or serological diagnosis with the molecular test was confirmed when both PCR results and serology were positive. Agreement between clinical and/or serological diagnosis with the molecular test was determined when both PCR results and serology were negative. Specific *P. brasiliensis* bands of 285 bp [MG2(1)F-MG2(1)R] and 288 bp [MG2(2)F-MG2(2)R] were generated. Southern hybridization (not shown) was positive for the *P. brasiliensis* multibudding yeast cells in sputum and positive serology.)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex† (age in yrs)</th>
<th>Clinical and/or serological diagnosis (premolecular test)</th>
<th>Molecular PCM diagnosis</th>
<th>Agreement between clinical and/or serological diagnosis with the molecular test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M (39)</td>
<td>Chronic, multifocal PCM, 6-mo duration of symptoms</td>
<td></td>
<td>Sample from patient with a positive clinical and laboratorial diagnosis of PCM</td>
</tr>
<tr>
<td>2</td>
<td>M (55)</td>
<td>Chronic, multifocal PCM, 3-yr duration of symptoms</td>
<td>+ (smear)</td>
<td>Sample from patient with a positive clinical and laboratorial diagnosis of PCM</td>
</tr>
<tr>
<td>3</td>
<td>F (38)</td>
<td>Chronic unifocal (pulmonary) PCM, 4-mo duration of symptoms</td>
<td></td>
<td>Sample from patient with a positive clinical and laboratorial diagnosis of PCM</td>
</tr>
<tr>
<td>4</td>
<td>M (34)</td>
<td>Chronic multifocal PCM, 4-mo duration of symptoms</td>
<td>+++</td>
<td>Sample from patient with a positive clinical and laboratorial diagnosis of PCM</td>
</tr>
<tr>
<td>5</td>
<td>M (57)</td>
<td>Chronic unifocal (pulmonary) PCM; 14-mo duration of symptoms</td>
<td>+++</td>
<td>Sample from patient with a positive clinical and laboratorial diagnosis of PCM</td>
</tr>
<tr>
<td>6</td>
<td>M (49)</td>
<td>Chronic, multifocal PCM diagnosed and treated in 2000. Probable relapse, unconfirmed at the time of the molecular test</td>
<td>+++</td>
<td>Ten days after our positive report of PCM, clinical and serological confirmation was available (microscopic observation of P. brasiliensis multibudding yeast cells in sputum and positive serology)</td>
</tr>
<tr>
<td>7</td>
<td>F (47)</td>
<td>Chronic unifocal (pulmonary) PCM-diagnosed and treated in 1993. Probable relapse, unconfirmed at the time of the molecular test</td>
<td>–</td>
<td>Clinical and serological confirmation of no PCM relapse, 10 days after molecular results were available. Definitive negative mycological diagnosis, 1 month later: chronic bronchopulmonary obstructive emphysema and bilateral bronchiectasis after bacterial infection</td>
</tr>
<tr>
<td>8</td>
<td>M (38)</td>
<td>Chronic, multifocal PCM, with involvement of the central nervous system</td>
<td>+</td>
<td>CSF biochemistry revealed a discreet elevation in proteins. Direct microscopic examination, culture, and serology (DID) for P. brasiliensis were negative. CT scan with contrast showed the presence of multiple hypodense images with ring enhancement, surrounded by mild edema, localized mainly at posterior fossa and in lower numbers in basal ganglia and around periventricula</td>
</tr>
</tbody>
</table>

† Cerebrospinal fluid sample. All others were sputum.

a M, male; F, female.

b +, light band; ++, medium band; ++++, intense band; −, no band.

c CT, computed tomography; DID, double immunodiffusion.

DNA sequences of potential diagnostic regions (9, 11, 13), or the gp43 gene (4, 8). The primers reported here produced positive identification bands in those patients with a confirmed diagnosis of chronic PCM, reflecting...
the frequent pulmonary involvement in such cases (12). Interestingly, in two cases of suspected relapses (patients 6 and 7), our molecular test produced results that preceded, by one or more weeks, information obtained by clinical, serological, or mycological tests. One of these patients (patient 6) turned out to have a PCM relapse, while the other one (patient 7) did not, as correctly predicted by the molecular test.

As for patient 8, he suffered from chronic multifocal PCM, and developed neurological symptoms of impairment, suggestive of an involvement of the central nervous system (CNS). Treatment with amphotericin B diminished mucosal lesions but not the CNS impairment. Our molecular test was able to detect *P. brasiliensis* in a CSF sample from this patient, although antibody detection and microscopic observation were negative for the presence of the fungus in this sample, as usually reported for CNS PCM (1). A positive molecular test could avoid a stereotaxic biopsy of the brain for diagnosis and could be useful to follow the treatment of patients with paracoccidioidal CNS involvement.

We thank Bruno Maresca (International Institute of Genetics and Biophysics, CNR, Naples, Italy) for kindly sequencing the rDNA of *Pelagibacter capsulatus*, and Howard Takiff (IVIC, Caracas, Venezuela) for mycobacterial DNAs. We thank Carmen Elena Kannee and María José de Armas (Hospital Vargas, Caracas, Venezuela) for the kind gift of a CSF sample from patient 8.

This work was supported by grant no. 2000-6, Instituto Venezolano de Investigaciones Científicas (IVIC). F.H.-B. was the recipient of a United Nations University Fellowship Training at Instituto Venezolano de Investigaciones Científicas (August-December, 2002).

REFERENCES