Structure of a novel class II phospholipase D: Catalytic cleft is modified by a disulphide bridge

Priscila Oliveira de Giuseppe a,1, Anwar Ullah b,1, Dilza Trevisan Silva c, Luiza Helena Gremski c, Ana Carolina Martins Wille c,d, Daniele Chaves Moreira c, Andrea Senff Ribeiro c, Olga Meiri Chaim c, Mario Tyago Murakami a, Silvio Sanches Veiga c, Raghuvir Krishnaswamy Arni b,*

a Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, 13083-970 SP, Brazil
b Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto, 15054-000 SP, Brazil
c Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, 80060-000 PR, Brazil
d Centro de Inovação Biomolecular, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil

A R T I C L E I N F O
Article history:
Received 22 April 2011
Available online 17 May 2011

Keywords:
Loxosceles spider venom
Phospholipase D
Crystal structure

A B S T R A C T
Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7 Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophillus, PDB code: 1V06), indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Envenomation by brown spiders (Loxosceles spp.) leads to a strong local dermonecrotic effect (cutaneous loxoscelism) and systemic manifestations, whose symptoms include hematuria, hemoglobinuria, jaundice and fever [1–3]. Although, the systemic loxoscelism occurs in a minority of cases, it can be fatal, especially in children [1–3].

Phospholipases D (PLD) are considered the main components responsible for the local and systemic effects of Loxosceles venom including dermonecrosis, renal toxicity and hemolysis [4–9]. Loxosceles PLDs (30–35 kDa), also referred to as dermonecrotic toxins (SMases D) due to their ability to convert sphingomyelin to choline and ceramide 1-phosphate (N-acylsphingosine1-phosphate) [4]. As some Loxosceles PLDs have broad substrate specificity, being able to hydrolyze not only sphingophospholipids but also lysoglycerophospholipids, they are now classified as phospholipases D [10–12].

PLDs can be grouped into two classes based on sequence, structural and biochemical data [13]. The class I, represented by PLD I from Loxosceles laeta, is characterized by the presence of a single disulphide bridge (Cys51–Cys57) and an extended hydrophobic loop (variable loop). Class II comprises PLDs that contain an additional intra-chain disulphide bridge linking the flexible loop and the catalytic loop. Depending on their ability to hydrolyze sphingomyelin, they are further subdivided into classes IIa (more active) and IIb (less active or inactive), respectively [13].

Despite the clinical importance of these enzymes in loxoscelism, to date, only the PLD I from L. laeta, a class I member, had been structurally characterized [14]. Based on its crystal structure, an acid-base catalytic mechanism was proposed, where His12 and His47 play key roles and are supported by a network of hydrogen bonds between Asp34, Asp52, Trp230, Asp233, and Asn252 [14]. However, the vast majority of Loxosceles PLDs belongs to the class II, and none of their three-dimensional structures have been determined. A representative member of class II PLD is the dermonecrotic toxin isoform I from Loxosceles intermedia [11]. The recombinant protein

* Corresponding author.
E-mail address: arni@ibilce.unesp.br (R.K. Arni).
1 Both authors have contributed equally to this work.

0006-291X/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.bbrc.2011.05.053
(LiRecDT1) is able to hydrolyze sphingomyelin and presents dermonecrotic and hemolytic activities, characteristics of the whole venom [10,11,15,16]. Moreover, LiRecDT1 is able to directly induce renal injuries in mice and its nephrotoxic effects are dependent on its catalytic activity [11]. It has also been demonstrated that LiRecDT1 released choline from endothelial and kidney cell membrane extracts and bound to various lipids, such as sphingomyelin, lysophosphatidylcholine and cholesterol [12].

This work presents the first crystal structure of a Loxosceles venom class II PLD, the dermonecrotic toxin isoform 1 from L. intermedia. A comparison of the three-dimensional structures of class I and II PLDs, indicates the effect of an additional disulfide bridge which links the surface loops on the volume and shape of the catalytic cleft. Sequence and structural analyses suggest that the reduced or absent sphingomyelinase activity of some class IIb PLDs [15,17,18] is probably due to mutations of amino acid residues affecting substrate affinity or protein stability, since all catalytically-relevant residues are fully conserved. Moreover, the mutations observed at the catalytic pocket of these proteins are the same encountered in the active PLD 2 from L. laeta [19].

2. Materials and methods

2.1. Expression and purification

Mature dermonecrotic toxin isoform 1 from L. intermedia (LiRecDT1) was cloned into a pET-14b vector (Novagen, Madison, USA) and expressed in Escherichia coli BL21(DE3)pLysS cells (Invitrogen) as described previously [20]. Expression was induced by the addition of 0.05 mM IPTG (isopropyl-β-D-thiogalactoside) during 3.5 h at 303 K after the cell culture had reached an OD550 of 0.5. Cell suspension was disrupted by six 10 s-cycles of sonication. Lysed material was centrifuged (20,000 g, 20 min) and the supernatant was incubated with 1 ml Ni2+-NTA agarose beads for 1 h at 277 K. The suspensions were loaded onto a column and the packed gel was washed with 50 mM sodium phosphate pH 8.0, 500 mM NaCl, 20 mM imidazole. The recombinant protein was eluted with 10 ml of the above buffer which additionally contained 250 mM imidazole and 1 ml fractions were collected and analyzed by 12.5% SDS–PAGE. Fractions were pooled and dialyzed against phosphate buffer saline (PBS).

2.2. Crystallization

The LiRecDT1 protein was crystallized by vapor diffusion in sitting drops using a Cartesian HoneyBee 963 system (Genomic Solutions) at 291 K as described in earlier [20]. Optimal crystals were observed in drops containing 2 μl of the protein solution (17 mg ml−1) and 2 μl of the reservoir solution equilibrated over 1 ml of reservoir solution (0.1 M Tris–HCl pH 7.5, 40% (v/v) PEG200).

2.3. Data collection and processing

LiRecDT1 crystals were directly flash-cooled in a 100 K nitrogen-gas stream. X-ray diffraction data were collected on the W01B-MX2 beamline at the Brazilian Synchrotron Light Laboratory (Campinas, Brazil) as described in earlier [20]. The data were indexed, integrated and scaled using the DENZO and SCALEPACK programs from the HKL-2000 package [21]. Data collection and refinement statistics are summarized in Table 1.

2.4. Structure solution and refinement

The initial structural model of LiRecDT1 was determined by molecular-replacement using the program MOLREP [22] and the atomic coordinates of PLD 1 from L. laeta as the template (PDB code 1XX1; [14]). Model refinement was carried out alternating cycles of REFMACS [23] with visual inspection of the electron density maps and manual rebuilding with COOT [24]. A total of 278 residues were modeled, comprising LiRecDT1 residues from Gly2 to C176. The atomic coordinates of LiRecDT1 (PDB code: 3RLH) was used as the initial model to obtain three-dimensional models of LiRecDT3 from L. intermedia (ABB7184.1) and Lb3 from L. boneti (AAI166074.1), using the modeling option of the Swiss–Model server [28]. For energy minimization, the final models were submitted under explicit solvent molecular dynamics (MD) simulations using YASARA until the convergence of root mean square deviation (r.m.s.d.) (Fig. S1). The overall and local quality analysis of the final model was assessed by ProSA-web [29] and Molprobity [26]. The model was refined with Z-scores within the range typically observed for native proteins of similar size.

2.5. Molecular modeling and quality analysis

The atomic coordinates of LiRecDT1 (PDB code: 3RLH) was used as the initial model to obtain three-dimensional models of LiRecDT3 from L. intermedia (ABB7184.1) and Lb3 from L. boneti (AAI166074.1), using the modeling option of the Swiss–Model server [28]. For energy minimization, the final models were submitted under explicit solvent molecular dynamics (MD) simulations using YASARA until the convergence of root mean square deviation (r.m.s.d.) (Fig. S1). The overall and local quality analysis of the final model was assessed by ProSA-web [29] and Molprobity [26]. More than 99% of the residues of both models are in the favored region of the Ramachandran plot. ProSA-web analyses indicated that the referred models present Z-scores within the range typically observed for native proteins of similar size.
3. Results and discussion

3.1. Overall structure

LiRecDT1 is a single domain protein which folds into a TIM (α/β)_{8}-barrel with the insertion of additional β-strands and α-helices (Fig. 1). FastSCOP [30] analysis indicates that this class II PLD belongs to the phospholipase C (PLC) like phosphodiesterases superfamily, suggesting that PLDs share a common ancestor with PLC like domains encountered in mammalian phospholipase C isozyme D1 [30], bacterial phosphatidylinositol-specific phospholipase C [31] and glycerophosphodiester phosphodiesterases [32].

The catalytic (blue), variable (green), flexible (red) and other short loops surround the active site cleft (Fig. 1). The catalytic loop, which contains the catalytically important residue, His47, forms a hairpin due to the presence of a disulphide bridge (Cys51–Cys57). A network of hydrogen bonds ensures the correct relative orientation of the hairpin in relation to the core of the protein.

3.2. Structural comparison between class I and II phospholipases D

LiRecDT1 superimposes on the class I PLD from L. laeta (SMase I) (PDB code: 1XX1; [19]) with a r.m.s. deviation of 0.938 Å for 268 atoms and a sequence identity of 61.6 %. The main conformational changes are observed at the flexible and variable loops (Fig. 1). LiRecDT1 possesses a disulphide bridge between Cys53 and Cys201, which causes a large displacement of the flexible loop towards the catalytic loop (Fig. 1). This disulphide bridge is well conserved in class II PLDs, but absent in class I PLD due to the mutation C201F (Fig. 2).

Regarding the variable loop, a five-residue insertion (YLPSL), which protrudes from the core structure of class I PLD, is absent in the class II PLD (Figs 1 and 2). Moreover, the three last residues that compose the variable loop are not conserved between class I and class II PLDs (Fig. 2). The mean B-factors for the main-chain atoms of the variable loops are 26.39 Å² and 15.86 Å² for class I (PDB code: 1XX1, chain A) and class II respectively, indicating that the class I variable loop is significantly more flexible than that of class II.

In the class II PLD, the flexible loop is displaced towards the catalytic loop and partially occludes an electronegative cleft that leads to the active site in the class I PLD (Fig. 3). This results in a volumetric reduction of the cavity that forms the catalytic site of the class II PLD. Based on SURFNET analysis [33], the volume and average depth of the cleft observed at the class I PLD catalytic face are 4339.4 Å³ and 15.2 Å, respectively. These values are considerably larger than those estimated for the corresponding cavity at the class II PLD (volume 1468.1 Å³, average depth 10.1 Å). Besides the lack of the disulfide bridge connecting the catalytic and flexible loops, the protrusion of variable loop and the substitution N137G also account for the enlargement of the cleft surrounding the catalytic site of the class I PLD (Fig. 3).

A large electronegative patch, which includes the variable loop, is observed surrounding the right side of the class II PLD catalytic pocket. However, in the class I PLD, this patch is interrupted by the longer variable loop that forms a protrusion with neutral potential (Fig. 3). Interestingly, an electronegative cleft, hidden by the neutral catalytic and flexible loops in the class II PLD, is exposed in the class I PLD, due to the absence of a disulfide bridge connecting these loops. Thus, in the class I PLD the impairment in the electronegative potential of a patch at the right side of the catalytic pocket seems to be compensated by the exposure of another electronegative patch on the left side.

Together, these differences observed in the topography and electrostatic potential distribution of class I and II PLDs catalytic faces suggest that these enzymes might have different ways to guide the substrate into the catalytic pocket.

3.3. Active site

The Mg²⁺ binding site and the two catalytic histidine residues (His12 and His47), which compose the active-site pocket are strictly conserved in both classes of spider venom PLDs (Fig. 2). Interestingly, at the active site of LiRecDT1, the difference Fourier map contained residual density. However, neither substrates nor products could account for this density. This residual density was modeled as two PEG molecules with partial occupancy.

In the LiRecDT1 structure, the Mg²⁺ ion (B factor of 14.26 Å² and a mean Mg–O bond distance of 2.1 Å) is hexacoordinated by the carboxyl oxygens of Glu32, Asp34, Asp91, one water molecule and two PEG4 oxygens. The same geometric coordination is observed for the Mg²⁺ ion in class I PLD structure bound to a sulfate ion [13]. As pointed out earlier, Loxosceles PLDs and glycerophosphodiester phosphodiesterases (GDPDs) share a similar divalent metal dependent catalytic mechanism and probably evolved from a common ancestor [14]. In spite of their different specificities, structural comparisons of the PLD and GDPD active sites suggest that they share not only residues involved in metal binding and catalysis but also in substrate binding such as Lys93 and Trp230 (Fig. 4A). Murakami et al. have suggested a role for Lys93 and Trp230 in the orientation of the substrate in both spider and bacterial PLDs [14]. Structural analysis indicates that the Lys residue might interact with the phosphate moiety of GDPDs substrates. Moreover, since the mutation K121A greatly reduces the enzymatic activity of the Thermomonosporaceae tengcongensis GDPD, suggesting that this Lys residue affects catalysis via electronic
interaction with the phosphate moiety of the substrate [34]. A similar role might be attributed to the corresponding Lys residue in spider PLDs.

Trp230, strategically located at the bottom of the active site, adopts different rotamer conformations depending on the presence of ligands (Fig. 4B and C). The equivalent in the GDPD from Thermus thermophilus is Trp192 (PDB code: 1VD6). In the presence of PEG (PDB code: 3RLH) or glycerol (PDB code: 1VD6) molecules, Trp230(192) forms one of the walls of the active site pocket, freeing space for ligand binding. The presence of a sulfate ion in the active site of class I PLD (PDB code: 1XX1) induces another conformation of Trp230 by the formation of a hydrogen bond between the NE1 nitrogen of Trp230 and the sulfate O1 atom. Contrastingly, in the ligand free form of class I PLD (PDB code: 2F9R), the Trp230 ring adopts a third conformation in which the torsion angle χ_2 changes by -90° in relation to the Trp230 conformation in presence of PEG or glycerol. These findings suggest that Trp230 motions might play a pivotal role in substrate binding in both Loxosceles venom PLDs and bacterial GDPDs.

3.4. Functional diversification in spider venom PLDs

The spider venom PLDs encompass a gene family with multiple orthologs and paralogs, which differ in catalytic efficiency, substrate specificity or intensity of biological effects [7,10,11,15–19,35,36]. A structure-based classification segregates these enzymes into two major groups as mentioned in the introduction. This classification is in agreement with recent phylogenetic analysis of a large set of Sicariid spider venom PLDs, which grouped members of different classes into distinct branches belonging to
two major clades (α and β). Clade α includes class I and IIa PLDs whereas clade β includes class IIb PLDs [36].

In an attempt to understand the structural determinants for the functional divergence of β clade members with reduced sphingomyelinase activity [15], we analyzed mutations exclusively observed in these enzymes (Fig. 2). Three of these mutations (S30G, T33L, F90M), are observed at the protein hydrophobic core and prediction of protein stability by the PoPMuSiC program [37] suggests that the substitutions S30G and F90M may have a destabilizing effect. The other substitutions are sparsely distributed on the LiRecDT1 surface relatively far from the catalytic pocket. Considering the long aliphatic tail of sphingomyelin, changes in the charge distribution and surface shape of the catalytic face induced by some of these mutations may affect the protein–lipid interaction and, consequently, their substrate affinity.

This analysis of the active site pockets in the structures of the class I, the class II and the modeled structure of LB3 did not provide a clear explanation for the reduced or absent sphingomyelinase activity of LiRecDT3 and LB3. These proteins conserve the Mg2+-binding site residues along with Lys93, Tyr228, Trp230 and the two catalytic histidine residues (His12 and His47) (Fig. 2 and Fig. S2). Moreover, the substitutions observed at their catalytic site are the same encountered in the active Li2 enzyme. This suggests that LiRecDT3, LiRecDT5 and LB3 may not be devoid of catalytic activity but might possess affinity to other substrates. This hypothesis is supported by the fact that some spider venom PLDs demonstrate broad substrate selectivity [13–15].

Acknowledgments

This work was supported by grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Secretaria de Estado de Ciência, Tecnologia e Ensino Superior (SETEI) do Paraná, Fundação Araucária-PR, CNPq and CAPES, Brazil.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbrc.2011.05.053.

References

