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We have studied the theory of gauged chiral bosons and proposed a general theory, a master action, that
encompasses different kinds of gauge field couplings in chiral bosonized theories with first-class chiral con-
straints. We have fused opposite chiral aspects of this master action using the soldering formalism and applied
the final action to several well-known models. The Lorentz rotation permitted us to fix conditions on the
parameters of this general theory in order to preserve the relativistic invariance. We also have established some
conditions on the arbitrary parameter concerned in a chiral Schwinger model with a generalized constraint,
investigating both covariance and Lorentz invariance. The results obtained supplement the one that shows the
soldering formalism as a new method of mass generation.
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I. INTRODUCTION was observed that starting with a chiral Schwinger model of
a given chirality it is possible to couple chiral bosons td)J
The research in chiral bosonization began many yeargauge fields in two Lorentz invariant ways, using different
back with the seminal paper of Siegdl]. Floreanini and chiral constraint$15,16. The theory proposed was shown to
Jackiw offered some different solutions to the problem of abe equivalent to a specific coupling of Siegel’s chiral bosons
single self-dual field2]. The study of chiral bosons has blos- with U(1) gauge fields which is symmetric under chirality-
somed thanks to the advances in superstring compactificatiqereserving gauge transformations.
[3] and in the construction of interesting theoretical models, In Ref. [8], Bellucci, Golterman, and Petcher introduced
such as the Thirring modé#]. They also play an important an O(N) generalization of Siegel's model for chiral bosons
role in the studies of the quantum Hall eff¢6f. The intro-  coupled to Abelian and non-Abelian gauge fields. The physi-
duction of a soliton field as a charge-creating field obeyingcal spectrum of the resulting Abelian theory is that of a
one additional equation of motion leads to a bosonizatiorimasslesschiral boson and a free massive scalar field. Ba-
rule [6]. In the course of the analysis of the chiral bosonzeia[17] showed that the Bellucat al. model is equivalent,
properties, one natural step is to couple them to Abelian andt the classical level, to the gauged FJ chiral boson found by
non-Abelian gauge fieldg7,8] in order to study the corre- Harada.
spondent anomalies, or to provide an alternative approach to In this work we have proposed a general action to de-
chiral models in two dimension§9]. Gates and Siegel scribe the gauge coupling in different chiral bosonization
showed how to construct general interacting actions for chischemes. We used the soldering formalism proposed by
ral bosons, including the supersymmetric and the nonStone[12] to fuse opposite chiralities producing a final ac-
Abelian case$10]. They used this construction to obtain the tion which was used to apply to various chiral theories with
righton-lefton interaction by carrying out the path-integralnew outcomes. We have also analyzed the problem of the
quantization in a generalized Thirring model. Other cou-Lorentz invariance of this general model. In REfL5], a
plings of the chiral bosons with supersymmetry and gravitybosonized form of the chiral Schwinger model with a gener-
can be found in Refl11]. In an alternative way, Storfd2]  alized constraint was analyzed using the Lorentz rotation to
has shown that the method of coadjoint orbit, when appliedix a general parameter. The soldering formalism permitted
to a representation of a group associated with a single affings to fix conditions on this parameter to obtain manifest co-
Kac-Moody algebra, generates an action for the chiral Wessrariance or, in another case, Lorentz invariance of this self-
Zumino-Witten(WZW) model[13], a non-Abelian generali- dual action.

zation of the Floreanini and Jacki#J model. The formal- We have organized the paper in the following way: in
ism introduced by Stone has been interpreted recently as Sec. Il we have tried to make a self-consistent review of the
new method of mass generatift¥]. soldering formalism and used the well-known Siegel's

In the context of chiral theories in two dimensions, theory as an example to clarify the interference concepts. In
Harada has show[®] how to obtain a consistent coupling of Sec. lll we have introduced a general action, a master action,
FJ chiral bosons with a (1) gauge field, starting from the which encompasses different gauged self-dual actions with
chiral Schwinger model and discarding the right-handed defirst-class constraints. The technique of soldering has been
grees of freedom by means of a projection in phase spacapplied and the final soldered action was used in several
implemented by the chiral constraint,=¢’. Later on, it models with new results. In Sec. IV we have employed the

Lorentz rotation to fix the value of the parameters in order to
guarantee the relativistic invariance of the theory. In Sec. V
*Email address: everton@feg.unesp.br the interference effect has been analyzed using the chiral
"Email address: dutra@feg.unesp.br Schwinger model with a generalized constraint. The param-
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eter dependence was placed in the light of the manifest cdull diffeomorphism group, which is not a mere sum of two
variance and of the Lorentz invariance of the soldered actiorSiegel symmetries. As we will see later, the result a&so

The conclusions are depicted in Sec. VI. be seen as a scalar field immersed in a gravitational back-
ground.
Il. REVIEW OF THE SOLDERING FORMALISM Recently, there has been a great deal of interest in solder-

ing together distinct manifestations of duality. The procedure

In this section we will follow basically Ref$18] and[19] leads to new physical results including quantum contribu-
to make a short, but at the same time self-consistent, revietions. For instance, these results provided the idea of an in-
of the method of soldering two opposite chiral versions of aterference effect. However, this “wave” interpretation is not
theory. new. Witten, in Ref[13], associated the fields depending on

The soldering formalism gives a useful bosonizationonly one chirality to left-moving or right-moving waves as
scheme for Weyl fermions, since a level one representatiobeing they® eigenstates.
of LU(N) has an interpretation as the Hilbert space for a free  One of us, with collaboratorgl4], has promoted the in-
chiral fermion[20]. However, only Weyl fermions can be terference of two chiral Schwinger models with opposite
analyzed in this way, since a 2D conformally invariant quan-chiralities. As a result a new method of mass generation was
tum field theory(QFT) has separated right and left current obtained. The Bose symmetry fixed the Jackiw-Rajaraman
algebras. In other words, it is trivial to make(faee) Dirac  parameter §=1) [22] so that in the spectrum only massless
fermion from two (free) Weyl fermions with opposite harmonic excitations have survived. The soldered action rep-
chiralities. The action is just the sum of two Weyl fermion resents a vector Schwinger model which has a massive par-
actions. It seems, however, nontrivial to get the action of theicle spectrum. This behavior characterizes a constructive in-
WZW model from two chiral boson actions of opposite terference with the arising of a mass term that is typical of
“chiralities,” because it is not the sum of the two. the right-left quantum interferend@3].?

To solve this problem, Stond 2] introduced the idea of In terms of degrees of freedom we can say that debh
soldering the two chiral scalars by introducing a nondynami+al) action contributes with “one-half” degree of freedom of
cal gauge fieltl to remove the degree of freedom that ob- opposite signals. Hence the soldered action has one degree of
structs the vector gauge invarian8]. This is connected, freedom. By the way, in Ref[25] it was shown that the
as we said above, to the necessity that one must have mogérect sum of two chiral Schwinger modgl§ SM) with op-
than the direct sum of two fermion representations of theposite chiralities is, in fact, equivalent to a sum of a vector
Kac-Moody algebra to describe a Dirac fermion. In anotherSchwinger model(VSM) and an axial Schwinger model
way we can say that the equality for the weights in the two(ASM), so, getting a different number of degrees of freedom
representations is physically connected with the necessity tflom a sum of isolated CSM.
abandon one of the two separate chiral symmetries, and ac- It was shown latel\{26] that in the soldering process of
cept that the vector gauge symmetry should be maintainedwo Siegel's[1] modes(lefton and rightoh coupled to a
This is the main motivation for the introduction of the sol- gauge field[10], this gauge field has decoupled from the
dering field which makes possible the fusion of dualities inphysical field. The final action describes a nonmover fiald
all space-time dimensions. Besides, being just an auxiliaryioton) at the classical level. The noton acquires dynamics
field, it may posteriorly be eliminated in favor of the physi- upon quantization. This field was introduced by H@¥] to
cally relevant quantities. This restriction will force the two cancel out the Siegel anomaly. It carries a representation of
independent chiral representations to belong to the sam@e full diffeomorphism group, while its chiral components
multiplet, effectively soldering them together. We will see carry the representation of the chiral diffeomorphism.
below, in a precise way, more details about the physical sig- In the 3D case, the soldering mechanism was used to
nificance of the soldering field. show the result of fusing together two topologically massive

It is worth mentioning that the soldering procedure has anodes generated by the bosonization of two massive
typical quantum-mechanical nature, with no classical anaThirring models with opposite mass signatures in the long-
logue. It makes no sense to sum two classical actions dewavelength limit. The bosonized modes, which are described
scribing opposite aspects of sonf@uality) symmetry that by self- and anti-self-dual Chern-Simons modgks,29,
depend on the same field. On the other hand, the direct sumere then soldered into the two massive modes of the 3D
of duality symmetric actions depending on different fieldsProca mode[30]. In the 4D case, the soldering mechanism
would not give anything new. It is the soldering process thaproduced an explicitly dual and covariant action as the result
leads to a new and nontrivial result. of the interference between two Schwarz-38i] actions

In Ref.[19], the authors have promoted soldering the twodisplaying opposite aspects of the electromagnetic duality
(Siege) invariant representations of opposite chiralities. The[30].
symmetry content of each theory is well described by the WotzaseK32] has obtained the field theoretical analogue
Siegel algebra, a truncate diffeomorphism, that disappears af the “quantum destructive interference” phenomenon, by
the quantum level. The resulting action is invariant under theoupling the non-Abelian chiral scalars to appropriately trun-

Yin Ref.[21], Harada proposed a physical interpretation for these The extension of this case to the four-dimensional one was per-
soldering fields. formed in Ref.[24].
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cated metric fields, known as chiral WZW models, or non- 5S. ()N +0,
Abelian Siegel modelgl3]. In fact, this effective action does
not contain either right or left movers, but can be identified 8Ss(.)=0, (4)
with the non-Abelian generalization of the bosonic non- -
mover action proposed by Hull. _ with Sg being the so-called soldered action,
In a recent worl{33], Abreu et al. analyzed the restric-
tions posed by the soldering formalism over a new regular- SB(¢>+)=S&N)(gbg+S(_N)(¢,)+contact terms, (5)

ization class that extends the classification of the regulariza-

tion ambiguity of a 2D fermionic determinant from a three- e the contact terms are generally quadratic functions of

to a four-constraint class. This analysis results from the ing, . soldering fields. Then we can immediately identify the
terference effects between right and left movers, producing fsoldering interfereﬁce term as

massive vectorial photon that constrains the regularization
parameter to this four-constraint class. In other words, the
new Faddeevian class of chiral bosons proposed by Mitra Sine= contact terms >, BMNJMN (6)
[34] has interfered constructively to produce a massive vec- N
torial mode. _ - _ o
The basic idea of the soldering procedure is to raise dncidentally, these auxiliary field8™) may be eliminated,
global Noether symmetry of the self- and anti-self-dual confor instance, through their equations of motion, from the re-
stituents into a local one, but for an effective composite syssulting effective action, in favor of the physically relevant
tem, consisting of the dual components and an interferenc@egrees of freedom. It is important to notice that after the
like an algorithm and, consequently, to define the solderedion will not depend on either self- or anti-self-dual fields
action. but only in some collective field, sa¥, defined in terms of
An iterative Noether procedure was adopted in Reg]  the original ones in @oethey invariant way,
to lift the global symmetries. Therefore assume that the sym-

metries in question are being described by the local actions Se( )= Sep(P). (7)
S.(¢7), invariant under a global multiparametric transfor-
mation Analyzing in terms of the classical degrees of freedom, it is
obvious that we have now a bigger theory. Once such effec-
Spl=ar, (1)  tive action has been established, the physical consequences

of the soldering are readily obtained by simple inspection.
where 7 represents the tensorial character of the basic field$his will progressively be clarified in the specific application
in the dual action$. and, for notational simplicity, will be to be given next.

dropped from now on. As it is well known, we can write In order to present an example, we will analyze the Siegel
. chiral actions in the light of the interference phenomefon.
0S:=J"d.a, (2)  First of all, we have to describe the light-front variables used

. in this paper as
whereJ~ are the Noether currents.
Now, under local transformations these actions will not

remain invariant, and Noether counterterms become neces- x+=i(xoix1),

sary to reestablish the invariance, along with appropriate T2

auxiliary fields BN, the so-called soldering fields which

have no dynamics. Nevertheless, we can say B¥&t is an 1

auxiliary field which makes a wider range of gauge-fixing d+=—=(dgx 1),

conditions availabld21]. In this way, theN action can be V2

written as

Si(¢+) D=8 (¢) V=5 ()N D-BMI. A== (Agt Ay, ®)

®) V2

HereJ™) are theN-iteration Noether currents. For the self- and now we can work out our example.
and anti-self-dual systems we have in mind that this iterative
gauging procedure iéintentionally) constructed not to pro- A. An example: The Siegel action

duce invariant actions for any finite number of steps. How- The original classical L ian density f hiral
ever, if afterN repetitions, the noninvariant piece ends up e original classical Lagrangian density for a chiral sca-

being only dependent on the gauging parameters, but not df}r field as introduced by Sieggl] for a left moving scalar

the original fields, there will exist the possibility of mutual (@ 'efton is [35]

cancelation if both self- and anti-self-gauged systems are put

together. Then, suppose that aftiérepetitions we arrive at

the following simultaneous conditions: SWe will follow the steps given in Ref19].
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r E)+) =0, 00_@+N,.d_@d_¢ B. The soldering procedure
1 In fact, if we construct the righton and lefton chiral boson
= E\/ggaﬁo’;a(p[yﬁq,, (9)  actions as
where the metric is given by Eéi)%\li(cp)a:@ (15)
9" "=0, g° =1, with
g =2Ni.. (10 Jo(@)=2(d-ptNrdzp), (16)

The Lagrangiar(9) is invariant under Siegel gauge sym- it is easy to verify that these models are indeed invariant
metry which is an invariance under the combined coordinatéinder Siegel's transformatiori$2) and(14), using that
transformation and a Weyl rescaling of the form

X_—X_=X_—e(Xy ,X_), . _ . o .
- €(Xs x-) It is worth mentioning at this point that Siegel's actions for

leftons and rightons can be seen as the action for a scalar

OwGap=—Gapi—€ (11  field immersed in a gravitational background whose metric is
appropriately truncated. In this sense, Siegel symmetry for
wheree™ = e*(x-). each chirality can be seen as a truncation of the reparametri-
The fieldse and A, . transform under Eq(11) as fol-  zation symmetry existing for the scalar field action. We
lows: should mention that the Noether currént defined above is

in fact the nonvanishing component of the left chiral current
J+=J(), While J_ is the nonvanishing component of the
right chiral currentJ,=J(+ y» With the left and right currents
being defined in terms of the axial and vector currents as

Sp=€ d_¢,

ONy =—0d €t €I N — Ny di€ . 12
++ + +A 4 ++0+ (12 J(L):J(A)+J(V)
m 1 Mo
In addition, Eq.(9) is invariant under the global axial trans-

formation
(R — 9(A) _ 1(V)
3, =3,"-3,". (18

==+, (13 Let us next consider the question of the vector gauge sym-
metry. We can use the iterative Noether procedure described
where we have currents associated with this axial symmetry@bove to gauge the global(l) symmetry,
It is beyond the scope of our work to write explicitly these
axial currents as well as the conserved vector current. These

Sp=q,
objects can be found in the literatufgee Ref[35], for ex- ¢
ample.
The symmetry(12) describes a lefton. This is the main oNy =0, (19

difference between a leftoririghton) and a left-moving ) )
(right-moving FJ particle. The first is provided with symme- Possessed by Siegel's mod@). Under the action of the
try and dynamics, while the second is responsible only fodroup of transformation€l9), written now as a local param-
the dynamics of the theory. We can also say that the leftof§ter, the actiort9) changes as
(or righton carries the anomaly of the systé@b] (the well-
known Siegel anomaly since it is relative to the symmetry oL =0_ad, (20)
of the theory.

Similarly, one can gauge the semilocal affine symmetry with the Noether curreni, =J_ (¢) being given as in Eq.

(16). To cancel out this piece, we introduce the soldering

So=e"d, ¢ field B_ coupled to the Noether current, redefining the origi-
' nal Siegel's Lagrangian density as
ON__=—0 €' +e I N__—N__d,€ (14) L5 —cP=c{P+B 3, (22)

to obtain the righton. Next we will promote the fusion of the where the variation of the gauge field is defined conveniently
righton and the lefton obtaining the final soldered action. as
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B_=—-4_a. (22) a similar expression foD.p, andE=d,B_—9J_B,. In
form (29), L1071 is manifestly gauge invariant.
As the variation of£ {*) does not vanish up to total deriva-  After solving the equations of motion for the soldering
tives, we introduce a further modification as fields we can write

1
£S_+)_>£(2+):£g_+)+)\++82_ (23) ‘CQZE /_ggaﬁo-)aq)é,ﬁq), (30)

whose variation gives
where in the above expression we have introduced the metric

5C4=2B 4, a. (24) tensor density
This piece cannot be canceled by a Noether counterterm, so \/—_gg” _ _4)‘++
that a gauge invariant action fgrandB_ does not exist, at A

least with the introduction of only one gauge field. We ob-
serve, however, that this action has the virtue of having a N
variation dependent only oB_ and «, and not ong. Ex- \/—_gg++= _4T’
pression(24) is a reflection of the standard anonfatiat is
intimately connected with the chiral properties @f 5
Now, if the same gauging procedure is followed for a ot _ <
Siegel boson of opposite chirality, say V-ag A A ko),

(31
ﬁE)_):a+P‘9—P+)\——‘9+Pa+P: (29
whereA=2(\, ;A__—1) and
subject to
5 D= (p—¢) @2
p=a, =—(p—o).
N [
ON__=0
We observe that in two dimensions-gg®? needs only
SB,=—0d.a, (26)  two parameters to be defined in a proper way. As it should

be, detl/—gg*?)=—1. We also note that, because of con-
then one finds that the sum of the right and left gaugedormal invariance, we cannot determigg; itself. We could
actions£ ")+ £$7) can be made gauge invariant if a contacttherefore think ofCor as an effective theory, which repre-
term of the form sents a scalar bosch in a gravitational background. It can
be shown[19] that the action(30) can be made invariant
Lc=2B.B_ (27)  under the full group of diffeomorphism. Hence we can easily
o _ see that, in terms of symmetry, the new theory is bigger than
is introduced. One can check that indeed the completghe old one. This new theory can be interpreted as a construc-
gauged Lagrangian tive interference of symmetries. However, solving the equa-
tions of motion for the multipliers, we can see that, in fact,
L1o1=04+¢d- @+ N1 1d-@d_@+ 3 pd_p+N__dipdip this field has no dynamics. This characterizes a nonmover
+B+J_(p)+B_J+(<p)+)\__Bi+)\++Bz_ field,_ a noton, introduced by_Hul]27] to cancel out the
gravitational anomaly of the Siegel model.
+2B_B. (28)

. . . .. . Ill. THE MASTER ACTION
with J.. defined in Eq.16) above, is invariant under the set

of transformation$19), (22), and(26). For completeness, we In this section we will propose a master action which
note that Lagrangiaf28) can also be written in the form represents, as a function of arbitrary parameters, several
theories for the Siegel gauged model. In the second part we

Lror=Di¢D_@+A, D _¢D_¢+D.pD_p have accomplished the soldering of opposite chiral versions

of this master action and applied the final result, i.e., the

TA__D.pDp+(e=p)E, (29 soldered action, on several models for the self-dual theory to
ake an interference analysis of the covariance of the new

up to total derivatives. In the above expression, we hav .
heories.

introduced the covariant derivatives. ¢=4d. ¢+B.., with

A. The generalized gauged Siegel model

“The soldering analysis of the anomaly has been depicted in Ref. Let us now construct a class of generalized actions for
[37]. Abelian chiral bosons coupled to a gauge field for each
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chirality, i.e., for the coupled leftons({ ) and rightons £g). SL{"k=—B56B.—\..06BZ. (39

We will call it the generalized gauged Siegel model

(GGSM): Let us define the variation @.. as

L= (0. p+aAL)(9-¢FaA )+ A, (9 pFagA ), OB =0xar (40
(333

and we see that the variation ﬁt‘f}e does not depend either

LO=(0,p+biA)(d_p+bA_)+N__(d.p+bsA,)? on ¢ or p. Hence, as explained in the last section, we can
(33h  construct the fina(soldered Lagrangian as

wherea; ,b; (i=1,2,3) are parameters that define the theory L=L &Lg
studied andA . are th_e vector flelpl cpmponents. We will see :E(Ll)jLL:(Rl)JFZBH_DLJr)\HBzJL)\"Bz+
below that making simple substitutions of these parameters
we can obtain several gauged forms of the Siegel theory that = (g, ¢p+a,;A,)(d_dp+a,A_)+ N, (I_p+azA_)?
appear in the literature. It is important to observe the differ- 5
ence between the vector fields. above and the soldering +(0:ptbiA)(d_ptboA)+A_ (9 pt+DbsAy)
fields B.. of Egs.(29). The A fields are externafor back- B JA\—B J“+2B.B._+ 2 2

- ) e - - _+A BE+N__BL, (41
ground fields and hence one does not consider the variation L A * AR * (41)

(and extrempof the actions under the variations of these\yhich remains invariant under the combined transformations

fields. The last are the auxiliary fields, as mentioned abovgas) and(39). Following the steps of the algorithm depicted
which help in the soldering process and will be naturallyjn the |ast section, we have to eliminate the soldering fields

eliminated by solving their equations of motion. ~ solving their equations of motion which results in
Following the steps of the soldering formalism studied in -
the last section, we can start considering the variation of the N WA
i | Ba=—g0 (42
Lagrangians under the usual transformations, 2(1—\)
d¢p=bp=a and O6A,=d,a, (34 whereh=\, \__ andJ*=J,+J. .
Substituting it back in Eq41) we have the final soldered

whereu= +,—. Now, consider that this symmetry is a glo-
bal one with, obviously, a global parameterso that the
above transformations take the form

action

1 1
£=5=99""3,09,®+ T—{(a1+b\ ~2\b3)d_DA,
d¢p=0p=a and OA,=0. (35
Remember that the soldering process consists in lifting the T (2083~ 8k —by) 0, DA
gauging of a global symmetry to its local version. Hence we +N,(2ag—a,—by)d_PA_
will consider from now on the transformatio(35) as local. )
Let us continue with the procedure writing only the main ~ tA--(21+b1—=2b3)d PA, +CiN AT

steps of the procedure. 2
+ +
In terms of the Noether currents we can construct CoaA--AL+CALAL (43)

©) _ where the new compound fields are defineddas ¢—p.
OL L R=I4,p0uct, (36) The new parameters are
where 1

C1=a§—b2a3+ Z(a2+ b2)2,

Jy=aA_,

_ 2 1 2

J;=20, p+aiAc+20, (d_p+azAl), Co=b3—bsa,+ ;(a;+by)%,

Jy=bA_, 1 1 1
C}\: E_)\ a1a2+ 5_)\ blbz_z(alb2+blaz)

J, =20 pt+bA_+2N__(d,p+bsA,). (37

+[(aztbz)bz+(a;+by)az—2azbs]h —azash
The next iteration, as seen above, can be performed introduc-

ing auxiliary fields, the so-called soldering fields —bibsh__ (44)
and the metric is
LEk=L%B,,, (38)
. . 1 1 2N 1+
and one can easily see that the gauge variation of the GGSM —J=ggtt=—— 4
s V799 T 14n 2ns “3
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which reminds us of the gravitational feature of the soldered a,=b;=2, a;=b,=0, az=bs=1. (49
action of the two Siegel modes. We can note that the action

(43) is covariant. Hence, in this case, we have that the cova- The soldered action is, using E@3),

riance of the generalized gauged Siegel action is maintained.

This general action form will allow us to apply it to the 1

various gauged theories for the chiral boson with second- [’TOT:_\/__ggMV‘?;Lq)&V(D_ZAfAer (50)
order constraint. This will be accomplished next. 2

confirming the result in Ref.26]. We can note that the co-
variance has not been broken.

In this section we will analyze five kinds of theories inthe  The physical meaning of E450) can be appreciated by
light of the soldering formalism. The first of them is the eliminating the multipliers and using the symmetry induced
well-known Siegel’s actiofl], studied in Sec. Il. It has been by the solderingd32], showing that it represents the action
used to demonstrate the validity of the general soldered ador the noton. In fact, Eq(50) is basically the action pro-
tion (43). The second example, which is also not a new refposed by Hull[27] as a candidate for canceling the Siegel
sult, will be a coupling of the chiral boson with a gauge field. anomaly. This field carries a representation of the full diffeo-
We are talking, in this case, about the Gates and Siegehorphism group[27] while its chiral (Siege) component
gauged actiofil0]. The new results will appear with the next carries the representation of the chiral diffeomorphism. Ob-
three models. We will use three models well known in theserve the complete disappearance of the dynamical sector
literature: the one derivative gauged model, the masslesdue to the destructive interference between the leftons and
Bellucci, Golterman, and Petcher model, and the Frishmathe rightons. This happens because we have introduced only

B. The self-dual models

and Sonnenschein model. one soldering field to deal with both the dynamics and the
symmetry. To recover dynamics we need to separate these
1. Siegel's model sectors and solder them independently, as stressed in Ref.

It is easy to see that to obtain the expresgi@nwe have [26].

to fix the parameters with the following values: S
3. One derivative gauged model

This gauged form was introduced in REE5], where only

3=bi=0, (46) one kind of derivative was gauged,

wherei=1,2,3. Hence substituting these values in the ex-
pression(43) it follows that LE=(0,p+2eA)(I_P)+ N, (d_)?

1 L2 =(d_p+2eA ) (drp)+N__(d.p)2
Lror= A1+ h s A )3 D3, D+, (7 D) op=(9-p NOeprehdep

+N_ (9. D)%} Hence immediately we have the correspondence with Egs.
(339 and(33b) through the choice

1
= E \! —gg#”a#q)ay([), (47)
a2:a3:O, b1=b3=O, a1=b2=28 (52)

where \/—gg**, from now on, is written as in Eq45).

This action represents, naively, a scalar field immersed in gnd
gravitational background. However, as we have stressed in
Sec. I, this expression also represents the noton action. 1
‘CTOTZE\/__ggMVé’,U,(D(?Vq)
2. Gates and Siegel's model

Gates and Siegdl10] have studied the interactions of n 1 —2e(d DA, — 9. DA
leftons and rightons with external vector fields including the l—k[ &(9-PAL—9,+PA-)
supersymmetric and the non-Abelian cases. The soldering of
this model has been obtained already in R26], but as a —28(A 4+ d-PA_—N__0,PA,)

further test for our GGSM, let us write +e2(N,  AZ4N__A2-2A.A)]. (53

LE=(0_p+2A )01 )TNy (I_Pp+A_)2, In this case we can note that the decoupling of the vector
fields has not occurred.
The final action is explicitly covariant, showing that the
LE=(dipt 2A)(d_p)+N__(d.p+A,)% (49 soldering procedure did not provide the break of covariance.
We can classify this case as constructive interference of co-
and the correspondence with E339 is direct, variances, since Eq$51) are covariant also.
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4. The gauged massless Bellucci, Golterman, and Petcher model

The form of this gauged chiral boson action is

LEcp=(0,b)(0_p+eA )+N, (0 _¢+eA )?

EEGP:((979)(‘7+P+eA+)+)\——((9+P+eA+)2.
(54)

hence
a1=b2=0, a2:a3:b1:b3:e (55)

and the final action reads

1 1
L:TOTZE‘ [ — ggHV[Q#CI)(?V(D + m e)\((?Jrq)A, - @,®A+)

+eN,, d_PA_—en__(1+N)d . DPA,

5
+ Zez()\++A%+)\,,Ai)

5 ; (56)

1
—e2<——)\++—)\)A+A

it is easy to see that last two terms break the covariance.

PHYSICAL REVIEW D64 025023

The generalized gauged Siegel model, as we already
know, is

Losv= (040t KAL) (I_dp+kA)
A4 (0_PptkzA)2 (60)

The canonical momentum conjugateddas

1 1
Ty=¢'+ Ekl(Ao+A1) + E(kz_ k3)(Ap—A1)

1 1
= ¢'+ S(kitka— 2kg) Aot 5 (Ky— ko + 2kg) Ay,
(61)

and this is the generalized chiral constraint.

Using the first-order formalism of Faddeev and Jackiw
with this momentum, we can construct a first-order Lagrang-
ian density,

. A2 AZ
Logsw= ¢’ = ¢'?+— (kikoy—k3) = —(Kakp+k3)

AS :
+ 5 [k ko= 2kg) (ki — ko~ 2k3) ']

Hence in this case we have clearly a destructive interference

of covariances.

5. The Frishman and Sonnenschein model

The chiral actions developed in R¢85] are
LE=(0:)(0-$) TN (I-$)2+ 0. pA_—0 @A,

LEs=(d_p)(dsp)+N__(d4p)°+3I_pA,—d,pA_,
(57)
and identifying the parameters
a;=b,=—-1, a,=b;=1, az=b3=0, (58)
we can construct the soldered action as

1 1-2\
Ltot= 5\/— 99"79, P9, P+ e "9, PA,+ ——AA_,

1-\
(59)

wheree™ " =1.

A2 :
+ 5 [(ky =Ko+ 2ka) (kKo + 2ka) ']

(62

which is a constrained one. To verify the Lorentz invariance
we have to note if the constraints are preserved from one
inertial reference system to the other. To do this we have to
apply the Lorentz rotation on the generalized chiral con-
straint. Constructing the rotation matrices as

- coshe sinhe\ [ =
e - (63
1) sinhg  coshe/\ %’
and
A coshe sinhe)\ [ A
RN 20, (64)
A sinhg  coshe/\ A,

and we have relations between the old fields and the new

Now we have a constructive interference of covariance(tilde) fields. Writing Eq.(61) in a convenient way,

since the soldered action is explicitly covariant.

IV. THE LORENTZ INVARIANCE ANALYSIS

G G

Let us now fix conditions over the parameters in order towhereC, =k, +k,— 2k; andC,=k; —k,+ 2ks.

respect a Lorentz invariance. In other words, we mean that After a little algebra, where we have provided the substi-
we will fix conditions such that the constraints valid in one tution of Egs.(63) and (64) in Eq. (65), we can write

inertial reference system are valid in the other one. To do
this, we will perform the Lorentz rotatiofiL5]. This will be
done in the corresponding FJ version of the GGSM proposed
above.

C, coshep+ C, sinhe=C,(coshe —sinhg),
C; sinhg+ C, coshp=C,(coshp—sinhg).  (66)
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Solving this system we can say that the generalized chiral Now, to perform an interference analysis, we have to im-

constraints are Lorentz invariant, if pose the gauge transformations
C,=-Cs. (67) ¢ 10 1
— +& 1 (73
In other words, we can say that with this solution the con- p p
straint is independent of the reference system. which, following the soldering mechanism, has as Noether

Solving Eq.(67) we have that currents

k,=0. (68) 39=1%=0,
With this result, we conclude that we can only gauge terms

with the same light-cone variables, i.e., 1 .
J5=—2a¢p—(a®+1)¢' +e(a+1)(Ag—Ay),

£=(¢9+¢)((9,¢+kZA,)+)\++(§,¢+k3A,)2, (69 . )

J=2ap—(a®+1)p'+e(a—1)(Ag+A,). 74

which corroborates the results for the gauging of the FJ p=2ap=(a P (a=1)(AotAy) (74

model. _ _ o Introducing the soldering fields and eliminating them by
At this point it is interesting to remark that, in the original solving their equations of motion and substituting back into

proposal of this method for verifying the relativistic invari- the contact terms of the action, we have a final soldered

ance using the Lorentz rotati¢h5,16, it was supposed that gction

the invariance should be imposed, and this had led to some
2

criticisms[36]. Now we can see that in this approach, in fact, 1 a? . 24% .
there is no need adid hocimpositions. Lenal=— 7 (a?+ 1)@ 24+ —— D2+ ——DA,
4 a+1 a‘+1
V. THE CHIRAL SCHWINGER MODEL 2ae .
WITH GENERALIZED CONSTRAINT tead® ' Ay———PA; +ed’Ag
a+1
In Ref. [15], the Lorentz rotation technique was used in
the bosonized form of the chiral Schwinger model with a ) a? 1 ’
generalized constraint e —+5(atb)—1/Ag
a‘+1
Q=m,—ad’ (70) 1 2a€?
¢ +ed 5+ 5(ath)— 1| A~ A,

imposed on the first-order Lagrangian to determinate condi- a“+1 a“+1

tions ona such that we have a Lorentz invariant final theory. (75)
Now we will disclose the conditions oa in the soldered

action in order to have a covariant model. To begin with, letremembering tha® = ¢— p, as usual. We can easily see that
us write both chiralities of the effective Lagrangifib], LeinaL does not describe a constrained system. The solder-
ing procedure has broken the constraint feature of the sys-
tem. This fact is contrary to the feature of Eqgla and
(71b), which are constrained Lagrangians. Hence we will ask
which conditionsa must obey in order to preserve the mani-

. 1
Li=—add'—5(a*+1)¢ *+(at1)ed (A=A

1 a i i i
B EeZ(AO_A1)+ §A;2u (713 fest covariance and consequently the Lorentz invariance.
A. Manifest covariance
LP=app — E(a2+ 1)p'2+(a+1)ep’ (Ag+A,) To obtain the manifest covariance, it is easy to see that in
2 Eq. (75 « have to satisfy the following set of equations:
1 b
— —€%(Ag+A))+ A2 1 2
5€% (Aot A+ AL, (71 ~(a?+1)= , (763
4 a’+1
where, in Ref[15], to produce a Lorentz covariant theory,
is the solution of the equation 2a%e
= a (76b)
) ’ a‘+1
(a*+1)¢"' = (g1a+gz)Ag— (Ga+g1)A;=0. (72
The parameterg; andg, areg;=g,=¢€ (g,=—g,=¢€) for 2a =—1, (760
the right(left)-handed chiral Schwinger model. a’+1
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o2 1 Following the Lorentz rotation procedure, we have to es-
-, (76d  tablish the matrix relations between the old and the new
a*+l o°+1 (tilde) fields through the construction of the Lorentz rotation

matrix,
a j—
21 =0. (768 d coshd sinhéd\ [ &
—| . , (79
P’ sinhé coshé/\ G-

Analyzing the solutiore=0 of equation(76e we can easily

see that it is not compatible with equatiof¥a), (760, and  gnd for the gauge fields components, E&g.

(76d. We can observe, for instance, that equatioéd pre- Finally, after these substitutions, the transformed La-
sents a complex solution alsa=*+i. Hence, our soldered grangian is

action is not manifestly covariant at all. It is interesting to
notice that the massive terms for the gauge fields of the acp
tions (718 and(71b) have not influenced the final result. The
condition to impose covariance on the gauge fields terms,
i.e., a=0, at the same time breaks the covariance of the
action independently of the gauge field massive terms. This
result supplements the one found i#], where the soldering

of two massless chiral Schwinger models generates a mas-
sive particle.

FINAL= (82X° + alyz);bz"' (agy?+a;x?)¢’?
+2(ayt+a)xydd’
+(agy2+ e Y2+ eaxy+ ax2) phg+ (agx?+ ext
+eaxyay?) d' A +[eay?+(ag+e+ay)xyl A,

+[eax?+ (az+e+a,)xyld' Ayt (asy?+asxy
B. Lorentz invariance

. . o +agx?) A2+ (asx2+ a xy+agy?) A2+ [ (a(y?2
As we saw in the last section, the actit#®) is not con- XAt (3s Y +agy )ALt L@y

strained. So, to impose conditions anto verify if our final +x2)+2(ag+ag) Xy AgA, , (80)
(soldered action, Eq.(75), is Lorentz invariant through a
Lorentz rotation, we have to make a direct comparison ternyherex=sinhg andy=coshé.

by term. The first step is to rewrite the acti6rb) as We can notice the appearance o@&’ term. It does not

exist in the action(75). So, it has to disappear. Then, we

L=a,¢"%+a,d’+a, A+ ead’ A, +ed’ Ag+aA’
14 20"+ azpAotead’Arted Agtashg must havea, = —a,. Hence

+agA2+asApA;, (77) ) .
(a2 =
where gD P (82)
1 . .
a=— Z(a2+ 1), and the solution is
a==*1. (82
2
a,= @ Substituting these values in E(/.8) we can easily see that
a’+1’ we cannot reproduce the action5). So, the relativistic in-
variance, in the soldering procedure, has been broken. We
242 have now a case of destructive interference of relativistic
ag=————, invariance.
a‘+1
VI. CONCLUSIONS
2ea? ) ) )
a,=— In this work we have proposed a generalized gauged Sie-

2 ! . .
a’+1 gel model(master actiop which can represent some gauged
actions depending on the choice of the parameters. We have

2 promoted the fusion of two GGSM of opposite chiralities

la?+1

o 1
ag=e’ +§(a+b)—1l,

and obtained a soldered action. The application of this action
to several gauged models already present in the literature
showed new results, which can never be obtained by a naive

2 1 addition of the classical Lagrangians.
ag=e’| — +—-(a+b)—1{, : . o .
a’+1 2 Using the Lorentz rotation to test the relativistic invari-
) ance of this master action we have fixed one of the param-
2 o eters, showing that, to keep the equivalence between the con-
2e‘w ; . . .
a;=— . (78)  straints in the two inertial reference systems, only one of the
a?+1 derivatives must be gauged. This is a new result about the
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issue of the chiral bosons coupled to gauge fields. straints. The result confirms the one encountered in each
We have used the soldering formalism also to study thehirality separately.

action developed in Ref15]. In a first step of the procedure,

we hgye developed a soldered action, Wh!Ch brlngs'both ACKNOWLEDGMENTS
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