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Interference phenomena, chiral bosons, and Lorentz invariance
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We have studied the theory of gauged chiral bosons and proposed a general theory, a master action, that
encompasses different kinds of gauge field couplings in chiral bosonized theories with first-class chiral con-
straints. We have fused opposite chiral aspects of this master action using the soldering formalism and applied
the final action to several well-known models. The Lorentz rotation permitted us to fix conditions on the
parameters of this general theory in order to preserve the relativistic invariance. We also have established some
conditions on the arbitrary parameter concerned in a chiral Schwinger model with a generalized constraint,
investigating both covariance and Lorentz invariance. The results obtained supplement the one that shows the
soldering formalism as a new method of mass generation.

DOI: 10.1103/PhysRevD.64.025023 PACS number~s!: 11.10.Ef, 04.65.1e
a

f
s-
ti
ls

t

in
io
on
an
-
h
l
h

on
e

ra
u
it

lie
ffi
s

as

s,
f

de
a

l of

nt
to
ns

y-

d
ns
si-
a
a-

by

de-
on

by
c-
ith
the

er-
to

ted
co-
elf-

in
the
l’s
. In
ion,
ith

een
eral
the
to

. V
iral
m-
I. INTRODUCTION

The research in chiral bosonization began many ye
back with the seminal paper of Siegel@1#. Floreanini and
Jackiw offered some different solutions to the problem o
single self-dual field@2#. The study of chiral bosons has blo
somed thanks to the advances in superstring compactifica
@3# and in the construction of interesting theoretical mode
such as the Thirring model@4#. They also play an importan
role in the studies of the quantum Hall effect@5#. The intro-
duction of a soliton field as a charge-creating field obey
one additional equation of motion leads to a bosonizat
rule @6#. In the course of the analysis of the chiral bos
properties, one natural step is to couple them to Abelian
non-Abelian gauge fields@7,8# in order to study the corre
spondent anomalies, or to provide an alternative approac
chiral models in two dimensions@9#. Gates and Siege
showed how to construct general interacting actions for c
ral bosons, including the supersymmetric and the n
Abelian cases@10#. They used this construction to obtain th
righton-lefton interaction by carrying out the path-integ
quantization in a generalized Thirring model. Other co
plings of the chiral bosons with supersymmetry and grav
can be found in Ref.@11#. In an alternative way, Stone@12#
has shown that the method of coadjoint orbit, when app
to a representation of a group associated with a single a
Kac-Moody algebra, generates an action for the chiral We
Zumino-Witten~WZW! model@13#, a non-Abelian generali-
zation of the Floreanini and Jackiw~FJ! model. The formal-
ism introduced by Stone has been interpreted recently
new method of mass generation@14#.

In the context of chiral theories in two dimension
Harada has shown@9# how to obtain a consistent coupling o
FJ chiral bosons with a U~1! gauge field, starting from the
chiral Schwinger model and discarding the right-handed
grees of freedom by means of a projection in phase sp
implemented by the chiral constraintpf5f8. Later on, it
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was observed that starting with a chiral Schwinger mode
a given chirality it is possible to couple chiral bosons to U~1!
gauge fields in two Lorentz invariant ways, using differe
chiral constraints@15,16#. The theory proposed was shown
be equivalent to a specific coupling of Siegel’s chiral boso
with U~1! gauge fields which is symmetric under chiralit
preserving gauge transformations.

In Ref. @8#, Bellucci, Golterman, and Petcher introduce
an O(N) generalization of Siegel’s model for chiral boso
coupled to Abelian and non-Abelian gauge fields. The phy
cal spectrum of the resulting Abelian theory is that of
~massless! chiral boson and a free massive scalar field. B
zeia@17# showed that the Bellucciet al. model is equivalent,
at the classical level, to the gauged FJ chiral boson found
Harada.

In this work we have proposed a general action to
scribe the gauge coupling in different chiral bosonizati
schemes. We used the soldering formalism proposed
Stone@12# to fuse opposite chiralities producing a final a
tion which was used to apply to various chiral theories w
new outcomes. We have also analyzed the problem of
Lorentz invariance of this general model. In Ref.@15#, a
bosonized form of the chiral Schwinger model with a gen
alized constraint was analyzed using the Lorentz rotation
fix a general parameter. The soldering formalism permit
us to fix conditions on this parameter to obtain manifest
variance or, in another case, Lorentz invariance of this s
dual action.

We have organized the paper in the following way:
Sec. II we have tried to make a self-consistent review of
soldering formalism and used the well-known Siege
theory as an example to clarify the interference concepts
Sec. III we have introduced a general action, a master act
which encompasses different gauged self-dual actions w
first-class constraints. The technique of soldering has b
applied and the final soldered action was used in sev
models with new results. In Sec. IV we have employed
Lorentz rotation to fix the value of the parameters in order
guarantee the relativistic invariance of the theory. In Sec
the interference effect has been analyzed using the ch
Schwinger model with a generalized constraint. The para
©2001 The American Physical Society23-1
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eter dependence was placed in the light of the manifest
variance and of the Lorentz invariance of the soldered act
The conclusions are depicted in Sec. VI.

II. REVIEW OF THE SOLDERING FORMALISM

In this section we will follow basically Refs.@18# and@19#
to make a short, but at the same time self-consistent, rev
of the method of soldering two opposite chiral versions o
theory.

The soldering formalism gives a useful bosonizati
scheme for Weyl fermions, since a level one representa
of LU(N) has an interpretation as the Hilbert space for a f
chiral fermion @20#. However, only Weyl fermions can b
analyzed in this way, since a 2D conformally invariant qua
tum field theory~QFT! has separated right and left curre
algebras. In other words, it is trivial to make a~free! Dirac
fermion from two ~free! Weyl fermions with opposite
chiralities. The action is just the sum of two Weyl fermio
actions. It seems, however, nontrivial to get the action of
WZW model from two chiral boson actions of opposi
‘‘chiralities,’’ because it is not the sum of the two.

To solve this problem, Stone@12# introduced the idea o
soldering the two chiral scalars by introducing a nondyna
cal gauge field1 to remove the degree of freedom that o
structs the vector gauge invariance@18#. This is connected
as we said above, to the necessity that one must have m
than the direct sum of two fermion representations of
Kac-Moody algebra to describe a Dirac fermion. In anoth
way we can say that the equality for the weights in the t
representations is physically connected with the necessit
abandon one of the two separate chiral symmetries, and
cept that the vector gauge symmetry should be maintain
This is the main motivation for the introduction of the so
dering field which makes possible the fusion of dualities
all space-time dimensions. Besides, being just an auxil
field, it may posteriorly be eliminated in favor of the phys
cally relevant quantities. This restriction will force the tw
independent chiral representations to belong to the s
multiplet, effectively soldering them together. We will se
below, in a precise way, more details about the physical
nificance of the soldering field.

It is worth mentioning that the soldering procedure ha
typical quantum-mechanical nature, with no classical a
logue. It makes no sense to sum two classical actions
scribing opposite aspects of some~duality! symmetry that
depend on the same field. On the other hand, the direct
of duality symmetric actions depending on different fiel
would not give anything new. It is the soldering process t
leads to a new and nontrivial result.

In Ref. @19#, the authors have promoted soldering the t
~Siegel! invariant representations of opposite chiralities. T
symmetry content of each theory is well described by
Siegel algebra, a truncate diffeomorphism, that disappea
the quantum level. The resulting action is invariant under

1In Ref. @21#, Harada proposed a physical interpretation for the
soldering fields.
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full diffeomorphism group, which is not a mere sum of tw
Siegel symmetries. As we will see later, the result canalso
be seen as a scalar field immersed in a gravitational ba
ground.

Recently, there has been a great deal of interest in sol
ing together distinct manifestations of duality. The proced
leads to new physical results including quantum contrib
tions. For instance, these results provided the idea of an
terference effect. However, this ‘‘wave’’ interpretation is n
new. Witten, in Ref.@13#, associated the fields depending o
only one chirality to left-moving or right-moving waves a
being theg5 eigenstates.

One of us, with collaborators@14#, has promoted the in-
terference of two chiral Schwinger models with oppos
chiralities. As a result a new method of mass generation
obtained. The Bose symmetry fixed the Jackiw-Rajaram
parameter (a51) @22# so that in the spectrum only massle
harmonic excitations have survived. The soldered action r
resents a vector Schwinger model which has a massive
ticle spectrum. This behavior characterizes a constructive
terference with the arising of a mass term that is typical
the right-left quantum interference@23#.2

In terms of degrees of freedom we can say that each~chi-
ral! action contributes with ‘‘one-half’’ degree of freedom o
opposite signals. Hence the soldered action has one degr
freedom. By the way, in Ref.@25# it was shown that the
direct sum of two chiral Schwinger models~CSM! with op-
posite chiralities is, in fact, equivalent to a sum of a vec
Schwinger model~VSM! and an axial Schwinger mode
~ASM!, so, getting a different number of degrees of freed
from a sum of isolated CSM.

It was shown lately@26# that in the soldering process o
two Siegel’s @1# modes~lefton and righton! coupled to a
gauge field@10#, this gauge field has decoupled from th
physical field. The final action describes a nonmover field~a
noton! at the classical level. The noton acquires dynam
upon quantization. This field was introduced by Hull@27# to
cancel out the Siegel anomaly. It carries a representatio
the full diffeomorphism group, while its chiral componen
carry the representation of the chiral diffeomorphism.

In the 3D case, the soldering mechanism was used
show the result of fusing together two topologically mass
modes generated by the bosonization of two mass
Thirring models with opposite mass signatures in the lo
wavelength limit. The bosonized modes, which are descri
by self- and anti-self-dual Chern-Simons models@28,29#,
were then soldered into the two massive modes of the
Proca model@30#. In the 4D case, the soldering mechanis
produced an explicitly dual and covariant action as the re
of the interference between two Schwarz-Sen@31# actions
displaying opposite aspects of the electromagnetic dua
@30#.

Wotzasek@32# has obtained the field theoretical analog
of the ‘‘quantum destructive interference’’ phenomenon,
coupling the non-Abelian chiral scalars to appropriately tru

e 2The extension of this case to the four-dimensional one was
formed in Ref.@24#.
3-2
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INTERFERENCE PHENOMENA, CHIRAL BOSONS, AND . . . PHYSICAL REVIEW D64 025023
cated metric fields, known as chiral WZW models, or no
Abelian Siegel models@13#. In fact, this effective action doe
not contain either right or left movers, but can be identifi
with the non-Abelian generalization of the bosonic no
mover action proposed by Hull.

In a recent work@33#, Abreu et al. analyzed the restric
tions posed by the soldering formalism over a new regu
ization class that extends the classification of the regular
tion ambiguity of a 2D fermionic determinant from a thre
to a four-constraint class. This analysis results from the
terference effects between right and left movers, producin
massive vectorial photon that constrains the regulariza
parameter to this four-constraint class. In other words,
new Faddeevian class of chiral bosons proposed by M
@34# has interfered constructively to produce a massive v
torial mode.

The basic idea of the soldering procedure is to rais
global Noether symmetry of the self- and anti-self-dual co
stituents into a local one, but for an effective composite s
tem, consisting of the dual components and an interfere
term. The objective in Ref.@18# is to systemize the procedur
like an algorithm and, consequently, to define the solde
action.

An iterative Noether procedure was adopted in Ref.@18#
to lift the global symmetries. Therefore assume that the s
metries in question are being described by the local act
S6(f6

h ), invariant under a global multiparametric transfo
mation

df6
h 5ah, ~1!

whereh represents the tensorial character of the basic fie
in the dual actionsS6 and, for notational simplicity, will be
dropped from now on. As it is well known, we can write

dS65J6]6a, ~2!

whereJ6 are the Noether currents.
Now, under local transformations these actions will n

remain invariant, and Noether counterterms become ne
sary to reestablish the invariance, along with appropr
auxiliary fields B(N), the so-called soldering fields whic
have no dynamics. Nevertheless, we can say thatB(N) is an
auxiliary field which makes a wider range of gauge-fixi
conditions available@21#. In this way, theN action can be
written as

S6~f6!(0)→S6~f6!(N)5S6~f6!(N21)2B(N)J6
(N) .

~3!

HereJ6
(N) are theN-iteration Noether currents. For the se

and anti-self-dual systems we have in mind that this itera
gauging procedure is~intentionally! constructed not to pro
duce invariant actions for any finite number of steps. Ho
ever, if afterN repetitions, the noninvariant piece ends
being only dependent on the gauging parameters, but no
the original fields, there will exist the possibility of mutu
cancelation if both self- and anti-self-gauged systems are
together. Then, suppose that afterN repetitions we arrive a
the following simultaneous conditions:
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dS6~f6!(N)5” 0,

dSB~f6!50, ~4!

with SB being the so-called soldered action,

SB~f6!5S1
(N)~f1!1S2

(N)~f2!1contact terms, ~5!

where the contact terms are generally quadratic function
the soldering fields. Then we can immediately identify t
~soldering! interference term as

Sint5contact terms2(
N

B(N)J6
(N) . ~6!

Incidentally, these auxiliary fieldsB(N) may be eliminated,
for instance, through their equations of motion, from the
sulting effective action, in favor of the physically releva
degrees of freedom. It is important to notice that after
elimination of the soldering fields, the resulting effective a
tion will not depend on either self- or anti-self-dual fieldsf6

but only in some collective field, sayF, defined in terms of
the original ones in a~Noether! invariant way,

SB~f6!→Se f f~F!. ~7!

Analyzing in terms of the classical degrees of freedom, i
obvious that we have now a bigger theory. Once such ef
tive action has been established, the physical conseque
of the soldering are readily obtained by simple inspecti
This will progressively be clarified in the specific applicatio
to be given next.

In order to present an example, we will analyze the Sie
chiral actions in the light of the interference phenomeno3

First of all, we have to describe the light-front variables us
in this paper as

x65
1

A2
~x06x1!,

]65
1

A2
~]06]1!,

A65
1

A2
~A06A1!, ~8!

and now we can work out our example.

A. An example: The Siegel action

The original classical Lagrangian density for a chiral sc
lar field as introduced by Siegel@1# for a left moving scalar
~a lefton! is @35#

3We will follow the steps given in Ref.@19#.
3-3
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E. M. C. ABREU AND A. DE SOUZA DUTRA PHYSICAL REVIEW D64 025023
L 0
(1)5]1w]2w1l11]2w]2w

5
1

2
Aggab]aw]bw, ~9!

where the metric is given by

g1150, g1251,

g2252l11 . ~10!

The Lagrangian~9! is invariant under Siegel gauge sym
metry which is an invariance under the combined coordin
transformation and a Weyl rescaling of the form

x2→ x̃25x22e~x1 ,x2!,

dwgab52gab]2e2, ~11!

wheree65e6(x6).
The fieldsw and l11 transform under Eq.~11! as fol-

lows:

dw5e2]2w,

dl1152]1e1e]1l112l11]1e2. ~12!

In addition, Eq.~9! is invariant under the global axial trans
formation

w→w̃5w1w̄, ~13!

where we have currents associated with this axial symme
It is beyond the scope of our work to write explicitly the
axial currents as well as the conserved vector current. Th
objects can be found in the literature~see Ref.@35#, for ex-
ample!.

The symmetry~12! describes a lefton. This is the ma
difference between a lefton~righton! and a left-moving
~right-moving! FJ particle. The first is provided with symme
try and dynamics, while the second is responsible only
the dynamics of the theory. We can also say that the le
~or righton! carries the anomaly of the system@26# ~the well-
known Siegel anomaly!, since it is relative to the symmetr
of the theory.

Similarly, one can gauge the semilocal affine symmet

dw5e1]1w,

dl2252]2e11e1]1l222l22]1e1 ~14!

to obtain the righton. Next we will promote the fusion of th
righton and the lefton obtaining the final soldered action.
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B. The soldering procedure

In fact, if we construct the righton and lefton chiral boso
actions as

L 0
(6)5

1

2
J6~w!]7w ~15!

with

J6~w!52~]6w1l66]7w!, ~16!

it is easy to verify that these models are indeed invari
under Siegel’s transformations~12! and ~14!, using that

dJ65e6]7J6 . ~17!

It is worth mentioning at this point that Siegel’s actions f
leftons and rightons can be seen as the action for a sc
field immersed in a gravitational background whose metric
appropriately truncated. In this sense, Siegel symmetry
each chirality can be seen as a truncation of the reparam
zation symmetry existing for the scalar field action. W
should mention that the Noether currentJ1 defined above is
in fact the nonvanishing component of the left chiral curre
J15J(L)

2 , while J2 is the nonvanishing component of th
right chiral currentJ25J(R)

1 , with the left and right currents
being defined in terms of the axial and vector currents a

Jm
(L)5Jm

(A)1Jm
(V) ,

Jm
(R)5Jm

(A)2Jm
(V) . ~18!

Let us next consider the question of the vector gauge s
metry. We can use the iterative Noether procedure descr
above to gauge the global U~1! symmetry,

dw5a,

dl1150, ~19!

possessed by Siegel’s model~9!. Under the action of the
group of transformations~19!, written now as a local param
eter, the action~9! changes as

dL 0
(1)5]2aJ1 ~20!

with the Noether currentJ15J1(w) being given as in Eq.
~16!. To cancel out this piece, we introduce the solder
field B2 coupled to the Noether current, redefining the ori
nal Siegel’s Lagrangian density as

L 0
(1)→L 1

(1)5L 0
(1)1B2J1 , ~21!

where the variation of the gauge field is defined convenien
as
3-4
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dB252]2a. ~22!

As the variation ofL 1
(1) does not vanish up to total deriva

tives, we introduce a further modification as

L 1
(1)→L 2

(1)5L 1
(1)1l11B2

2 ~23!

whose variation gives

dL 2
(1)52B2]1a. ~24!

This piece cannot be canceled by a Noether counterterm
that a gauge invariant action forw andB2 does not exist, at
least with the introduction of only one gauge field. We o
serve, however, that this action has the virtue of havin
variation dependent only onB2 and a, and not onw. Ex-
pression~24! is a reflection of the standard anomaly4 that is
intimately connected with the chiral properties ofw.

Now, if the same gauging procedure is followed for
Siegel boson of opposite chirality, say

L 0
(2)5]1r]2r1l22]1r]1r, ~25!

subject to

dr5a,

dl2250,

dB152]1a, ~26!

then one finds that the sum of the right and left gaug
actionsL 2

(1)1L 2
(2) can be made gauge invariant if a conta

term of the form

LC52B1B2 ~27!

is introduced. One can check that indeed the comp
gauged Lagrangian

LTOT5]1w]2w1l11]2w]2w1]1r]2r1l22]1r]1r

1B1J2~r!1B2J1~w!1l22B1
2 1l11B2

2

12B2B1 ~28!

with J6 defined in Eq.~16! above, is invariant under the se
of transformations~19!, ~22!, and~26!. For completeness, w
note that Lagrangian~28! can also be written in the form

LTOT5D1wD2w1l11D2wD2w1D1rD2r

1l22D1rD1r1~w2r!E, ~29!

up to total derivatives. In the above expression, we h
introduced the covariant derivativesD6w5]6w1B6 , with

4The soldering analysis of the anomaly has been depicted in
@37#.
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a similar expression forD6r, and E[]1B22]2B1 . In
form ~29!, LTOT is manifestly gauge invariant.

After solving the equations of motion for the solderin
fields we can write

Lg5
1

2
A2ggab]aF]bF, ~30!

where in the above expression we have introduced the m
tensor density

A2gg22524
l11

D
,

A2gg11524
l22

D
,

A2gg1252
2

D
~11l11l22!,

~31!

whereD52(l11l2221) and

F5
1

A2
~r2w!. ~32!

We observe that in two dimensionsA2ggab needs only
two parameters to be defined in a proper way. As it sho
be, det(A2ggab)521. We also note that, because of co
formal invariance, we cannot determinegab itself. We could
therefore think ofLTOT as an effective theory, which repre
sents a scalar bosonF in a gravitational background. It ca
be shown@19# that the action~30! can be made invarian
under the full group of diffeomorphism. Hence we can eas
see that, in terms of symmetry, the new theory is bigger t
the old one. This new theory can be interpreted as a const
tive interference of symmetries. However, solving the eq
tions of motion for the multipliers, we can see that, in fa
this field has no dynamics. This characterizes a nonmo
field, a noton, introduced by Hull@27# to cancel out the
gravitational anomaly of the Siegel model.

III. THE MASTER ACTION

In this section we will propose a master action whi
represents, as a function of arbitrary parameters, sev
theories for the Siegel gauged model. In the second part
have accomplished the soldering of opposite chiral versi
of this master action and applied the final result, i.e.,
soldered action, on several models for the self-dual theor
make an interference analysis of the covariance of the n
theories.

A. The generalized gauged Siegel model

Let us now construct a class of generalized actions
Abelian chiral bosons coupled to a gauge field for ea
f.
3-5
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chirality, i.e., for the coupled leftons (LL) and rightons (LR).
We will call it the generalized gauged Siegel mod
~GGSM!:

L L
(0)5~]1f1a1A1!~]2f1a2A2!1l11~]2f1a3A2!2,

~33a!

L R
(0)5~]1r1b1A1!~]2r1b2A2!1l22~]1r1b3A1!2,

~33b!

whereai ,bi ( i 51,2,3) are parameters that define the the
studied andA6 are the vector field components. We will se
below that making simple substitutions of these parame
we can obtain several gauged forms of the Siegel theory
appear in the literature. It is important to observe the diff
ence between the vector fieldsA6 above and the solderin
fields B6 of Eqs. ~29!. The A fields are external~or back-
ground! fields and hence one does not consider the varia
~and extrema! of the actions under the variations of the
fields. The last are the auxiliary fields, as mentioned abo
which help in the soldering process and will be natura
eliminated by solving their equations of motion.

Following the steps of the soldering formalism studied
the last section, we can start considering the variation of
Lagrangians under the usual transformations,

df5dr5a and dAm5]ma, ~34!

wherem51,2. Now, consider that this symmetry is a glo
bal one with, obviously, a global parametera so that the
above transformations take the form

df5dr5a and dAm50. ~35!

Remember that the soldering process consists in lifting
gauging of a global symmetry to its local version. Hence
will consider from now on the transformations~35! as local.
Let us continue with the procedure writing only the ma
steps of the procedure.

In terms of the Noether currents we can construct

dL L,R
(0) 5Jf,r

m ]ma, ~36!

where

Jf
15a2A2 ,

Jf
252]1f1a1A112l11~]2f1a3A2!,

Jr
15b2A2 ,

Jr
252]2r1b2A212l22~]1r1b3A1!. ~37!

The next iteration, as seen above, can be performed intro
ing auxiliary fields, the so-called soldering fields

L L,R
(1) 5L L,R

(0) 2BmJf,r
m , ~38!

and one can easily see that the gauge variation of the GG
is
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dL L,R
(1) 52B7dB62l66dB7

2 . ~39!

Let us define the variation ofB6 as

dB65]6a, ~40!

and we see that the variation ofL L,R
(1) does not depend eithe

on f or r. Hence, as explained in the last section, we c
construct the final~soldered! Lagrangian as

L5LL % LR

5L L
(1)1L R

(1)12B1B21l11B2
2 1l22B1

2

5~]1f1a1A1!~]2f1a2A2!1l11~]2f1a3A2!2

1~]1r1b1A1!~]2r1b2A2!1l22~]1r1b3A1!2

2BmJf
m2BmJr

m12B1B21l11B2
2 1l22B1

2 , ~41!

which remains invariant under the combined transformati
~34! and~39!. Following the steps of the algorithm depicte
in the last section, we have to eliminate the soldering fie
solving their equations of motion which results in

B65
J72l66J6

2~12l!
, ~42!

wherel5l11l22 andJ65Jf
61Jr

6 .
Substituting it back in Eq.~41! we have the final soldered

action

L5
1

2
A2ggmn]mF]nF1

1

12l
$~a11b1l22lb3!]2FA1

1~2la32a2l2b2!]1FA2

1l11~2a32a22b2!]2FA2

1l22~a11b122b3!]1FA11C1l11A2
2

1C2l22A1
2 1ClA1A2%, ~43!

where the new compound fields are defined asF5f2r.
The new parameters are

C15a3
22b2a31

1

4
~a21b2!2,

C25b3
22b3a11

1

4
~a11b1!2,

Cl5S 1

2
2l Da1a21S 1

2
2l Db1b22

1

2
~a1b21b1a2!

1@~a21b2!b31~a11b1!a322a3b3#l2a2a3l11

2b1b3l22 ~44!

and the metric is

1

2
A2ggmn5

1

2~12l!S 2l22 11l

11l 2l11
D ~45!
3-6
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which reminds us of the gravitational feature of the solde
action of the two Siegel modes. We can note that the ac
~43! is covariant. Hence, in this case, we have that the co
riance of the generalized gauged Siegel action is maintai
This general action form will allow us to apply it to th
various gauged theories for the chiral boson with seco
order constraint. This will be accomplished next.

B. The self-dual models

In this section we will analyze five kinds of theories in th
light of the soldering formalism. The first of them is th
well-known Siegel’s action@1#, studied in Sec. II. It has bee
used to demonstrate the validity of the general soldered
tion ~43!. The second example, which is also not a new
sult, will be a coupling of the chiral boson with a gauge fie
We are talking, in this case, about the Gates and Sie
gauged action@10#. The new results will appear with the ne
three models. We will use three models well known in t
literature: the one derivative gauged model, the mass
Bellucci, Golterman, and Petcher model, and the Frishm
and Sonnenschein model.

1. Siegel’s model

It is easy to see that to obtain the expression~9! we have
to fix the parameters with the following values:

ai5bi50, ~46!

where i 51,2,3. Hence substituting these values in the
pression~43! it follows that

LTOT5
1

12l
$~11l11l22!]2F]1F1l11~]2F!2

1l22~]1F!2%

5
1

2
A2ggmn]mF]nF, ~47!

where 1
2 A2ggmn, from now on, is written as in Eq.~45!.

This action represents, naively, a scalar field immersed
gravitational background. However, as we have stresse
Sec. II, this expression also represents the noton action.

2. Gates and Siegel’s model

Gates and Siegel@10# have studied the interactions o
leftons and rightons with external vector fields including t
supersymmetric and the non-Abelian cases. The solderin
this model has been obtained already in Ref.@26#, but as a
further test for our GGSM, let us write

L GS
f 5~]2f12A2!~]1f!1l11~]2f1A2!2,

L GS
r 5~]1r12A1!~]2r!1l22~]1r1A1!2, ~48!

and the correspondence with Eq.~33a! is direct,
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a25b152, a15b250, a35b351. ~49!

The soldered action is, using Eq.~43!,

LTOT5
1

2
A2ggmn]mF]nF22A2A1 , ~50!

confirming the result in Ref.@26#. We can note that the co
variance has not been broken.

The physical meaning of Eq.~50! can be appreciated b
eliminating the multipliers and using the symmetry induc
by the soldering@32#, showing that it represents the actio
for the noton. In fact, Eq.~50! is basically the action pro-
posed by Hull@27# as a candidate for canceling the Sieg
anomaly. This field carries a representation of the full diffe
morphism group@27# while its chiral ~Siegel! component
carries the representation of the chiral diffeomorphism. O
serve the complete disappearance of the dynamical se
due to the destructive interference between the leftons
the rightons. This happens because we have introduced
one soldering field to deal with both the dynamics and
symmetry. To recover dynamics we need to separate th
sectors and solder them independently, as stressed in
@26#.

3. One derivative gauged model

This gauged form was introduced in Ref.@15#, where only
one kind of derivative was gauged,

L OD
f 5~]1f12eA1!~]2f!1l11~]2f!2,

L OD
r 5~]2r12eA2!~]1r!1l22~]1r!2.

~51!

Hence immediately we have the correspondence with E
~33a! and ~33b! through the choice

a25a350, b15b350, a15b252e ~52!

and

LTOT5
1

2
A2ggmn]mF]nF

1
1

12l
@22e~]2FA12]1FA2!

22e~l11]2FA22l22]1FA1!

1e2~l11A2
2 1l22A1

2 22A1A2!#. ~53!

In this case we can note that the decoupling of the vec
fields has not occurred.

The final action is explicitly covariant, showing that th
soldering procedure did not provide the break of covarian
We can classify this case as constructive interference of
variances, since Eqs.~51! are covariant also.
3-7
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4. The gauged massless Bellucci, Golterman, and Petcher mo

The form of this gauged chiral boson action is

L BGP
f 5~]1f!~]2f1eA2!1l11~]2f1eA2!2,

L BGP
r 5~]2r!~]1r1eA1!1l22~]1r1eA1!2,

~54!

hence

a15b250, a25a35b15b35e ~55!

and the final action reads

LTOT5
1

2
A2ggmn]mF]nF1

1

12l Fel~]1FA22]2FA1!

1el11]2FA22el22~11l!]1FA1

1
5

4
e2~l11A2

2 1l22A1
2 !

2e2S 1

2
2l112l22DA1A2G ; ~56!

it is easy to see that last two terms break the covarian
Hence in this case we have clearly a destructive interfere
of covariances.

5. The Frishman and Sonnenschein model

The chiral actions developed in Ref.@35# are

L FS
f 5~]1f!~]2f!1l11~]2f!21]1fA22]2fA1 ,

L FS
r 5~]2r!~]1r!1l22~]1r!21]2rA12]1rA2 ,

~57!

and identifying the parameters

a15b2521, a25b151, a35b350, ~58!

we can construct the soldered action as

LTOT5
1

2
A2ggmn]mF]nF1emn]mFAn1

122l

12l
A1A2 ,

~59!

wheree1251.
Now we have a constructive interference of covarian

since the soldered action is explicitly covariant.

IV. THE LORENTZ INVARIANCE ANALYSIS

Let us now fix conditions over the parameters in order
respect a Lorentz invariance. In other words, we mean
we will fix conditions such that the constraints valid in o
inertial reference system are valid in the other one. To
this, we will perform the Lorentz rotation@15#. This will be
done in the corresponding FJ version of the GGSM propo
above.
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The generalized gauged Siegel model, as we alre
know, is

LGGSM5~]1f1k1A1!~]2f1k2A2!

1l11~]2f1k3A2!2. ~60!

The canonical momentum conjugated tof is

pf5f81
1

2
k1~A01A1!1

1

2
~k22k3!~A02A1!

5f81
1

2
~k11k222k3!A01

1

2
~k12k212k3!A1 ,

~61!

and this is the generalized chiral constraint.
Using the first-order formalism of Faddeev and Jack

with this momentum, we can construct a first-order Lagra
ian density,

LGGSM5ḟf82f821
A0

2

2
~k1k22k3

2!2
A1

2

2
~k1k21k3

2!

1
A0

2

2
@~k11k222k3!ḟ2~k12k222k3!f8#

1
A1

2

2
@~k12k212k3!ḟ2~k11k212k3!f8#

~62!

which is a constrained one. To verify the Lorentz invarian
we have to note if the constraints are preserved from
inertial reference system to the other. To do this we have
apply the Lorentz rotation on the generalized chiral co
straint. Constructing the rotation matrices as

S p

f8
D→S coshw sinhw

sinhw coshw
D S p̃

f̃8
D ~63!

and

S A0

A1
D→S coshw sinhw

sinhw coshw
D S Ã0

Ã1
D , ~64!

and we have relations between the old fields and the n
~tilde! fields. Writing Eq.~61! in a convenient way,

pf5f81
C1

2
A01

C2

2
A1 , ~65!

whereC15k11k222k3 andC25k12k212k3.
After a little algebra, where we have provided the subs

tution of Eqs.~63! and ~64! in Eq. ~65!, we can write

C1 coshw1C2 sinhw5C1~coshw2sinhw!,

C1 sinhw1C2 coshw5C2~coshw2sinhw!. ~66!
3-8
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Solving this system we can say that the generalized ch
constraints are Lorentz invariant, if

C152C2 . ~67!

In other words, we can say that with this solution the co
straint is independent of the reference system.

Solving Eq.~67! we have that

k150. ~68!

With this result, we conclude that we can only gauge ter
with the same light-cone variables, i.e.,

L5~]1f!~]2f1k2A2!1l11~]2f1k3A2!2, ~69!

which corroborates the results for the gauging of the
model.

At this point it is interesting to remark that, in the origin
proposal of this method for verifying the relativistic invar
ance using the Lorentz rotation@15,16#, it was supposed tha
the invariance should be imposed, and this had led to s
criticisms@36#. Now we can see that in this approach, in fa
there is no need ofad hocimpositions.

V. THE CHIRAL SCHWINGER MODEL
WITH GENERALIZED CONSTRAINT

In Ref. @15#, the Lorentz rotation technique was used
the bosonized form of the chiral Schwinger model with
generalized constraint

V5pf2af8 ~70!

imposed on the first-order Lagrangian to determinate co
tions ona such that we have a Lorentz invariant final theo

Now we will disclose the conditions ona in the soldered
action in order to have a covariant model. To begin with,
us write both chiralities of the effective Lagrangian@15#,

L a
f52aḟf82

1

2
~a211!f821~a11!ef8~A02A1!

2
1

2
e2~A02A1!1

a

2
Am

2 , ~71a!

L a
r 5aṙr82

1

2
~a211!r821~a11!er8~A01A1!

2
1

2
e2~A01A1!1

b

2
Am

2 , ~71b!

where, in Ref.@15#, to produce a Lorentz covariant theory,a
is the solution of the equation

~a211!f82~g1a1g2!A02~g2a1g1!A150. ~72!

The parametersg1 andg2 areg15g25e (g152g25e) for
the right ~left!-handed chiral Schwinger model.
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Now, to perform an interference analysis, we have to i
pose the gauge transformations

S f

r
D→S f

r
D 1jS 1

1D ~73!

which, following the soldering mechanism, has as Noet
currents

Jf
0 5Jr

050,

Jf
1 522aḟ2~a211!f81e~a11!~A02A1!,

Jr
152aṙ2~a211!r81e~a21!~A01A1!. ~74!

Introducing the soldering fields and eliminating them
solving their equations of motion and substituting back in
the contact terms of the action, we have a final solde
action

LFINAL52
1

4
~a211!F821

a2

a211
Ḟ21

2a2e

a211
ḞA0

1eaF8A12
2ae

a211
ḞA11eF8A0

1e2F a2

a211
1

1

2
~a1b!21GA0

2

1e2F 1

a211
1

1

2
~a1b!21GA1

22
2ae2

a211
A0A1 ,

~75!

remembering thatF5f2r, as usual. We can easily see th
LFINAL does not describe a constrained system. The sol
ing procedure has broken the constraint feature of the
tem. This fact is contrary to the feature of Eqs.~71a! and
~71b!, which are constrained Lagrangians. Hence we will a
which conditionsa must obey in order to preserve the man
fest covariance and consequently the Lorentz invariance

A. Manifest covariance

To obtain the manifest covariance, it is easy to see tha
Eq. ~75! a have to satisfy the following set of equations:

1

4
~a211!5

a2

a211
, ~76a!

2a2e

a211
52a, ~76b!

2a

a211
521, ~76c!
3-9
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2
a2

a211
5

1

a211
, ~76d!

a

a211
50. ~76e!

Analyzing the solutiona50 of equation~76e! we can easily
see that it is not compatible with equations~76a!, ~76c!, and
~76d!. We can observe, for instance, that equation~76d! pre-
sents a complex solution also,a56 i . Hence, our soldered
action is not manifestly covariant at all. It is interesting
notice that the massive terms for the gauge fields of the
tions~71a! and~71b! have not influenced the final result. Th
condition to impose covariance on the gauge fields ter
i.e., a50, at the same time breaks the covariance of
action independently of the gauge field massive terms. T
result supplements the one found in@14#, where the soldering
of two massless chiral Schwinger models generates a m
sive particle.

B. Lorentz invariance

As we saw in the last section, the action~75! is not con-
strained. So, to impose conditions ona to verify if our final
~soldered! action, Eq.~75!, is Lorentz invariant through a
Lorentz rotation, we have to make a direct comparison te
by term. The first step is to rewrite the action~75! as

L5a1f821a2ḟ21a3ḟA01eaf8A11ef8A01a5A0
2

1a6A1
21a7A0A1 , ~77!

where

a152
1

4
~a211!,

a25
a2

a211
,

a352
2a2

a211
,

a452
2ea2

a211
,

a55e2F a2

a211
1

1

2
~a1b!21G ,

a65e2F 1

a211
1

1

2
~a1b!21G ,

a752
2e2a2

a211
. ~78!
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Following the Lorentz rotation procedure, we have to e
tablish the matrix relations between the old and the n
~tilde! fields through the construction of the Lorentz rotati
matrix,

S Ḟ

F8
D→S coshu sinhu

sinhu coshu D S F̃̇

F̃8
D , ~79!

and for the gauge fields components, Eq.~64!.
Finally, after these substitutions, the transformed L

grangian is

LFINAL5~a2x21a1y2!f̃̇21~a2y21a1x2!f̃82

12~a11a2!xyf̃̇f̃8

1~a3y21ey21eaxy1a4x2!f̃̇Ã01~a3x21ex2

1eaxya4y2!f̃8Ã11@eay21~a31e1a4!xy#f̃̇Ã1

1@eax21~a31e1a4!xy#f̃8Ã01~a5y21a7xy

1a6x2!Ã0
21~a5x21a7xy1a6y2!Ã1

21@~a7~y2

1x2!12~a51a6!xy#Ã0Ã1 , ~80!

wherex5sinhu andy5coshu.

We can notice the appearance of af̃̇f̃8 term. It does not
exist in the action~75!. So, it has to disappear. Then, w
must havea152a2. Hence

1

4
~a211!5

a2

a211
~81!

and the solution is

a561. ~82!

Substituting these values in Eq.~78! we can easily see tha
we cannot reproduce the action~75!. So, the relativistic in-
variance, in the soldering procedure, has been broken.
have now a case of destructive interference of relativis
invariance.

VI. CONCLUSIONS

In this work we have proposed a generalized gauged
gel model~master action!, which can represent some gaug
actions depending on the choice of the parameters. We h
promoted the fusion of two GGSM of opposite chiralitie
and obtained a soldered action. The application of this ac
to several gauged models already present in the litera
showed new results, which can never be obtained by a n
addition of the classical Lagrangians.

Using the Lorentz rotation to test the relativistic inva
ance of this master action we have fixed one of the par
eters, showing that, to keep the equivalence between the
straints in the two inertial reference systems, only one of
derivatives must be gauged. This is a new result about
3-10
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issue of the chiral bosons coupled to gauge fields.
We have used the soldering formalism also to study

action developed in Ref.@15#. In a first step of the procedure
we have developed a soldered action, which brings b
chiralities together. In order to keep the manifest covaria
of this action, we have demonstrated that it is not possibl
find the parameter such that we have a covariant the
showing a destructive interference of covariances. Inter
ingly we have found that the gauge field massive terms h
not interfered in the process. Hence we have looked fo
value that maintains the Lorentz invariance of the co
ev

s

.

ys

cl.

et
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.

ys
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straints. The result confirms the one encountered in e
chirality separately.
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