Effectiveness of Disinfectants Used in Hemodialysis against both Candida orthopsilosis and C. parapsilosis Sensu Stricto Biofilms

Regina Helena Pires, Julhiany de Fátima da Silva, Carlos Henrique Gomes Martins, Ana Marisa Fusco Almeida, Christiane Pienna Soares and Maria José Soares Mendes-Giannini

Published Ahead of Print 11 March 2013.

Updated information and services can be found at: http://aac.asm.org/content/57/5/2417

These include:

REFERENCES
This article cites 32 articles, 7 of which can be accessed free at: http://aac.asm.org/content/57/5/2417#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Effectiveness of Disinfectants Used in Hemodialysis against both
Candida orthopsilosis and C. parapsilosis Sensu Stricto Biofilms

Regina Helena Pires,¹ Julhianny de Fátima da Silva,¹ Carlos Henrique Gomes Martins,² Ana Marisa Fusco Almeida,¹
Christiane Pienna Soares,¹ Maria José Soares Mendes-Giannini ²

Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista—UNESP, Araraquara, São Paulo, Brazil;² Laboratório de Pesquisa em
Microbiologia Aplicada, Universidade de Franca, Franca, São Paulo, Brazil

Biofilms have been observed in the fluid pathways of hemodialysis machines. The impacts of four biocides used for the disinfection of hemodialysis systems were tested against Candida parapsilosis sensu stricto and Candida orthopsilosis biofilms generated by isolates obtained from a hydraulic circuit that were collected in a hemodialysis unit. Acetic acid was shown to be the most effective agent against Candida biofilms. Strategies for effective disinfection procedures used for hemodialysis systems should also seek to kill and inhibit biofilms.

The water treatment system is a matter of major concern in hemodialysis, and reports have described its contamination by biofilms (1, 2). For disinfection, active chemical agents (biocides) have been introduced into routine practice (3). Hemodialyzers are disinfected with peracetic acid, and hemodialysis systems (which include hemodialysis machines, the water supply, water treatment systems, and distribution systems) are typically disinfected using chlorine-based disinfectants at an aqueous concentration of 500 ppm (3–5). Low-pH cleaning agents have also been used as disinfectants (4), and 3% hydrogen peroxide (vol/vol) may be used to treat biofilms on implants, on the implant-surrounding tissue, on the skin surface, or on infected wounds without devices (6).

In South American hospitals, the incidence of Candida parapsilosis is greater than that of Candida albicans (7, 8), and previous results from our laboratory (9–11) have shown that C. parapsilosis is predominantly implicated in the contamination of water samples collected at a hemodialysis center. Recently, C. parapsilosis isolates were classified into three distinct species: C. parapsilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis (12).

Although the nephrology community has been provided with information about the effects of disinfectants on microbial suspensions (3–5, 13, 14), few studies have evaluated the efficacy of disinfection in the presence of biofilms, particularly fungal biofilms. Therefore, the biocidal efficacy of the commercially available concentrations of biocides used for the disinfection of hemodialysis systems was evaluated against both C. parapsilosis sensu stricto and C. orthopsilosis biofilms. Additionally, the effects of concentration on the time required for effective treatment were compared between the more efficacious biocides and the standard established by legislation.

One hundred C. parapsilosis isolates were obtained from the sampling of water held in the hemodialysis unit studied (disinfection with a 30-min exposure to sodium hypochlorite at 500 ppm on a daily basis) located in the state of São Paulo, Brazil, between March 2006 and March 2007. The identities of the yeast isolates were determined by using a PCR-based method (12, 15) and specific primers directed against the secondary alcohol dehydrogenase (SADH) gene; 53 were assigned to the species C. parapsilosis sensu stricto, and 47 to C. orthopsilosis. The strains were stored in sterile, distilled water (16) in our laboratory. Fifteen strains each of two Candida species, namely, C. parapsilosis sensu stricto (WCP3, WCP4, WCP6, WCP8, WCP10, WCP14, WCP16, WCP17, WCP24, WCP82, WCP83, WCP87, WCP88, WCP104, WCP108) and C. orthopsilosis (WCO33, WCO45, WCO53, WCO54, WCO55, WCO125, WCO139, WCO147, WCO154, HMCOB, HMCOQ, HMCOQ1, HMCOQ2, HMCOQ3, HMCOQ4, HMCOU), were selected for this study. All Candida strains were subcultured on Sabouraud’s dextrose agar (SDA; Gibco Ltd., Paisley, United Kingdom) and maintained at 4°C during the experimental period.

Acetic acid (C₃H₄O₂; 0.5% [vol/vol]; Merck, Darmstadt, Germany), hydrogen peroxide (H₂O₂; 3% [vol/vol]; Synth, SP, Brazil), sodium hypochlorite (NaOCl; 2% [wt/vol]; Merck), and a commercial biocide made of peracetic acid and hydrogen peroxide (CH₃CO₂H and H₂O₂; 1.34% [vol/vol] and 4.2% [wt/vol]; Proxitan; Fresenius Medical Care, Bad Homburg, Germany) were tested against Candida biofilms. All of the biocide stock solutions were diluted in filter-sterilized phosphate-buffered saline (PBS; 10 mM phosphate buffer, 2.7 mM potassium chloride, 137 mM sodium chloride, pH 7.4; Sigma Chemical Co., St. Louis, MO), followed by further dilution in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with l-glutamine and buffered with 0.165 M morpholinepropanesulfonic acid (MOPS; Sigma) at concentrations ranging from 0.002 to 2.7 g/liter for acetic acid, 0.01 to 15 g/liter for hydrogen peroxide, 0.02 to 20 g/liter for sodium hypochlorite, 0.006 to 6.7 g/liter for peracetic acid, and 0.02 to 21 g/liter for hydrogen peroxide.

All of the studied strains were screened for their ability to form biofilms by following the methodology previously described by Ramage et al. (17), and semiquantitative measurement of the growth biofilms was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT; Sigma) reduction assay (18–21) at 540 nm. C. albicans SC5314 was used as the biofilm control strain (22, 23).
The experiments were divided into three sets of experiments: (i) inhibition of biofilm formation, (ii) treatment of preformed biofilms with all biocides for 48 h of incubation, (iii) time-kill curves for more active biocides on established Candida biofilms (24 h old). For each group of the assays, five strains of C. orthopsilosis, five strains of Candida parapsilosis sensu stricto, and the strain C. albicans SC 5314 were used. For the inhibition assays, the biocides were added at the time of inoculation. For the treatment assays, the biocides were diluted in RPMI and added to established biofilms (24 h). Microtiter wells containing heat-killed Candida (10^6 CFU/ml) were included as negative controls, and biofilms incubated in the absence of biocides were included as positive controls (24). After the desired contact times (0.5 min, 1 min, 5 min, 15 min, 30 min, 60 min, and 48 h), the test product was discarded, and the wells were washed twice with PBS. The use of a neutralizer was unnecessary; preliminary studies showed no differences between wells with and without neutralizer (data not shown). After each exposure to a biocide, the percentage of the metabolically active total cell population was determined by CFU enumeration on Sabouraud dextrose agar (Difco Laboratories, Detroit, MI) incubated at 30°C for 48 h. A standard curve was constructed to correlate the results obtained from the MTT assay with the calculated CFU/ml (limit of detection, 10 CFU/ml), and the data were expressed as the decimal logarithm. No change in optical density over the negative control was equal to ≤10 CFU/ml and was defined as the lowest concentration of biocide which resulted in total inhibition or in total killing of sessile cells. The experiments were repeated three times with at least four replicates for each time point.

The groups were compared using a t test and a one-way analysis of variance (ANOVA), followed by the post hoc Tukey test when all of the disinfectants were compared with the standard following 30 min of incubation. Logistic regression analyses were used to investigate relationships between MTT assay absorbance readings and the total viable count using the SPSS 15.0 software package (SPSS Inc., Chicago, IL). All tests were performed using a significance level of P values of ≤0.05.

Overall, biofilm production by Candida was observed for 34 of C. parapsilosis sensu stricto strains and 38 of C. orthopsilosis strains. MTT activity was linearly associated with CFU counts, and the correlation coefficients (R^2) were 0.8831, 0.9045, and 0.9178 for C. parapsilosis sensu stricto, C. orthopsilosis, and the reference strain C. albicans SC 5314, respectively. Strains for which the optical density was of 2.84 ± 0.059 and 2.3 ± 0.094 for C. orthopsilosis and C. parapsilosis sensu stricto, respectively, were scored as better biofilm formers and were selected for antibiofilm assays. Candida biofilms were exposed to the biocides. After the biofilms were treated with NaOCl, C2H4O2, or CH3COOOH and H2O2, the results were similar for all the tested species (Table 1). After the desired contact times (0.5 min, 1 min, 5 min, 15 min, 30 min, 60 min, and 48 h), the test product was discarded, and the wells were washed twice with PBS. The use of a neutralizer was unnecessary; preliminary studies showed no differences between wells with and without neutralizer (data not shown). After each exposure to a biocide, the percentage of the metabolically active total cell population was determined by CFU enumeration on Sabouraud dextrose agar (Difco Laboratories, Detroit, MI) incubated at 30°C for 48 h. A standard curve was constructed to correlate the results obtained from the MTT assay with the calculated CFU/ml (limit of detection, 10 CFU/ml), and the data were expressed as the decimal logarithm. No change in optical density over the negative control was equal to ≤10 CFU/ml and was defined as the lowest concentration of biocide which resulted in total inhibition or in total killing of sessile cells. The experiments were repeated three times with at least four replicates for each time point.

The groups were compared using a t test and a one-way analysis of variance (ANOVA), followed by the post hoc Tukey test when all of the disinfectants were compared with the standard following 30 min of incubation. Logistic regression analyses were used to investigate relationships between MTT assay absorbance readings and the total viable count using the SPSS 15.0 software package (SPSS Inc., Chicago, IL). All tests were performed using a significance level of P values of ≤0.05.

Overall, biofilm production by Candida was observed for 34 of C. parapsilosis sensu stricto strains and 38 of C. orthopsilosis strains. MTT activity was linearly associated with CFU counts, and the correlation coefficients (R^2) were 0.8831, 0.9045, and 0.9178 for C. parapsilosis sensu stricto, C. orthopsilosis, and the reference strain C. albicans SC 5314, respectively. Strains for which the optical density was of 2.84 ± 0.059 and 2.3 ± 0.094 for C. orthopsilosis and C. parapsilosis sensu stricto, respectively, were scored as better biofilm formers and were selected for antibiofilm assays. Candida biofilms were exposed to the biocides. After the biofilms were treated with NaOCl, C2H4O2, or CH3COOOH and H2O2, the results were similar for all the tested species (Table 1). After the desired contact times (0.5 min, 1 min, 5 min, 15 min, 30 min, 60 min, and 48 h), the test product was discarded, and the wells were washed twice with PBS. The use of a neutralizer was unnecessary; preliminary studies showed no differences between wells with and without neutralizer (data not shown). After each exposure to a biocide, the percentage of the metabolically active total cell population was determined by CFU enumeration on Sabouraud dextrose agar (Difco Laboratories, Detroit, MI) incubated at 30°C for 48 h. A standard curve was constructed to correlate the results obtained from the MTT assay with the calculated CFU/ml (limit of detection, 10 CFU/ml), and the data were expressed as the decimal logarithm. No change in optical density over the negative control was equal to ≤10 CFU/ml and was defined as the lowest concentration of biocide which resulted in total inhibition or in total killing of sessile cells. The experiments were repeated three times with at least four replicates for each time point.

The results obtained from the MTT assay correlated with the total viable count (CFU/ml). The values are means ± 1 standard deviation (SD) from four experiments for each disinfectant. The experiments were repeated three times with at least four replicates at each time point.

Table 1 The in vitro efficacy of biocides against Candida orthopsilosis and C. parapsilosis sensu stricto biofilms

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Compound</th>
<th>Range(s) of concn (g/liter) tested</th>
<th>Concn required to kill biofilm cells in treatment assays (g/l)^bc</th>
<th>Concn required to inhibit biofilm formation (g/l)^ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. orthopsilosis</td>
<td>NaOCl</td>
<td>0.02–20</td>
<td>2.5 ± 1.36</td>
<td>1.25 ± 0.68</td>
</tr>
<tr>
<td></td>
<td>H2O2</td>
<td>0.01–15</td>
<td>3.75 ± 1.02</td>
<td>0.93 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>C2H4O2</td>
<td>0.002–2.7</td>
<td>0.33 ± 0.07</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>CH3COOOH and H2O2</td>
<td>0.006–6.7 and 0.02–21</td>
<td>0.83 ± 0.18 and 2.6 ± 0.58</td>
<td>0.21 ± 0.09 and 0.6 ± 0.22</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>NaOCl</td>
<td>0.02–20</td>
<td>2.5 ± 0.66</td>
<td>2.5 ± 0.55</td>
</tr>
<tr>
<td>sensu stricto</td>
<td>H2O2</td>
<td>0.01–15</td>
<td>1.87 ± 0.51</td>
<td>0.47 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>C2H4O2</td>
<td>0.002–2.7</td>
<td>0.33</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>CH3COOOH and H2O2</td>
<td>0.006–6.7 and 0.02–21</td>
<td>0.83 ± 0.29 and 2.6 ± 0.93</td>
<td>0.41 ± 0.18 and 0.3 ± 0.13</td>
</tr>
<tr>
<td>C. albicans</td>
<td>NaOCl</td>
<td>0.02–20</td>
<td>2.5 ± 0.55</td>
<td>2.5 ± 1.11</td>
</tr>
<tr>
<td>(SC 5314)</td>
<td>H2O2</td>
<td>0.01–15</td>
<td>1.87 ± 0.42</td>
<td>0.47 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>C2H4O2</td>
<td>0.002–2.7</td>
<td>0.33 ± 0.09</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>CH3COOOH and H2O2</td>
<td>0.006–6.7 and 0.02–21</td>
<td>0.83 ± 0.23 and 2.6 ± 0.71</td>
<td>0.21 ± 0.04 and 0.6 ± 0.16</td>
</tr>
</tbody>
</table>

NaOCl, sodium hypochlorite; H2O2, hydrogen peroxide; C2H4O2, acetic acid; CH3COOOH and H2O2, peracetic acid and hydrogen peroxide (Proximate).

The inoculum used for the inhibition assays was identical to the cell density used for the treatment assays (10^6 cells/ml). The concentrations obtained from the optical density at 540 nm (MTT assay) correlated with the total viable count (CFU/ml). The values are means ± 1 standard deviation (SD) from four experiments for each disinfectant. The experiments were repeated three times with at least four replicates at each time point.

Strains: C. orthopsilosis, WCO33, WCO45, WCO52, WCO53, WCO125; C. parapsilosis sensu stricto, WCP3, WCP4, WCP6, WCP8, WCP16.

Strains: C. orthopsilosis, HCMCO, HMCQO, HMCQO1, HMCOR, HMCOU; C. parapsilosis sensu stricto, WCP83, WCP87, WCP88, WCP104, WCP108.
biofilms and inhibited biofilm formation by C. parapsilosis sensu stricto and C. albicans SC 5314. For C. orthopsilosis, the concentration of 1.25 g/liter of NaOCl inhibited biofilm formation (Table 1). The tested concentrations are extremely corrosive, irritate mucosal surfaces, and are higher than those recommended by previous legislation (4, 5) for the disinfection of hemodialysis systems (500 ppm; 0.5 g/liter). However, these guidelines are not adequate for sessile microorganisms.

A previous work (25) focusing on microbial contamination in water treated for use in dialysis reported that the impact of treatment with hypochlorite on the water quality was negative due to detachment of the biofilm and resuspension of heavy loads of microorganisms in water immediately after disinfection. Roeder et al. (26), who investigated the effect of disinfectants against biofilms in drinking water, described that intervention eventually selects persistent microorganisms that can live on the waste of dead cells present in the biofilm. Limited disinfection efficacy against biofilm attached to a granular activated carbon filter has been demonstrated by LeChevallier et al. (27). Additionally, Norman et al. (28) have provided evidence that a 165-μm-thick biofilm chlorinated at 2.0 or 4.1 g/day rapidly returned to its original thickness as soon as the treatment was discontinued.

dida biofilms and inhibited biofilm formation by C. parapsilosis sensu stricto and C. albicans SC 5314. For C. orthopsilosis, the concentration of 1.25 g/liter of NaOCl inhibited biofilm formation (Table 1). The tested concentrations are extremely corrosive, irritate mucosal surfaces, and are higher than those recommended by previous legislation (4, 5) for the disinfection of hemodialysis systems (500 ppm; 0.5 g/liter). However, these guidelines are not adequate for sessile microorganisms.

A previous work (25) focusing on microbial contamination in water treated for use in dialysis reported that the impact of treatment with hypochlorite on the water quality was negative due to detachment of the biofilm and resuspension of heavy loads of microorganisms in water immediately after disinfection. Roeder et al. (26), who investigated the effect of disinfectants against biofilms in drinking water, described that intervention eventually selects persistent microorganisms that can live on the waste of dead cells present in the biofilm. Limited disinfection efficacy against biofilm attached to a granular activated carbon filter has been demonstrated by LeChevallier et al. (27). Additionally, Norman et al. (28) have provided evidence that a 165-μm-thick biofilm chlorinated at 2.0 or 4.1 g/day rapidly returned to its original thickness as soon as the treatment was discontinued.

Peracetic acid and hydrogen peroxide also suppressed biofilm formation, and the former inhibited Candida orthopsilosis and C. albicans biofilm formation at concentrations below 0.3%. This combination of disinfectants has been successfully employed in Brazil (29) to reprocess dialyzers from the same patients. The effectiveness of the mixture of these biocides against bacterial biofilms in water treatment systems has also been described in the literature (26, 30, 31). However, in addition to being very expensive, the combination of hydrogen peroxide and peracetic acid can damage the hemodialysis hydraulic system.
Therefore, in an attempt to identify more economical and less harmful products, two compounds, hydrogen peroxide and acetic acid, were tested against Candida biofilms. In this work, H2O2 at concentrations below 3% (Table 1) effectively inhibited biofilm growth and killed the biofilm populations, with the exception of C. orthopsilosis (3.75 g/liter). Nett et al. (32) reported that a higher concentration of H2O2 was needed to reduce the C. parapsilosis biofilm burden. Additionally, H2O2 efficacy in water system disinfection has been described by Wong et al. (33).

Acid sanitizers are generally utilized at a concentration of 100 ppm or 0.1 g/liter (4). In this study, acetic acid proved to be a better antibiofilm agent against all of the assayed strains, a result similar to that obtained for biofilms consisting of Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp. (34–36).

Since no method presently exists that detects biofilm in vivo with sufficient sensitivity to confirm its eradication, efforts in optimizing the cleaning and disinfection procedures used for hemodialysis systems should also seek to achieve biofilm, especially fungal biofilms. As demonstrated by this study, the standard current biocide (sodium hypochlorite, 500 ppm or 0.5 g/liter) failed to destroy the Candida biofilms tested. Our results showed that hydrogen peroxide or acetic acid may be alternatives, because they are more efficient than sodium hypochlorite. Further studies are needed to determine whether these agents can also be effective against additional Candida species. Ensuring water quality results in reduced patient morbidity and number of hospitalizations and improved quality of life.

ACKNOWLEDGMENTS

This work was supported by grants from the Scientific Development Support Program of Faculdade de Ciências Farmacêuticas at UNESP (PADC/FCF-Ar-Unesp proc. 2009/54), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and FAPESP (2012/01270-9).

REFERENCES