Effect of Usnic Acid on Candida orthopsilosis and C. parapsilosis

Regina Helena Pires, Rodrigo Lucarini and Maria Jose Soares Mendes-Giannini

Published Ahead of Print 17 October 2011.

Updated information and services can be found at:
http://aac.asm.org/content/56/1/595

These include:
This article cites 22 articles, 8 of which can be accessed free at:
http://aac.asm.org/content/56/1/595#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Effect of Usnic Acid on Candida orthopsilosis and C. parapsilosis

Regina Helena Pires, Rodrigo Lucarini, and Maria Jose Soares Mendes-Giannini
Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil and Universidade de Franca, Franca, SP, Brazil

The activity of usnic acid against Candida orthopsilosis and Candida parapsilosis on planktonic and biofilm conditions was investigated by using a broth microdilution and microplate methods. Potent in vitro activities against different Candida species were obtained. The metabolic activity of sessile cells of C. parapsilosis complex was reduced by 80% at four times the 80% inhibitory concentration. The in vitro studies support further efforts to determine whether usnic acid can be used clinically to cure patients with Candida infections.

Among the Candida strains reported to cause human diseases, more than 17 different species have been identified (9, 19). Many of these species have been observed to occur in the hemodialysis setting and/or to exhibit innate or acquired resistance to one or more established antifungal agents (4, 12, 13, 16, 21). In addition, the use of molecular identification methods has resulted in the identification of new species within larger species complex such as Candida orthopsilosis and Candida metapsilosis within the Candida parapsilosis complex (23). In particular, the percentage of isolates of C. orthopsilosis has been much higher in the C. parapsilosis complex isolates in Latin America (12.7%) (11).

The small number of drugs available for fungal treatment encourages the search for new chemotherapeutic agents. Usnic acid (2,6-diacetyl-1,2,3,9b-tetrahydro-7,9-dihydroxy-8,9b-di-methylidibenzofuran-1,3-dione), a secondary lichen metabolite, is known to possess antimicrobial properties in addition to anti-inflammatory, anti-proliferative, antiviral, antiprotozoal, and analgesic activity (10).

With respect to antimicrobial properties, usnic acid has activity against a number of planktonic Gram-positive bacteria and also has the capacity to control biofilm formation by analgesic activity (10). Usnic acid isopropanol (5% [vol/vol] 1 M HCl in isopropanol). Finally, the yeast cells were washed once with PBS and resuspended in 200 μl prewarmed MTT solution (0.5 mg/ml) in PBS containing 0.1% glucose and 10 ml of the material in each well of the microtiter plate reader (ASYS, Eugendorf, Salzburg, Austria). The BEC50 and BEC80 for each well on a 96-well microtiter plate was determined with 100 μl of RPMI 1640 containing 106 cells of an overnight culture. After 24 h of incubation at 37°C, the biofilms were washed three times with sterile phosphate-buffered saline (PBS) (10 mM potassium phosphate, 0.15 M NaCl [pH 7.0]). The biofilms were exposed to 100 μl of antimicrobial agent, and the plates were incubated for 48 h at 37°C, after which the usnic acid was removed by washing each well twice with 100 μl PBS. Fungal viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (Sigma) as described previously (17). Briefly, 200 μl prewarmed MTT solution (0.5 mg/ml) in PBS containing 0.1% glucose and 10 μl of 10 μM menadione was added to each well. The plates were incubated at 37°C for 30 min, and the MTT solution was removed. The yeast cells were washed once with PBS and resuspended in acid isopropanol (5% [vol/vol] 1 M HCl in isopropanol). Finally, the absorbance at 540 nm (A540) was measured using a microtiter plate reader (ASYS, Eugendorf, Salzburg, Austria). The BEC50 and BEC80 for Candida biofilms were defined as the lowest drug concentration with a 50% and 80% reduction, respectively, in the metabolic activity of sessile cells of C. parapsilosis complex was reduced by 80% at four times the 80% inhibitory concentration. The in vitro studies support further efforts to determine whether usnic acid can be used clinically to cure patients with Candida infections.

Received 21 July 2011 Returned for modification 27 August 2011 Accepted 11 October 2011
Published ahead of print 17 October 2011
Address correspondence to Regina Helena Pires, rehepi@gmail.com.
Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/AAC.05348-11
metabolic activity of the biofilms compared to controls (drug free). The minimum biofilm fungicidal concentration (MBFIC) was defined as the concentration with A_{440} values below or equal to the background level (acid isopropanol). The antimicrobial activity of 5% (vol/vol) DMSO was also studied on a separate plate alongside the assay plate. *C. albicans* SC5314 was used as the biofilm control strain (20, 22). All experiments were performed in triplicate on three different days.

As shown in Table 1, usnic acid exhibited an anti-*Candida* effect, with IC$_{50}$ of 1.95 μg/ml and IC$_{80}$ of 7.8 and 15.6 μg/ml. Reduction of 50% in the metabolic activities of biofilms of both *C. parapsilosis* strains (BECA$_{50}$) was achieved at a concentration of 3.9 μg/ml. 31.2 and 62.5 μg/ml reduced the growth of the cells in 80% (BECA$_{80}$) (Table 1). In contrast, the MBFICs of usnic acid were comparable to the MFCs estimated at 125 and 250 for *C. parapsilosis* and *C. parapsilosis*, respectively (Table 1). For these environmental isolates, *C. orthopsilosis* was more susceptible to usnic acid than the *C. parapsilosis*. The MIC values for the reference strain that was used as a positive control for amphotericin B were within the established values for the CLSI M27-A3 protocol. DMSO (5% [vol/vol]), which was used as a cosolvent in the drug suspensions, did not show antifungal activity against *C. parapsilosis* complex grown in suspension or as a biofilm.

Based on the existing literature, usnic acid seems to be produced only in lichens and appears to be effective against a wide variety of bacterial strains, and the antifungal properties previously reported by Cardarelli et al. (3) were confirmed by the result of this study. Because of their antimicrobial activity, usnic acid has been the target of many studies for the purpose of developing phytotherapeutic options for treatment of infections (14). According to Francolini et al. (8), there was no evidence of a toxic effect of usnic acid in pharmacokinetics studies and after oral administration.

According to the values of EC$_{50}$, EC$_{80}$, BEC$_{50}$, and BEC$_{80}$ obtained for the isolates of *C. orthopsilosis* and *C. parapsilosis*, usnic acid demonstrated potent inhibitory activity against both planktonic and biofilm cells (Table 1). Furthermore, Yilmaz et al. (24) showed that usnic acid with quite low MIC values (0.15 μg per disk) was effective against 107 cells/ml of *Candida albicans* or *Candida glabrata*. Similarly, lower MICs (ranging from 1 to 26 μg/ml) determined by the disk diffusion method have been observed against *Bacillus subtilis* (18). One factor that may explain our results include the absence of standardized antifungal assays for natural products. Results can be profoundly influenced by the testing method (7). Previous studies have shown that antifungal activity can be more effectively evaluated in liquid media than in solid media, since in the latter, the diffusion of drug may not be appropriate (1).

The results presented in this study are the first report of usnic acid showing in vitro inhibitory and fungicidal activity against environmental isolates of *C. orthopsilosis* and *C. parapsilosis*. Considering also the absence of cytotoxicity and low concentrations obtained, usnic acid represents a promising area of future research. The mechanisms of its antifungal activity should be studied in order to validate the use of usnic acid as a natural antifungal product.

REFERENCES

TABLE 1 Activities of usnic acid against *C. orthopsilosis* and *C. parapsilosis* isolates

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Planktonic growth</th>
<th>Biofilm growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC$_{50}$</td>
<td>IC$_{80}$</td>
</tr>
<tr>
<td>C. orthopsilosis</td>
<td>1.95</td>
<td>7.8</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>1.95</td>
<td>15.6</td>
</tr>
</tbody>
</table>

IC$_{50}$ and IC$_{80}$ concentration required for 50% and 80% inhibition in cell growth compared with the untreated controls, respectively; MFC, minimal fungicidal concentration; BEC$_{50}$ and BEC$_{80}$, 50% and 80% reduction in the metabolic activity of the biofilms compared to untreated controls, respectively; MBFC, minimum biofilm fungicidal concentration.
method for the formation of fungal biofilms and its application to anti-fungal susceptibility testing. Nat. Protoc. 3:1494–1500.

