

GERALDO CAMILO DE SOUZA PINTO

Eficácia da Terapia Fotodinâmica Antimicrobiana em biofilmes de *Staphylococcus aureus* suscetível e resistente à meticilina

Araraquara

2013

GERALDO CAMILO DE SOUZA PINTO

Eficácia da Terapia Fotodinâmica Antimicrobiana em biofilmes de *Staphylococcus aureus* suscetível e resistente à meticilina

Dissertação apresentada ao Programa de Pós-graduação em Reabilitação Oral – área de Prótese, da Faculdade de Odontologia de Araraquara, da Universidade Estadual Paulista, para obtenção do título de Mestre em Reabilitação Oral.

Orientadora: Prof^a. Dr^a. Ana Cláudia Pavarina

Araraquara

2013

Pinto, Geraldo Camilo de Souza

Eficácia da terapia fotodinâmica antimicrobiana em biofilmes de Staphylococcus aureus suscetível e resistente à meticilina / Geraldo Camilo de Souza Pinto. – Araraquara: [s.n.], 2013.

120 f.; 30 cm.

Dissertação (Mestrado) – Universidade Estadual Paulista, Faculdade de Odontologia

Orientadora: Profa. Dra. Ana Cláudia Pavarina

1. Staphylococcus aureus resistente à meticilina 2. Biofilmes 3. Fotoquimioterapia I. Título

Ficha catalográfica elaborada pela Bibliotecária Marley C. Chiusoli Montagnoli, CRB-8/5646

Serviço Técnico de Biblioteca e Documentação da Faculdade de Odontologia de Araraquara / UNESP

GERALDO CAMILO DE SOUZA PINTO

Eficácia da Terapia Fotodinâmica Antimicrobiana em biofilmes de *Staphylococcus aureus* suscetível e resistente à meticilina

DISSERTAÇÃO PARA OBTENÇÃO DO GRAU DE MESTRE

Presidente e Orientador: Prof^a. Dr^a. Ana Cláudia Pavarina
1º Examinador: Prof^a. Dr^a. Eunice Teresinha Giampaolo
2º Examinador: Prof^a. Dr^a. Ana Paula Dias Ribeiro

Araraquara, 15 de Março de 2013

DADOS CURRICULARES

Geraldo Camilo de Souza Pinto

NASCIMENTO	17 de Julho de 1985 – Tietê – SP	
FILIAÇÃO	Geraldo Benedito Teixeira Pinto	
	Zeni de Souza Pinto	
2006/2010	Graduação em Odontologia, Faculdade de Odontologia de Araraquara – UNESP	
2008/2008	Monitoria na disciplina de Radiologia Odontológica I, bolsista, Faculdade de Odontologia de Araraquara	
2009/2010	Monitoria na disciplina de Prótese Parcial Removível I, bolsista, Faculdade de Odontologia de Araraquara	
2009/2010	Iniciação Científica, disciplina de Radiologia Odontológica, Faculdade de Odontologia de Araraquara	
2009/2010	Iniciação Científica, disciplina de Prótese Parcial Removível, bolsista CNPq, Faculdade de Odontologia de Araraquara	
2011/2012	Estágio Docência na disciplina de Prótese Parcial Removível I e II, Faculdade de Odontologia de Araraquara – UNESP	
2011/2013	Pós-graduação em Reabilitação Oral, área de concentração: Prótese – nível Mestrado, bolsista CNPq, Faculdade de Odontologia de Araraquara – UNESP	

Dedicatória

A **Deus** pela força de seguir procurando o equilíbrio e a superação. Por iluminar-me e despertar em mim o desejo de ser uma pessoa melhor. I t's gonna be allright!

Aos meus amados pais, **Zeni** e **Geraldo**, meu muito obrigado por tudo!!! Sempre me apoiaram e, com esforço e dignidade, deram condições necessárias para que eu fosse adiante. Em especial, a minha mãe que com a força e raça batalhou para atingir todos os objetivos. Exemplos de caráter, sabedoria e perseverança, das quais me orgulho.

As minhas amadas irmãs **Cátia** e **Carla**, primeira amizade e ponte com a infância. A minha sobrinha **Malu**, renovação da vida.

Ao sempre presente e companheiro **Fábio**, por poder contar com você.

A gradecimentos

A minha orientadora Prof^a. Dr^a. **Ana Cláudia Pavarina** por seu esforço e atenção. Por acreditar no potencial, por seus ensinamentos e palavras que me proporcionaram a oportunidade de crescimento.

Aos Professores da disciplina de Prótese Parcial Removível, Prof^a. Dr^a. Ana Lúcia, Prof^a. Dr^a. Eunice, Prof. Dr. Vergani e Prof^a. Dr^a. Janaína, pelos ensinamentos e contribuição para a minha formação.

A amiga e Prof^a. Dr^a **Ana Paula**, por estar sempre presente em todas as etapas da confecção desse trabalho, mesmo distante geograficamente.

Aos **Docentes** do curso de Pós-Graduação em **Reabililitação Oral** que, de alguma forma contribuíram para o meu crescimento e formação.

Aos colegas da Pós-Graduação, Beatriz Panariello, Carol Brito, Chaiene, Fer Alves, Cristiane e Juliana, pela convivência harmônica ao decorrer do Mestrado.

A gradecimentos

A **Diretoria** e **Funcionários** da Faculdade de Odontologia de Araraquara, em especial, aos do Departamento de Materiaias Odontológicos e Prótese.

A Secção de Pós-Gradução, pela presteza e eficiência dos serviços prestados durante todo o curso.

Às técnicas de laboratório de Microbiologia Aplicada, Érica e Raíssa, pela ajuda e apoio durante a realização desse trabalho.

Ao *CNPq*, pelo auxílio financeiro (bolsa) que propiciaram o bom andamento desta pesquisa.

Enfim, agradeço a **Todos** que ajudaram direta ou indiretamente para a realização deste trabalho.

Muito obrigado!!!

" Não existe um caminho para a felicidade. A felicidade é o caminho..."

Mahatma Gandhi

Pinto GCS. Eficácia da terapia fotodinâmica antimicrobiana em biofilmes de *Staphylococcus aureus* suscetível e resistente à meticilina [Dissertação de Mestrado]. Araraquara: Faculdade de Odontologia da UNESP; 2013.

RESUMO

A necessidade de superar o desafio criado pelos biofilmes resistentes aos tratamentos antimicrobianos convencionais tem levado à busca por tratamentos alternativos, como terapia fotodinâmica antimicrobiana (aPDT). Este estudo avaliou in vitro a eficácia da aPDT na inativação de biofilmes de Staphylococcus aureus suscetíveis e resistentes à meticilina (MRSA e MSSA), mediado pelos fotossensibilizadores (PSs) Curcumina (Cur) e Photodithazine[®] (PDZ). Biofilmes foram formados e tratados com diferentes concentrações de Cur (0, 20, 40 e 80 µM) e PDZ (0, 50 e 75 mg/L), e iluminados ou não por fonte de luz LED (Cur $455 \pm 3 \text{ nm}/5,28 \text{ J/cm}^2$; PDZ $660 \pm 3 \text{ nm}/5,28 \text{ J/cm}^2$ ou 50 J/cm²). Os grupos Controle Positivo (CP) não receberam nenhum PS e também não foram iluminados. A viabilidade dos micro-organismos após a aPDT foi avaliado pelo número de colônias viáveis, pelo ensaio de XTT e pela utilização do kit LIVE/DEAD® na Microscopia Confocal de Varredura à Laser (MCVL). Os resultados foram avaliados por análises de variância de dois fatores de efeitos fixos (ANOVA) e complementados por comparações múltiplas de médias pelo teste de Tukey. Para ambas as cepas, todas as concentrações de Cur e PDZ testadas reduziram significativamente a atividade metabólica e o UFC/mL para ambos microorganismos quando comparado com os grupos CN (p<0,05). Os resultados foram otimizados para a Cur quando utilizou-se a maior concentração (80 µM), para a PDZ, a maior redução nos micro-organismos foi observada quando associou-se a maior concentração de PDZ (75 mg/L) com a maior dose de luz (50 J/cm²). Os biofilmes submetidos a aPDT demostraram pela MCVL um maior número de células coradas em vermelho, indicando que a aPDT foi eficaz para promover danos ou morte às células bacterianas. Assim, a aPDT pode ser considerada promissora para atuar de forma sinérgica no tratamento de infecções bacterianas.

Palavras-chaves: *Staphylococcus aureus* resistente à meticilina; Biofilmes; Fotoquimioterapia.

Pinto GCS. Antimicrobial photodynamic therapy effectiveness against susceptible and methicillin-resistant *Staphylococcus aureus* biofilms [Dissertação de Mestrado]. Araraquara: Faculdade de Odontologia da UNESP; 2013.

ABSTRACT

The need to overcome the challenge created by biofilms regarding conventional antimicrobial approaches has lead to search of alternative treatments such as Antimicrobial Photodynamic Therapy (aPDT). This in vitro study evaluated the efficacy of aPDT using the photosensitizer (PS) Curcumin (Cur) and Photodithazine[®] (PDZ) in the inactivation of biofilms of methicillin susceptible and resistant S. aureus (MSSA and MRSA). Biofilms were treated with different Cur (0, 20, 40 or 80 µM of Cur) and PDZ concentrations (0, 50 or 75 mg/L) and illuminated or not with LED source (Cur 455 \pm 3 nm/ 5.28 J/cm²; PDZ 660 \pm 3 nm/ 5.28 J/cm² or 50 J/cm²). Positive control samples were not exposed to PS or light. The microorganisms viability after aPDT were evaluated by counting the number of colonies, the XTT assay and LIVE/DEAD[®] staining using confocal laser scanning microscopy (CLSM). The results were evaluated by analysis of variance, two-factor fixed effects (ANOVA) and complemented by multiple comparisons by Tukey test. For both strains, all the tested Cur and PDZ concentrations reduced significantly both biofilm metabolic activity and CFU/mL compared to the negative control (p<0.05). Moreover, the results were optimized for Cur when the higher concentration was used (80 μ M); For PDZ, the best results were obtained when it was associated a higher concentration of PDZ (75 mg/L) with the higher dose of light (50 J/cm²). Biofilms submitted to aPDT showed a large number of red-stained colonies, indicating that this therapy was efficient in disrupting the bacterial membrane. It can be concluded that PS was efficient in reducing viable colonies of both S. aureus strains by damaging cell membrane and causing cell death. Thus, the aPDT is can be considered promising to act synergistically in the treatment of bacterial infections.

Keywords: methicillin-resistant Staphylococcus aureus; Biofilm; Photochemotherapy.

SUMÁRIO

1 INTRODUÇÃO	14
2 REVISÃO DA LITERATURA	19
2.1 MSSA e MRSA	20
2.2 Terapia Fotodinâmica	24
3 PROPOSIÇÃO	38
4 MATERIAL E MÉTODO	40
4.1 Materiais de consumo	41
4.2 Instrumentos	42
4.3 Equipamentos	43
4.4 Preparo de soluções e meios de cultura	44
4.5 Preparo dos micro-organismos	46
4.6 Procedimentos de formação de biofilme	46
4.7 Grupos de estudos	47
4.8 Fonte de luz	49
4.9 Aplicação da Terapia Fotodinâmica Antimicrobiana	50
4.10 Ensaio de XTT	50
4.11 Contagem de colônias (UFC/mL)	51
4.12 Microscopia Confocal de Varredura à Laser	53
4.13 Tratamento estatístico	54
5 RESULTADO	55
5.1 Fotossensibilizador Curcumina	56
5.2 Fotossensibilizador Photodithazine [®]	60
5.3 Análise por Microscopia Confocal de Varredura à Laser	64
5.3.1 Curcumina	64
5.3.2 Photodithazine [®]	68

6 DISCUSSÃO	71
7 CONCLUSÃO	78
REFERÊNCIAS	80
APÊNDICE	87

I ntrodução

1 INTRODUÇÃO

O micro-organismo *Staphylococcus aureus* é considerado de grande patogenicidade, principalmente por apresentar capacidade de desenvolver resistência às terapias medicamentosas convencionais^{8, 29}. As cepas padrão de *S. aureus* são suscetíveis à meticilina (MSSA), porém alguns mecanismos relacionados a mutação ou a transdução levam ao desenvolvilmento de cepas resistentes à meticilina (MRSA)⁶⁴. As cepas de MSSA e MRSA tem sido freqüentemente identificadas entre isolados clínicos de indivíduos idosos ou imunocomprometidos^{8, 28, 29}. Entre as infecções sistêmicas relacionadas ao *S. aureus*, a pneumonia aspirativa tem sido considerada uma das mais preocupantes⁶⁷, devido à elevada taxa de mortalidade ^{12, 21, 32}. Ainda, estudos indicam que as infecções de pneumonia aspirativa de evolução mais severa e virulenta estão relacionadas à presença do MRSA^{39, 65}.

O ambiente orofaríngeo apresenta uma diversidade de micro-organismos, incluindo bactérias, fungos, protozoários e vírus. As cepas de MSSA e MRSA têm sido isoladas de amostras de saliva e da cavidade bucal^{29, 58}, a associação entre a colonização do meio bucal por este micro-organismo e a presença de próteses dentárias faz com que os usuários de próteses se tornem ainda mais suscetíveis às infecções por MRSA^{29, 52}. A presença de biofilme na cavidade bucal e sobre as próteses pode levar a uma colonização nasofaríngea persistente^{37, 52}, favorecendo ao aparecimento de infecções recorrentes⁵⁷ e de resistência microbiana^{5, 10, 26, 46, 72}. A aspiração das bactérias da orofaringe tem sido identificada como a mais importante rota de infecçõo no desenvolvimento de pneumonia aspirativa⁷⁰.

Considerando o potencial elevado do MRSA em produzir infecções invasivas, particularmente em pacientes debilitados, medicamentos tópicos e sistêmicos têm sido utilizados para a sua erradicação^{5, 10, 26, 46, 57, 72}. Entretanto, tem sido verificado o desenvolvimento de resistência das cepas de MRSA a estes agentes antimicrobianos^{10, 46}. Devido ao aumento da resistência dos micro-organismos aos tratamentos disponíveis resultante do uso indiscriminado de medicamentos tópicos e sistêmicos, o desenvolvimento de tratamentos alternativos e coadjuvantes se tornou necessário. A Terapia Fotodinâmica antimicrobiana (aPDT, do inglês: *antimicrobial Photodynamic Therapy*) surgiu como terapia minimamente invasiva utilizada no tratamento de diversos tipos de tumores e em certas doenças benígnas³³. O interesse na aPDT também advém da simplicidade de seu mecanismo de ação resultante da interação entre um agente fotossensibilizante e uma luz

visível de comprimento de onda compatível ao espectro de absorção do fotossensibilizador (PS, do inglês: *photosensitizer*)^{6, 33, 73}. Quando o PS é irradiado com luz em um comprimento de onda compatível com sua máxima absorção, o PS absorve essa energia luminosa e passa a um estado excitado singlete. Este estado excitado singlete pode decair para o estado fundamental com emissão de fluorescência (princípio do fotodiagnóstico), ou passar para um estado triplete excitado por inversão espontânea do spin do elétron excitado. Uma vez formado o estado triplete excitado, esta espécie pode participar nas reações do tipo I ou II, que envolvem interação com o oxigênio disponível e produção de espécies reativas de oxigênio (EROs) e oxigênio singlete⁷¹. Na reação tipo 1, a transferência direta de elétrons de um PS excitado para um substrato ocorre pela geração de diferentes tipos de radicais, como hidroxil e peróxido de hidrogênio. Na reação tipo 2, o PS triplete excitado pode reagir com oxigênio molecular e produzir oxigênio singlete, altamente reativo. Todos esses produtos formados geram uma seqüência de eventos oxidativos resultando em morte celular direta, destruição da vascularização do tumor e ativação da resposta imune do hospedeiro⁶. Uma vez que os PSs atuam produzindo oxigênio singlete e outros EROs, não existe resistência microbiana a essa terapia, pois os radicais livres são capazes de interagir com diversas estruturas celulares (proteínas, membranas lipídicas e ácidos nucleicos) por diferentes mecanismos³³. A aPDT tem sido utilizada nas diversas áreas da Odontologia apresentando excelentes resultados no tratamento de câncer bucal e de lesões pré-malígnas³³, bem como no tratamento de infeccões bacterianas e fúngicas^{13, 14, 17, 18, 50, 71, 75}

Os fotossensibilizadores idealmente necessitam possuir formação acentuada de EROs e peróxido de hidrogênio, dessa forma podendo atuar de forma eficaz na promoção de danos e inativação dos micro-organismos e não causar efeitos deletérios aos tecidos adjacentes³³. A membrana celular do micro-organismo parece ser o alvo inicial do processo fotodinâmico. As fenotiazinas (azul de toluidina e azul de metileno) parecem se ligar à membrana plasmática do micro-organismo e, conseqüentemente, esta estrutura celular seria danificada após a iluminação, o que levaria a morte celular. Segundo Bertoloni et al.³ os compostos derivados da hematoporfirina parecem promover apenas um aumento na permeabilidade da membrana plasmática, o que permite sua passagem para o meio intracelular. Como a reatividade das espécies reativas de oxigênio (EROs) com moléculas orgânicas não é específica, a formação das EROs dentro da célula faz com que qualquer organela seja um alvo em potencial⁶².

Entre os fotossensibilizadores que têm sido empregados na realização da aPDT, destaca-se a Curcumina e a Photodithazine[®]. A Curcumina (Cur) é um composto amarelo-alaranjado, extraído do rizoma da planta Curcuma longa (açafrão). É comumente usada como tempero na tradicional culinária asiática e na medicina chinesa, onde já foram comprovadas diversas outras propriedades farmacológicas, como anti-inflamatórias, antitumorais, antifúngicas, antibacterianas e anticarcinogênicas^{38, 48, 54}. Algumas dessas propriedades são ampliadas após a ativação pela luz. A utilização da Cur como PS sobre espécies de Candida spp. parece ser um tratamento antifúngico promissor, pois baixas concentrações da substância associadas a breves tempos de exposição luminosa foram necessários para a fotoinativação fúngica. Resultado relevante foi descrito em recente estudo que observou altas taxas de redução na atividade metabólica de biofilmes formados a partir de isolados clínicos de C. albicans, C. tropicalis e C. glabrata após a exposição a aPDT mediada pela Cur²⁰. No referido trabalho, os autores mostraram que a aPDT associando Cur e luz do tipo LED também promoveu uma redução significativa na biomassa dos biofilmes, mas não sua eliminação total. Este resultado pode ser justificado pela estrutura em multicamadas dos biofilmes, o que dificulta a penetração do PS nas camadas mais profundas. Tais achados sugerem que a aPDT mediada pela Cur é uma alternativa promissora que poderá, possivelmente, viabilizar esta técnica para o tratamento clínico de infecções fúngicas e bacterianas.

Outro PS que está sendo investigado na terapia é a Photodithazine[®]. Essa substância é uma clorina preparada na Rússia, obtida a partir da cianobactéria *Spirulina platensis*, encontrada em grande quantidade o que faz com que tenha baixo custo. Esse composto é classificado entre as clorinas, que são porfírinas hidrofílicas reduzidas que apresentam forte banda de absorção na região vermelha do espectro fotomagnético. O PS PDZ vem sendo aplicado atualmente com sucesso na terapia fotodinâmica contra o câncer, devido ao seu alto rendimento quântico de formação de oxigênio singlete. De acordo com alguns estudos este composto tem mostrado maior eficiência em relação às porfirinas e hematoporfírinas^{23, 43}. A PDZ comprovou sua eficiência em um estudo que avaliou a fotoinativação de placa bacteriana em modelo de biofilme oral. Nesse estudo os autores concluíram que o PDZ pode ser utilizado na terapia fotodinâmica para o tratamento de periodontite crônica, pois reduziu a formação de biofilme em aproximadamente 80%⁶¹.

De acordo com as informações enumeradas anteriormente, julgamos importante avaliar a capacidade da Terapia Fotodinâmica Antimicrobiana mediada pelos fotossensibilizadores Curcumina e Photodithazine[®] na inativação de biofilmes de MSSA e MRSA.

Revisão da Literatura

2 REVISÃO DA LITERATURA

Para facilitar a compreensão e o acompanhamento do texto, essa revisão abordou ordenadamente os seguintes aspectos: a primeira parte discorreu acerca de estudos que tratam do MSSA e MRSA; a segunda abordou trabalhos relacionados à Terapia Fotodinâmica e suas aplicações.

2.1 MSSA e MRSA

Em 1994, Honma et al.²⁹, realizaram um estudo para detectar a presença de MRSA e S. epidermidis resistente à meticilina (MRSE) em saliva humana e em superfícies de próteses dentárias. Foram obtidas amostras de saliva, sendo 127 de estudantes e 39 de indivíduos usuários de próteses. Além disso, também foram submetidas à avaliação 39 amostras de swab com esfregaço das superfícies das próteses. Um swab estéril foi imerso em cada amostra de saliva por alguns segundos e então semeado em meio seletivo. Para obter o material da superfície da prótese, um swab estéril foi esfregado firmemente por toda a superfície da prótese, semeado nos 2 meios seletivos e incubado a 37 °C de 5 a 7 dias. Para identificar cada isolado, foi utilizada a coloração gram, identificação de características morfológicas, testes bioquímicos, como a produção de ácido a partir do manitol, e liquefação de gelatina. A porcentagem de MRSA e MRSE nas amostras de saliva dos estudantes de odontologia foi de 3,1 %, e nas amostras de swab com a raspagem das superfícies protéticas foi 12,8 %. A porcentagem detectada de S. aureus ou S. epidermidis nas amostras de swab foi 53,8 %. Com intuito de avaliar a suscetibilidade dos isolados aos antibióticos, os autores espalharam uniformemente uma alíquota de 100 µL de cada suspensão celular em placas com Trypticase Soy Agar (TSA). Em seguida, um disco de antibiótico foi colocado na placa inoculada. Após incubação por 4 h, a inibição do crescimento foi medida e a concentração inibitória mínima (CIM) determinada. Os experimentos demonstraram que todos os isolados foram resistentes ou pouco sensíveis a maioria dos anti-bióticos testados. Enquanto, a maioria dos isolados foram sensíveis a minociclina e tetraciclina. Com base nos resultados, a detecção de MRSA e MRSE em amostras de saliva e amostras de próteses indicou que uma rigorosa desinfecção e esterilização são essenciais para evitar a propagação de ambas as cepas nos consultórios odontológicos. Os autores sugerem a desinfecção diária das próteses para diminuição dos micro-organismos.

Em 2001, Terpenning et al.⁶⁷ investigaram a importância dos fatores médicos e odontológicos na pneumonia aspirativa em população de idosos. Foram selecionados para esse estudo 358 pacientes da terceira idade, internados hospitais e casas de repouso. No estudo anual de acompanhamento do desenvolvimento da pneumonia, foram incluídos os dados coletados na visita inicial e de acompanhamento (dados demográficos, história médica e odontológica, condições atuais de saúde, uso de medicamentos, estado funcional, xerostomia, alimentação, comportamentos relacionados à saúde; revisão dos registros de prontuários e banco de dados do hospital; exame clínico odontológico completo para avaliar as condições de higiene bucal, cárie dentária, doença periodontal, número de dentes e eficiência mastigatória). Nas visitas, foram realizadas as culturas de saliva, garganta e placas dentárias e testes salivares incluindo de anticorpos IgA. Após a visita inicial, os participantes do estudo foram observados em intervalos. Os pacientes foram divididos em 2 grupos: um para os indivíduos dentados e outro que inclui todos os indivíduos (dentados e desdentados). Os controles foram indivíduos que não desenvolveram gualquer tipo de pneumonia. Foi observado que 50 pacientes desenvolveram pneumonia aspirativa durante o período do estudo, sendo que 28 deles eram dentados. Houve diferença significante na incidência de pneumonia aspirativa para os 2 grupos avaliados (dentados e desdentados), quando considerado o local em que o paciente habitava no momento da entrada no estudo (ambulatório, hospital ou casa de repouso). Os resultados demonstram a importância do controle de placa bacteriana e do tratamento das cáries dentárias e doenças periodontais na redução significativa da presença de S. aureus na cavidade oral, diminuindo, assim, a incidência de pneumonia aspirativa.

Em 2003, Cosgrove et al.¹² realizaram uma meta-análise para avaliar os efeitos da resistência à meticilina na mortalidade em bacteremias causadas por *S. aureus*. Para isso foram pesquisados, no banco de dados MEDLINE, estudos de bacteremia por *S. aureus* publicados durante o período de 1980 até 2000. Esse levantamento foi realizado por 2 pesquisadores de forma independente, que selecionaram estudos com as seguintes informações: país de origem e período do estudo; o número e a taxa de mortalidade para pacientes com bacteremia por MRSA e MSSA; porcentagem de casos originados por

contaminação hospitalar; tempo de permanência hospitalar antes do início da infecção; idade média do paciente; comorbidade primária; fonte da bacteremia; presença de surto de infecção de MRSA; gênero, idade, gravidade da doença e permanência em UTI; adequação da terapia; e taxa de probabilidade bruta e ajustada. Os autores observaram que a análise dos estudos foi limitada por conterem dados sobre diferentes populações de pacientes e devido à falta de um método validado de ajuste para a gravidade da doença em pacientes com infecções. No entanto, reunindo os dados disponíveis, foi sugerido que pacientes diagnosticados com bacteremia por MRSA apresentam maior risco de mortalidade guando comparados àqueles com bacteremia por MSSA. Informações detalhadas sobre a origem da bacteremia, adequação da terapêutica antimicrobiana e os efeitos do atraso no tratamento adequado dos pacientes com bacteremia por MRSA não eram esclarecidas. Dessa forma, foi concluído que bacteremia por MRSA possui maior mortalidade que a bacteremia por MSSA e que há necessidade de outras investigações para esclarecer se os esforços devem ser direcionados para a detecção precoce de MRSA, antecipando, assim, a aplicação de terapia apropriada ou modificando a antibioticoterapia com novos agentes, combinações de drogas ou diferentes doses. Os autores ressaltaram, ainda, o importante papel do controle de infecção e uso adequado de antibióticos.

No mesmo ano, Smith, Hunter⁵⁹, realizaram um estudo para avaliar o efeito de biocidas hospitalares sobre dois patógenos nosocomiais, o MRSA e *P. aeruginosa*, nas formas planctônica e de biofilme. Para isso, discos de aço inoxidável, teflon e polietileno foram confeccionados, esterilizados, inoculados individualmente e incubados por 24 h a 37 °C sob agitação. Após incubação, os discos foram imersos em 200 μ L de três soluções biocidas hospitalares que continham cloreto de benzalcônio (1 %), digluconato de clorexidina (4 %) e triclosan (1 %) e incubados por 24 h a 37 °C. Em seguida, a viabilidade celular foi determinada por meio do ensaio de XTT e do kit *Live/Dead (BacLight Bacterial Viabulity)*. Os autores observaram que, para as células planctônicas de ambos os micro-organismos testados, a concentração mínima bactericida de todos os biocidas foi consideravelmente menor que a concentração de uso recomendada pelos fabricantes. Entretanto, os biocidas na concentração recomendada pelos fabricantes não foram capazes de inativar os micro-organismos que estavam na forma de biofilme. Após os tratamentos biocidas, 0 – 11 % das células do biofilme de MRSA e mais de 80 % das células do biofilme de *P. aeruginosa* sobreviveram. Com base nos dados obtidos, os autores concluíram que, embora os biocidas

possam ser efetivos contra células planctônicas, biofilmes aderidos a superfícies são mais resistentes às soluções.

O biofilme de MRSA em próteses pode ser facilmente aspirado pelos usuários, causando infecções como a pneumonia aspirativa. Assim, Altieri et al.² em 2012, realizaram um estudo para avaliar a eficácia de duas soluções desinfetantes e irradiação por micro-ondas na desinfecção de próteses totais contaminadas com MRSA. Os autores contaminaram 36 próteses totais com MRSA e as dividiram em quatro grupos iguais: 1) grupo controle positivo composto por próteses que não foram desinfetados; 2) grupo imerso em hipoclorito de sódio 1% por 10 min; 3) grupo imerso em gluconato de clorexidina 2% durante 10 min; 4) grupo submetidos a irradiação de micro-ondas a cerca de 650 W durante 3 min. Foi realizado a contagens de colônias e também foi avaliado a eficácia após 7 dias de desinfecção. Todas as próteses do grupo de controle mostrou crescimento microbiano substancial sobre as placas (6,24 Log₁₀ UFC/mL). Após 7 dias de incubação, os autores observaram crescimento nas próteses descontaminadas com hipoclorito de sódio 1%. A imersão em solução de gluconato de clorexidina e irradiação de micro-ondas resultou em desinfecção completa de todas as próteses contaminadas com MRSA, tanto a curto e a longo prazo. Concluíram que a irradiação por micro-ondas e gluconato de clorexidina 2% pode ter uma aplicação desinfectante em consultórios odontológicos e instituições em que usuários de prótese total são tratados, melhorando assim a longevidade e qualidade de vida dos pacientes.

2.2 Terapia Fotodinâmica

No ano de 1987, Tonnesen et al.⁶⁸ avaliaram a atividade da Cur usando micro-organismos como indicadores sensíveis. Para realizar análise da fototoxicidade da Cur foi utilizado cepas de Salmonella typhimurium com ausência de parte da membrana celular. Assim, os micro-organismos são permeáveis a moléculas grandes e com ampla sensibilidade frente à ação de vários agentes. As suspensões celulares das duas espécies foram preparadas para a realização dos testes. Às suspensões de S. typhimurium, foram adicionadas em diferentes concentrações de Cur diluídas em DMSO (5% para E. coli e 10% para S. *typhirium*). As misturas tiveram uma TPI de 30 min para permitir a entrada do composto nas células. Então, as suspensões foram irradiadas por um determinado período. Após a iluminação, as suspensões foram incubadas por 2 h para deixar em contato com os produtos tóxicos gerados. A determinação da viabilidade celular foi realizada através dos cálculos de UFC/mL. Suspensões adicionais foram tratadas com a maior concentração da Cur, porém não iluminadas. Para testar a toxicidade dos produtos de degradação da Cur, após a iluminação, as soluções foram incubadas no escuro por intervalos que variaram de 0 a 60 min. Os resultados dos testes de fototoxicidade mostraram que as suspensões de S. typhimurium tratadas com Cur e iluminadas tiveram redução da viabilidade celular de forma concentração dependente, quando comparada às não irradiadas, demonstrando que a Cur é, claramente, fototóxica. Para determinar os efeitos tóxicos dos produtos formados durante a iluminação das soluções de Cur, a mesma foi individualmente iluminada e, após irradiação por 30 min, as soluções foram colocadas em contato com as suspensões celulares em intervalos que variaram de 0 a 60 min. Os resultados mostraram que a viabilidade da S. typhimurium não foi afetada pela adição de Cur previamente iluminada, o que mostra que a fototoxicidade é causada por produtos intermediários instáveis. Para determinar se a Cur induz danos ao DNA, duas cepas diferentes de Escherichia coli com deficiência nos mecanismos de reparo do DNA ou com habilidade ou inabilidade para fermentar a lactose (Lac- e Lac+) foram utilizadas. Os resultados mostraram que houve danos genotóxicos somente para as cepas Lac+. A atividade da Cur foi dependente do tempo de iluminação e da concentração.

Dahl et al.¹³, em 1989, investigaram as propriedades da Cur na presença e na ausência de luz, considerando, particularmente, os efeitos letais sobre bactérias. Estas foram

cultivadas, sensibilizadas e submetidas a diferentes tempos de iluminação. Alíquotas de 100 μ L foram plaqueadas para avaliação de sobrevivência das bactérias através do UFC/mL. Além disso, o envolvimento do oxigênio na inativação das cepas foi avaliado. Os resultados obtidos mostraram que as concentrações de Cur avaliadas não tiveram toxicidade na ausência de luz. A Cur 1 μ M foi capaz de causar completa inativação de *Staphylococcus aureus* após 15 min de iluminação. A retirada do oxigênio (O₂) da reação inibe completamente a fototoxicidade da Cur. O tempo de pré-incubação das células com a Cur, anteriormente à iluminação, não teve efeito na fototoxicidade. Entretanto, a remoção da Cur não ligada às células promoveu redução acentuada dos efeitos tóxicos, sugerindo que a Cur livre, ou fracamente ligada às células, é a responsável pelo efeito fototóxico. No entanto, esse efeito não se deve à liberação de oxigênio singlete, visto que em meio prótico há pouca ou nenhuma formação de oxigênio singlete, mas sim do peróxido de hidrogênio.

Com base em dados científicos publicados na literatura, Wainwright⁷¹ em 1998, apresentou os PS disponíveis para a realização da aPDT. De acordo com o autor, a utilização das porfirinas, que são um tipo de PSs macrocíclicos, é decorrente do seu emprego no tratamento fotodinâmico de câncer. Os derivados de hematoporfírina são uma combinação de fotossensibilizadores oligoméricos derivados do sangue, e foram os primeiros agentes a receberem aprovação do FDA (*Food and Drug Administration*) para aplicação clínica da aPDT. As porfirinas aniônicas são efetivas para a fotoinativação de bactérias Gram-positivas. Entretanto, as bactérias Gram-negativas, por apresentarem uma parede celular mais complexa, somente são sensibilizadas quando a porfirina aniônica é utilizada em associação a um derivado nonapeptídeo de colistina, que promove abertura de canais na membrana bacteriana. As porfirinas também têm se mostrado efetivas para inativação de vírus in vitro, causando aparentemente um dano ao envelope viral. Segundo o autor, as pesquisa realizadas até o momento ainda não indicam a aPDT como uma forma de tratamento em substituição as drogas antimicrobianas, mas sim como uma forma de se aprimorar o tratamento de infecções locais devido ao baixo custo e facilidade empregada.

Em 2002, Strakhovskaia et al.⁶³ realizaram um estudo com o objetivo de avaliar a eficiência do fotossensibilizador photodithazine (PDZ), uma substância derivada de clorina, e estudar o seu efeito na inativação de *Candida guilliermondii* por meio de luz visível. Para tanto uma suspensão celular de *C. guilliermondii* foi obtida em uma concentração de 2.10⁷ UFC/mL e mantida no interior de uma cubeta de aproximadamente 1 cm de diâmetro

sob temperatura controlada (22 °C) e irradiada com luz visível de comprimento de onda em torno de 380 nm. A suspensão foi mantida a uma distância de 15 cm da lâmpada. Imediatamente após a iluminação, alíquotas da suspensão foram transferidas para um eletrodo de oxigênio Clark-type o qual esteve sob temperatura controlada (22 °C) para que os níveis de consumo de oxigênio fossem medidos. A mesma suspensão foi utilizada para o preparo de diluições seriadas para contagem de células viáveis. Os resultados demonstraram que apenas 37% de *C. guilliermondii* sobreviveu na presença de 2 μ M de clorina e₆, e que a eficiência de fotossensibilização com a mesma concentração para a PDZ foi 25% maior do que em relação a clorina e₆ (pura). Isso pode estar relacionado a melhor solubilidade de PDZ em água e consequentemente ao menor grau de agregação de moléculas de PDZ em solução aquosa. Quando a concentração de PDZ aumentou para 20 μ M a eficiência da fotossensibilização aumentou mais de 25 vezes. Os autores concluíram que a PDZ é um PS promissor com atividade antifúngica acentuada.

Com o objetivo de avaliar a fotodestruição de placa bacteriana dental humana em um modelo de biofilme oral, Soukos et al.⁶¹ em 2003, realizaram um estudo associando à ondas fotomecânicas. Os autores relatam que a doença periodontal é resultante do acúmulo de biofilme bacteriano subgengival sobre as superfícies dentárias. Dessa modo, investigaram o efeito fotodinâmico de um conjugado entre o PS clorina $e_6(ce_6)$ e uma poly-L-lysine (pL) com 5 resíduos de lisina na placa bacteriana dental humana de Actinomyces naeslundii após exposição a ondas fotomecânicas geradas por um Laser (662 nm) na presença do conjugado. Amostras de placa subgengival de 12 pacientes com periodontite crônica foram obtidas e colocadas em um eppendorf com 5 mL de solução Ringer pré-reduzida anaerobicamente e esterilizada. As suspensões foram incubados no escuro em temperatura ambiente por 5 minutos com 5 µM do conjugado pL-ce6. Em seguida foram centrifugadas e lavadas uma vez em PBS estéril. A partir disso as amostras foram divididas em 3 grupos: 1) apenas com suspensão celular; 2) adicionou-se 1 mL de PBS a suspensão celular e 3) adicionou-se 80% de PBS e 20% de EDTA a suspensão. Cada grupo foi constituído de 4 amostras. Para a realização da aPDT as amostras foram colocadas em placas de 24 orifícios e então as mesmas foram expostas à luz vermelha (15 J/cm²). Adicionalmente, biofilmes de A. naeslundii, formados em esmalte bovino, também foram expostos as ondas fotomecânicas por 15 min com 5 µM do conjugado pL-ce6. A profundidade de penetração do conjugado foi medida por meio de um microscópio confocal. Em ambos os casos, após a iluminação diluições seriadas foram preparadas e alíquotas de 100µL foram removidas colocadas em placas com Agar sangue. Frações de sobrevivência foram calculadas pela contagem de colônias bacterianas. De acordo com os resultados obtidos nesse estudo, o grupo submetido a aPDT demonstrou 90% de morte celular de placa bacteriana dental humana. Os autores concluíram que as ondas fotomecânicas juntamente com a aPDT podem ser uma arma com grande potencial para fotodestruição de placa dental no tratamento de doença periodontal destrutiva crônica.

Em 2005, Demidova, Hamblin¹⁴ compararam a efetividade da aPDT na inativação de suspensões das bactérias Escherichia coli (gram-negativo) e S. aureus (grampositivo), e do fungo C. albicans. A foto-inativação foi testada com a utilização dos PSs rose bengal, azul de toluidina e conjugado de poli-lisina, em várias concentrações, associados a uma fonte de luz não coerente, composta de pacotes de fibras intercambiáveis. Inicialmente, as suspensões celulares dos três micro-organismos foram obtidas por meio do crescimento overnight a 37 °C, em meios de cultura específicos, seguido da centrifugação e ressuspensão das células em solução tampão. As suspensões celulares foram incubadas em ambiente escuro com os PSs em diferentes concentrações durante 20 min, e em seguida, alíquotas de 200 µL foram transferidas para uma placa de 96 orifícios, e a iluminação realizada com doses de luz que variaram de 0 a 200 J/cm². As amostras foram iluminadas com e sem a remoção do excesso do agente. Foram obtidas diluições seriadas de cada amostra, seguidas do plaqueamento, incubação overnight a 37°C, e obtenção do número de UFC/mL. Além disso, após a incubação, alíquotas adicionais foram utilizadas com o objetivo de verificar se os PSs testados permanecem somente ligados à membrana celular dos micro-organismos ou se há penetração ao interior da célula. Os resultados demonstram que a concentração das suspensões modificaram a efetividade de todos os PSs testados, ou seja, quanto maior a concentração celular presente na suspensão, maior concentração de PS foi necessária. O Conjugado de poli-lisina foi o PS mais efetivo para promover a fotossensibilização das bactérias e do fungo. A suscetibilidade dos micro-organismos variaram, sendo a C. albicans mais resistente a aPDT em comparação com as bactérias. Os autores concluíram que, por possuir um tamanho muito maior que a célula bacteriana, a célula fúngica necessita de uma maior quantidade de oxigênio singlete para sua inativação. Além disso, a C. albicans é um ser eucarionte e a presença da membrana nuclear poderia atuar como uma barreira adicional para a penetração do PS.

Em 2006, Tegos et al.⁶⁶ avaliaram o fotossensibilizador policatiônico conjugado entre os compostos polyethyleneimine (PEI) e clorina (e₆), na fotoinativação antimicrobiana de suspensões de bactérias e fungos (S. aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa e C. albicans). Os autores consideram que as estruturas moleculares policatiônicas aumentam a penetração do PS em células gramnegativas. Para a realização deste experimento preparou-se conjugados policatiônicos entre a clorina (e₆) e 3 formas moleculares de PEI: PEI-ce₆ lin (cadeia linear), PEI-ce₆ LMW (baixo peso molecular) e PEI-ce₆ HMW (alto peso molecular). Previamente ao experimento, suspensões celulares foram preparadas, lavadas, centrifugadas e ressuspendidas em 3,5 mL de PBS. $(10^8 \text{ células/mL para bactérias e } 10^7 \text{ células/mL para } C. albicans)$. Tais suspensões foram incubadas com 1 ou 10 µM de PS no escuro por 10 min em temperatura ambiente. As células que foram incubadas sem PS para promover os valores de UFC/mL foram consideradas controles. De acordo com os resultados, a molécula PEI-ce₆ HMW foi efetiva na inativação de todos os micro-organismos avaliados, enquanto que o conjugado PEI-ce₆ lin foi efetivo apenas na inativação do S. aureus e C. albicans. Dessa maneira, concluiu-se que esses conjugados podem ser considerados eficientes PS, podendo ser utilizados em aPDT.

No mesmo ano, Konopka, Goslinski³³, investigaram por meio de uma revisão de literatura as diversas aplicações da terapia fotodinâmica na Odontologia nas diferentes áreas como: tratamento de câncer bucal, terapia para infecções bacteriana e fúngicas e diagnóstico fotodinâmico de lesões bucais potencialmente malígnas. Segundo os autores, a terapia fotodinâmica apresenta algumas vantagens, uma vez que não é invasiva, apresenta efeitos adversos moderados e seletividade para as células alvo sem causar danos aos tecidos subjacentes sadios, entre outras. Os autores acreditam que a terapia fotodinâmica possa se tornar o tratamento de escolha para o câncer de cabeça e pescoço, incluindo tanto as lesões pré-malignas quanto lesões primárias, recorrentes e metástases. A aPDT foi iniciada há mais de um século, no entanto, com a descoberta dos antibióticos seu desenvolvimento ficou restrito. Com a emergência de várias cepas microbianas resistentes aos antibióticos disponíveis no mercado, a aPDT voltou a ser considerada como possível tratamento. O desenvolvimento de resistência contra a aPDT parece ser improvável, pois o oxigênio singlete e os demais radicais livres gerados interagem em diversas estruturas celulares por diferentes mecanismos. De acordo com alguns estudos, a aPDT tem sido utilizada no controle de biofilmes bacterianos, pois atua tanto nos micro-organismos quanto na matriz extracelular, promovendo a desorganização do biofilme. Entretanto, os biofilmes de *C. albicans* mostraram ser menos suscetíveis à aPDT. Esse padrão distinto de suscetibilidade, quando comparado ao do biofilme bacteriano, pode ser explicado por diferenças estruturais entre os biofilmes fúngicos e bacterianos, ou pela inabilidade de a luz penetrar o espesso biofilme formado por espécies de Candida. Além disso, tem sido empregada no controle de agentes pátogenos periodontais, na desinfecção de canais radiculares e no tratamento da estomatite protética. Os estudos recentes se baseiam na descoberta de fotossensibilizadores específicos, para que atuem nos patógenos selecionados e não promovam uma intensa destruição microbiana deixando o paciente suscetível a infecções oportunistas. Devido à facilidade de iluminação da cavidade bucal, a aPDT se torna uma terapia com potencial para ser aplicado clinicamente tanto no tratamento de infecções bucais como tratamento de câncer bucal e lesões com displasia epitelial. Dessa forma, o futuro da terapia fotodinâmica depende das interações entre sua aplicação clínica e o desenvolvimento de inovações tecnológicas.

A fotodegradação de três diferentes PS derivados de clorina foi avaliado por Ferreira et al.²³ em 2008. Os autores avaliaram a degradação do fotossensibilizador por meio das mudanças do espectro de fluorescência durante a iluminação. A taxa de variação de fluorescência foi normalizada para a absorção da solução e a energia do fóton resultante na determinação do número necessário de fótons a ser absorvido para induzir a degradação do fotossensibilizador. Foi utilizado três PS derivados de clorina: Photodithazine[®], Radaclorin[®] e Foscan[®]. Os parâmetros para obtenção dos valores de deterioração das moléculas, valores de fluência dos fótons e propriedades ópticas da solução permitiu determinar a estabilidade do PS em solução durante a iluminação. Segundo os autores os resultados demonstraram em ordem de suscetibilidade a fotodegradação que Radaclorin^{\mathbb{R}} < Photodithazine^{\mathbb{R}} < Foscan^{\mathbb{R}}. A diferença na fotodegradação para o Foscan pode ser explicada pela alta proporção de agregados em solução que inibe o processo foto-oxidativo e impede a formação do oxigênio singlete. Os autores sugerem que houve uma correlação entre a fotodegradação e a eficácia fotodinâmica dos PS que é dirigida pela formação de oxigênio singlete responsável pela maioria das reações relevantes na indução fotodinâmica de morte celular. Desse modo, os autores concluíram que a fotodegradação, assim como a eficácia fotodinâmica, estão correlacionada em relação à concentração de oxigênio presente no tecido.

Cavalcante et al.⁷, no mesmo ano, realizaram uma combinação de técnicas para avaliar a eficiência fotodinâmica de alguns fotossensibilizadores. De acordo com os autores,

a terapia fotodinâmica está se revelando um tratamento promissor contra o câncer e na inativação de micro-organismos. A aPDT se baseia na administração de um componente fotossensibilizador seguido de ativação por luz. Assim, essa terapia promove reações que podem formar espécies reativas de oxigênio capazes de inativar tanto células tumorais quanto microbianas. Para tanto, 4 PS foram avaliados, sendo eles: Photogem[®] (PG), Photofrin[®] (PF) e Photosan[®] (PS), três derivados de hematoporfírinas, e Photodithazine[®] (PDZ), derivado de clorina e₆. O estudo promoveu uma maneira de se fazer uma rápida avaliação prévia da efeciência desses fotossensibilizadores por meio da combinação das seguintes técnicas: uso de BSA (albumina bovina sérica) e ácido úrico como dosímetro químico para investigar a foto-oxidação das biomoléculas de cada PS; foto-hemólise de células vermelhas do sangue para avaliar o mecanismo de dano à membrana celular causado pela fotossensibilização; e determinação da hidrofobicidade dos PS por meio da separação de suas moléculas com octanol e fosfato buffer. De acordo com os autores, os resultados sugerem um *ranking* de eficiência dos PS: PDZ > PG > ou = PF > PS.

O *Staphylococcus aureus* é a etiologia mais comum na causa de infecções hospitalares, comprometendo principalmente pacientes imunocomprometidos. Diante disso, ainda no ano de 2008, Grinholc et al.²⁴ realizaram um estudo com o objetivo de avaliar a fotoinativação promovida pela Terapia Fotodinâmica em biofilmes de MSSA e MRSA. As cepas são provenientes de isolados clínicos de pacientes internados e foi também utilizado como referência a cepa ATCC (25904). Para a realização da Terapia Fotodinâmica foi utilizado o fotossensibilizador porfirina. Assim, foi observado que a efetividade da aPDT foi dependente das cepas dos micro-organismos. Os micro-organismos resistentes e provenientes de isolados clínicos demosntraram menor suscetibilidade à aPDT. Assim, observou-se uma variação na redução do crescimento bacteriano, chegando no caso das cepas de MSSA de até 3 Log₁₀, porém não houve completa inviabilização das cepas.

Em 2009, Priyadarsini⁴⁸ investigou por meio de uma revisão de literatura sobre a Cur, como propriedades físico-químicas, a influência dos solventes e do pH nas propriedades fotofísicas do estado excitado e ainda considerações sobre a degradação e fototoxicidade da Cru. A revisão apresenta a Cur como um pigmento extraído do rizoma da planta *Curcuma longa*, comumente usada na culinária indiana como tempero. O autor cita as propriedades farmacológicas da Cur, motivos pelos quais ela possui grande potencial de aplicação terapêutica na medicina indiana e chinesa. São elas a ação anti-inflamatória, antitumoral, para tratamento de doenças neurológicas, cárdio-vasculares e doenças de pele, dentre outras. A Cur apresenta também, propriedades fototóxicas contra sistemas bacterianos. Com relação à solubilidade e estabilidade da Cur, o autor afirma que a Cur é praticamente insolúvel em água em pH 7, sendo, entretanto, solúvel em diversos solventes orgânicos, como metanol, etanol, DMF, DMSO, clofórmio, acetomitrila, dentre outros. Na maioria dos solventes orgânicos, a Cur existe na sua forma de enol, mais estável que a forma de diceto. A Cur apresenta, na sua forma sólida, grande absorção na região UV do espectro de luz, com máxima absorção em 408 e 434 nm. Com relação espectro de fluorescência, a máxima fluorescência é dependente da natureza do solvente, variando com a constante dielétrica e índice de refração. Em DMSO, a fluorescência máxima varia entre 535 e 560 nm. A máxima fluorescência, entretanto, parece ser independente do comprimento de onda usada para excitação, entre 300 e 470 nm. A Cur mostra-se estável em pH baixo em soluções aquosas alcoólicas, mas sofre degradação química e hidrólise em pH básico. O mecanismo de degradação não está claro. Em solventes orgânicos, a Cur sofre fotólise sob a luz UV e forma 3 produtos de degradação. A exposição a luz do Sol promoveu maior formação de produtos de degradação que a fotólise por UV. Os autores relataram, ainda, que a Cur tem ação fototóxica, já bastante relatada, contra sistemas bacterianos e células de mamíferos. A fototoxicidade é dependente do oxigênio, e bactérias gram-negativas foram mais resistentes a aPDT que as gram-positivas. O papel da Cur na atividade fotobiológica mediada pelo oxigênio singlete $(^{1}O_{2})$ é controversa, visto que alguns estudos mostram a formação dessas EROs, enquanto outros afirmaram que é captadora de ¹O₂. A Cur apresenta vários alvos moleculares. Por ser uma molécula lipofílica, ela interage, primeiro, com a membrana celular e as proteínas de ligação da membrana e, então, é distribuída para diferentes partes da célula.

No mesmo ano, Martins et al.³⁸ avaliaram a atividade antifúngica da Cur contra 23 cepas fúngicas de interesse clínico, assim como na sua habilidade de inibir a adesão de *Candida spp.* às células epiteliais humanas. Assim, análises in vitro da suscetibilidade das cepas foram procedidas usando Cur (0,5 - 256 mg/L) e fluconazol (0,06 - 64 mg/L) como controle positivo. As concentrações inibitórias mínimas (MIC) foram encontradas, e os resultados mostraram que a Cur foi até 32 vezes mais potente que o fluconazol na completa inibição de uma cepa de *P. brasiliensis* 32 mg/L de Cur foi capaz de causar completa inativação de 2 isolados clínicos de *C. dubliniensis*. Além disso, foram realizados testes de adesão, expondo Candida à MIC de Cur por 1 h e, em seguida, incubando por mais 1 h com CEB (células epiteliais). Os resultados mostraram que a Cur foi capaz de inibir a adesão de espécies de Candida às CEB e, os 2 isolados clínicos de *C. dubliniensis* (Cd22 e Cd28) foram os que tiveram maior redução na capacidade de adesão (63 e 74%, respectivamente). A partir dos resultados obtidos, os autores puderam concluir que a Cur teve maior atividade antifúngica sobre o crescimento celular e foi mais eficiente na inibição da adesão às CEB que o fluconazol.

Em 2010, Dovigo et al.¹⁷ avaliaram a atividade fotodinâmica do Photogem[®] associado ao LED na inativação de 4 diferentes espécies de Candida: C. albicans, C. dubliniensis, C. tropicallis e C. krusei. Para a realização do estudo, suspensões celulares foram obtidas e padronizadas numa concentração de 10⁶ células/mL. A partir de então, foram testadas 9 condições experimentais para cada micro-organismo, cruzando 3 diferentes concentrações do PS (10, 25 e 50 mg/L) com 3 doses de luz (18, 25,5 e 37,5 J/cm²). Adicionalmente, o efeito da aplicação isolada do PS na ausência de luz e o efeito da luz somente foram avaliados. Um grupo sem PS ou luz foi usado como controle. As suspensões foram diluídas e plaqueadas, e, após 48 horas, a viabilidade celular foi avaliada através da contagem de colônias viáveis e cálculo do número de UFC/mL. Para todas as espécies avaliadas, houve redução significante das colônias viáveis após aPDT. Houve completa inativação de C. albicans (associando 50 mg/mL com 18 J/cm² ou 10 mg/mL com 25,5 J/cm²), da C. dubliniensis (associando 25 mg/mL com 18 J/cm² ou 10 mg/mL com 25,5 J/cm²) e da C. tropicallis (associando 25 mg/mL com 25,5 J/cm² ou 10 mg/mL com 37,5 J/cm²). Foi observada uma redução significativa da viabilidade celular da C. krusei, mas nenhuma associação entre concentração e dose de luz testada nesse estudo causou completa fotoinativação desta espécie. Esses resultados sugerem que a aPDT é um método efetivo na inativação de fungos, apresentando efeito fungicida em suspensões celulares de C. albicans, C. dubliniensis e C. tropicallis, e causando significante redução da viabilidade celular da C. krusei.

O efeito antimicrobiano da terapia fotodinâmica utilizando uma clorina e₆ pura como PS e uma luz Laser foi avaliado por Park et al.⁴³ em 2010. Nesse estudo os autores avaliaram o efeito da aPDT na inativação de *Staphylococcus aureus*, *Pseudômonas aeruginosa, Escherichia coli* e *Salmonela typhimurium*. Os autores avaliaram a viabilidade bacteriana, quantificação das unidades formadoras de colônia assim como halo de inibição das mesmas. Os resultados demonstraram que a aPDT mediada por meio da clorina foi muito efetiva na inibição do crescimento de *S. aureos* e *P. aeruginosa*, mas foi dependente da dose de luz e da concentração do PS. O número de bactérias viáveis diminuiu significativamente após a aplicação da aPDT com a utilização de 10 μ M de PS e uma dose de luz de 20 J/cm². Essa terapia também inibiu parcialmente a formação de colônias para *E. coli* e *S. typhimurium*. Esses resultados mostraram que a aPDT mediada pela clorina e₆ pode ser uma alternativa promissora para o tratamento antimicrobiano.

Ainda em 2009, foi publicado por Juzeniene³¹ um editorial da revista Photodiagnosis and Photodynamic Therapy, um artigo em que alguns autores escreveram sobre a origem e algumas propriedades dos fotossensibilizadores derivados da clorina e₆. Dentre essas substâncias estavam Photolon[®], Radachlorin[®] e Photoditazine[®]. De acordo com o levantamento feito pelos autores, as clorinas contêm magnésio e são chamadas de "chlorophylls", e são os pigmentos fotossensíveis presentes nos cloroplastos da maioria das plantas, algas e cianobactérias. Assim, as clorinas foram introduzidas em 1980 como fotossensibilizadores potenciais para PDT e desde então seus derivados têm sido desenvolvidos. Segundo os autores, o Radachlorin e Photodithazine não só aumentaram a eficácia como também diminuíram efeitos adversos quando comparados com os fotossensibilizadores de primeira geração. Sua maior eficiência foi comprovada inativando células tumorais, absorvendo maiores comprimentos de onda (400 - 670 nm) e sendo eliminados do organismo rapidamente (por volta de 2 dias). Photodithazine é uma mistura de clorina Ce6 (60%), clorina p6, e purpurinas 7 e 18, além disso é solúvel em água, o que lhe confere boa estabilidade quando armazenada. Os autores concluíram que de maneira geral, os fotossensibilizadores acima citados possuem baixa toxicidade, alta seletividade além de alta fototoxicidade sendo muito promissor o seu uso na terapia fotodinâmica.

Em 2011, Dovigo et al.¹⁹ avaliaram a eficácia do aPDT na inativação de cepas de *Candida albicans* e *Candida glabrata* resistentes ao fluconazol. Foi utilizado diferentes concentrações do PS (Photogem: 2,5, 5, 10, 25 e 50 mg/L) e doses de luz LED (10,5, 18, 25,5 e 37,5 J/cm²) com o objetivo de encontrar a concentração mínima do PS e dose de luz que promoveria inativação completa das cepas em culturas planctônicas. Numa segunda etapa do experimento, a combinação do PS e luz (LED) mais adequada para a fotoinativação foi avaliada contra biofilmes de *C. albicans* e *C. glabrata*. Para esse estudo foram usados 6 isolados de pacientes com cepas resistentes ao fluconazol (FR): C. albicans 10R, 15R, 23R / *C. glabrata* 50R, 63R e 87R. Adicionalmente, cepas ATCC foram usadas como referência. Às

suspensões padronizadas de Candida (10⁶ células/mL), e o PS foi adicionado e. após a incubação no escuro por 30 min (tempo de pré-incubação) cada placa foi irradiada por LED (Grupos P+L+). Para determinar se o PS sozinho tinha algum efeito na viabilidade celular, poços adicionais foram confeccionados sob as mesmas condições que as anteriores, exceto pela exposição ao LED (P+L-). O efeito do LED sozinho foi determinado pela exposição das células ao LED sem adição do PS (P-L+). Suspensões sem exposição ao PS ou ao LED foram usadas como controle geral (P-L-). Para determinar a viabilidade celular o número de UFC/mL foi calculado. A completa inativação de todas as suspensões de C. albicans resistentes ao fluconazol foi alcancada com 50 mg/L e 18 J/cm², enquanto as cepas resistentes ao fluconazol de C. glabrata foram inativadas com 25 mg/L e iluminação com 25,5 e 37,5 J/cm². Para completa inativação das cepas ATCC de C. albicans e C. glabrata, as concentrações exigidas foram menores. A aPDT foi capaz de reduzir a viabilidade dos biofilmes de C. albicans e C. glabrata, quando expostos a 25 mg/L do PS e 37,5 J/cm² de luz. Apesar disso, a redução do número de colônias viáveis foi discreta em todo o experimento, sugerindo que os organismos quando organizados em biofilmes podem ter sua suscetibilidade a aPDT reduzida.

No mesmo ano, Dovigo et al.²⁰ realizou um estudo para avaliar a aPDT mediada por Cur contra isolados clínicos de *C. albicans, C. Tropicalis* e *C. glabrata*, tanto em formas planctônicas e em biofilme. As suspensões de Candida foram tratadas com três concentrações Cur e expostas a quatro dose de luz (5,28, 18, 25,5 e 37,5 J/cm²). O protocolo que apresentou os melhores resultados para a inativação da fase planctônica foi selecionado para ser avaliado contra biofilmes de Candida. A atividade metabólica de biofilmes foram avaliadas por meio de ensaio de redução de XTT e a biomassa de biofilme foi avaliada usando cristal violeta. O uso de Cur em associação com a luz foi capaz de promover um efeito significativo antifúngico contra as formas planctônicas das leveduras. Quando se utiliza 40 μ M de Cur, a atividade metabólica de *C. albicans, C. glabrata, C. tropicalis* em biofilmes foi reduzido em 85%, 85% e 73%, respectivamente, a 18 J/cm². A aPDT mediada pela Cur, também diminuiu a biomassa biofilme de todas as espécies estudadas. Com os resultados estudo, concluíram que baixas concentrações de Cur podem ser altamente eficazes para inativar isolados de Candida spp. quando associada com excitação de luz.

Ainda no mesmo ano, Dovigo et al.¹⁸ avaliaram a associação da Cur com a iluminação com LED para a inativação de *Candida albicans*. As suspensões de Candida
foram tratadas com nove diferentes concentrações de Cur e exposta ao LED com diferentes doses de luz. O protocolo que apresentou os melhores resultados para a inativação da Candida foi selecionado para avaliar o efeito do tempo de pré-irradiação (TPI), a eficácia da absorção de Cur por células de *C. albicans* e o possível envolvimento do oxigênio singlete. A aPDT mediada pela Cur também foi avaliada em biofilmes. Foi analisado também, uma linhagem celular de macrófagos e o efeito foi testado pelo ensaio *Methyltetrazolium* (MTT) e análise por Microscopia Eletrônica de Varredura (MEV). As propriedades ópticas da Cur foi investigado em função da dose de luz. Quando comparado com o grupo controle, uma redução estatisticamente significativa foi observado na viabilidade de *C. albicans* após a aPDT (P <0,05), para as culturas planctônicas e de biofilme. O efeito fotodinâmico foi maior com a presença de Cur e o TPI de 20 min, melhorando a eficácia de aPDT contra biofilmes. Concluíram que, embora, a aPDT tenha sido fototóxico para os macrófagos, a terapia era mais eficaz na inativação da célula de levedura do que o das células de defesa. As mudanças espectrais mostraram uma alta taxa de fotodegradação de Cur.

Em 2012, Vera et al.⁶⁹ realizaram uma revisão de literatura sobre as aplicações e estratégias de otimização da terapia fotodinâmica. Segundo os autores as terapias convencionais antimicrobianas tornaram-se cada vez mais ineficazes, devido ao surgimento de resistência dos micro-organismos patogênicos. A necessidade de superar essas deficiências provocou a exploração de tratamentos alternativos e abordagens não convencionais para o controle de infecções microbianas. A terapia fotodinâmica foi originalmente criada como uma modalidade antitumoral. O conceito de inativação fotodinâmica exige a exposição das células com uma fonte de iluminação, com comprimento de onda adequado para a excitação das moléculas do fotossensibilizador, o que resulta numa cascata de reações e consequente formação de espécies reativas de oxigênio (EROS). As EROS são radicais livres que podem interagir com as estruturas celulares, podendo assim causar danos a menbranas e morte celular. Assim, com os avanços na compreensão da fisiologia microbiana, a aPDT destaca-se como um método alternativo e promissor para o controle de infecções.

No mesmo ano, Correa et al.¹¹ realizaram um estudo com o intuito de investigar as propriedade da Photodithazine[®]. A PDZ é um clorina solúvel em água e tem uma absorção intensa na faixa de 650 a 680 nm. Nesse estudo, utilizou-se para a iluminação fonte de luz do tipo Laser e realizado em dois comprimentos de onda (514 e 630 nm). Foi determinado assim a tempo de iluminação para a fotodegradação do fotosssenbilizador e formação de sub produtos. Para o menor comprimento de onda estabeleceu-se que a fotodegradação ocorreu com 50 min de iluminação, para o maior comprimento a fotodegradação ocorreu com 18 min. Esses resultados sugerem que a fotodegradação após a irradiação com luz vermelha é um processo mais rápido quando comparado com a luz verde. Foi investigado também a citotoxicidade da PDZ fotodegradada, demonstrarando-se menor em ausência de iluminação e maior que a PDZ não irradiada. Dessa forma, com base nos resultados obtidos os autores sugerem que a PDZ possui propriedades superiores a de outros fotossensibilizadores como o Photogem e Foscan[®], o que permite de acordo com os resultados possível aplicação clínica mais eficiente.

Ainda no ano de 2012, Schastak et al.⁵³ observando um promissor meio de inativar bactérias utilizando um fotossensibilizador associado a iluminação, realizou um estudo com objetivo de avaliar a ação fotodinâmica sobre culturas planctônicas de MSSA, MRSA, *E. coli* e *P. aeruginosa*. A aPDT foi mediada pelo PS *tetrahydroporphyrin-tetratosylat* (porfirina – THPTS: 1 μM, 10 μM e 100 μM) em diferentes tempos de incubação (30, 90 e 180 min). Os autores relatam que uma incubação com THPTS 100 μM associado a iluminação, produziu uma redução de 6 Log₁₀ na contagem de colônias em todas as bactérias. Assim, indicando que o fármaco THPTS tem um alto grau de inativação fotodinâmica. Os autores concluíram que o THPTS foi promissor na melhoraria da eficácia da terapia fotodinâmica contra bactérias resistentes. Portanto, os resultados in vitro obtidos indicam o sucesso dessa terapia, os autores sugerem que modelos de estudos in vivo devem ser desenvolvidos para comprovar essa modalidade terapêutica.

Em 2013, Ribeiro et al.⁵⁰ realizou um estudo para investigar o efeito fotodinâmico de diferentes concentrações de Cur e doses de luz LED na inativação de suspensões planctônicas de cepa padrão de MSSA e MRSA por meio de contagem de colônias (UFC/mL). Além disso, avaliaram a citotoxicidade dos parâmetros antimicrobianos dessa terapia em cultura celular de fibroblastos (L929) por meio da análise do metabolismo celular, utilizando para isto o teste de MTT e da morfologia celular utilizando a MEV. As suspensões de MSSA foram tratadas em concetrações de 0,1 a 20 µL de Cur; as supensões planctônicas de MRSA fora tratadas com 5, 10 e 20 µL. Então, as supensões foram iluminadas por LED. Foram obtidas diluições seriadas a partir de cada amostra, realizou-se plaqueamento e após 48 h contagem das colônias (UFC/mL). Para os fibroblastos, a

alterações morfológicas foram avaliadas por MEV. As concentrações da Cur que variam de 0,1 a 20,0 μ M em combinação com as doses de luz testadas provocaram inativação do MSSA. No entanto, apenas a concentração de 20 μ M combinado com a maior dose de luz resultou em morte do MRSA. Essa combinação também promoveu uma redução de 80% no metabolismo celular dos fibroblastos e alterações morfológicas estavam presentes, indicando que a membrana da célula era o alvo principal fototerapia. A combinação de Cur com luz LED causou inativação de ambas cepas de *S. aureus* e podem representar uma alternativa de tratamento para erradicar a MRSA, responsável pela morbidade e mortalidade significativamente maior e os custos de saúde aumentados em instituições e hospitais.

3 PROPOSIÇÃO

Com base nas informações obtidas da literatura, o presente estudo teve como objetivo avaliar in vitro a eficácia da Terapia Fotodinâmica Antimicrobiana na inativação de biofilme de MSSA (ATCC 25923) e MRSA (ATCC 33591). A aplicação da aPDT foi mediada pelos fotossensibilizadores Curcumina (Cur – 20 μ M, 40 μ M e 80 μ M) e Photodithazine[®] (PDZ – 50 mg/L e 75 mg/L), iluminados por fonte de luz do tipo LED (~ 455 nm e ~ 660 nm, respectivamente) e com dose de luz para Cur de 5,28 J/cm² e para a PDZ 5,28 J/cm² e 50 J/cm².

Material e Método

4 MATERIAL E MÉTODO

Para as fases experimentais desta pesquisa foram utilizados os seguintes materiais de consumo, instrumentos e equipamentos:

4.1 Materiais de Consumo

- Cultura de *Staphylococcus aureus* proveniente da empresa American Type Culture Collection (ATCC number - 25923), Manassas, VA, EUA.
- Cultura de *Staphylococcus aureus* methicillin-resistant (MRSA) proveniente da empresa American Type Culture Collection (ATCC number - 33591), Manassas, VA, EUA.
- 3. Água destilada.
- Meio de cultura RPMI 1640, produzido pelo Sigma-Aldrich, Saint Louis, Missouri, EUA; Lote nº 127K83042.
- Meio de cultura Mannitol Salt Agar, produzido por Acumedia Manufactures Inc., Baltimore, Maryland, EUA. Cod 7143A. Lote nº 0007-101.

6. Curcumina/Curcumin, pureza \geq 95%, marca Fluka, produzida por Sigma-Aldrich, Saint Louis, Missouri, USA; Lote n° 31908326.

- 7. Fotossensibilizador Photodithazine[®], (Rússia Moscou).
- Dimethyl Sulfoxide (DMSO), pureza ≥ 99,9%, produzido por Sigma-Aldrich, Saint Louis, Missouri, USA; Lote nº 02944DE.

9. Cloreto de Sódio (P.A.-A.C.S.), produzido pela Qhemis, Cotia, São Paulo, Brasil; Lote nº Q0021.

10. Cloreto de Potássio (P.A.-A.C.S.), produzido pela Dinâmica Química Contemporânea Ltda., Diadema, São Paulo, Brasil; Lote nº 32811.

 Fosfato de Sódio Bibásico Anidro, produzido pelo laboratório Synth, Diadema, São Paulo, Brasil; Lote nº 127403.

12. Fosfato de Potássio Mono. P.A.-A.C.S., produzido pela Dinâmica Química Contemporânea Ltda., Diadema, São Paulo, Brasil; Lote nº 31963.

D-glicose Anidra (Dextrose) P.A.-A.C.S., produzida pelo laboratório Synth, Diadema,
São Paulo, Brasil; Lote nº 126228.

14. Acetona P.A.-A.C.S., produzida pelo laboratório Qhemis, Cotia, São Paulo, Brasil; Lote nº 32915.

15. Menadiona, produzida por Sigma Co., St. Louis, MO, EUA; Lote nº 065K0230.

16. Pontas descartáveis para micropipeta, fabricadas pela Axygen Scientific, Union City, California, EUA.

17. Microtubos tipo Eppendorfs Graduado, produzido por Homo Polymer-Boie Proof.

 Sal de Tetrazólium (XTT), produzido pela Sigma-Aldrich, Saint Louis, Missouri, EUA; Lote nº 128K1275.

19. Placa de orifícios TPP[®] com 24 cavidades de fundo chato estéril, embaladas individualmente, fabricadas pela TPP, Trasadingen, Suíça.

20. Placa de orifícios TPP[®] com 96 cavidades de fundo chato estéril, embaladas individualmente, fabricadas pela TPP, Trasadingen, Suíça.

21. Tubos tipo Falcon de 50 mL, fundo cônico estéril, produzidos pela TPP, Trasadingen, Suíça.

22. Frasco coletor universal translúcido estéril 80mL;

23. Placas de Petri 90 X 15 mm descartáveis, estéreis, fabricadas pelo J Prolab Indústria e Comércio de Produtos para Laboratório Ltda., São José dos Pinhais, Paraná, Brasil.

4.2 Instrumentos

1. Sistema de filtração a vácuo com poros de $0,22 \mu m$, estéril e embalado individualmente, 500 mL, fabricado pela TPP.

- 2. Tubos de ensaio 100 X 10 mm, fabricados por Pyrex
- 3. Béquer graduado, fabricado pela Vidrolabor
- 4. Erlenmeyer graduado, fabricado pela Vidrolabor
- 5. Micropipeta de 20-200 µL, fabricada pela Boeco, Alemanha
- 6. Micropipeta de 100-1000 μL, fabricada pela Boeco, Alemanha
- 7. Micropipeta de 1-10 mL, fabricada pela Boeco, Alemanha
- 8. Micropipeta de 1-5 mL, fabricada pela Boeco, Alemanha

9. Micropipeta Multicanal HTL Discovery Comfort, 12 Canais, 50-300 μL, fabricada pela HTL, Warsaw, Polônia.

 Bico de Bunsen, fabricado por J.Prolab Indústria e Comércio de Produtos para Laboratório Ltda., São José dos Pinhais, Paraná, Brasil.

11. Alça para inoculação de micro-organismos, fabricadas pela Lab Plast, Osasco, São Paulo, Brasil.

12. Alça de Drigalsky, fabricada pela Vidrolabor

4.3 Equipamentos

 Balança de precisão, fabricada por Gehaka – Indústria e Comércio Eletro Eletrônica Gehaka Limitada, São Paulo, São Paulo, Brasil Modelo: BG 400 No 016450

2. Centrífuga, fabricada por Eppendorf AG, Hamburg, Germânia. Modelo: 5810R;

3. Centrífuga Revan, fabricada por Revan do Brasil Modelo: Ciclo CI

 Contador de colônias CP 600 Plus, fabricado pela Phoenix Indústria e Comércio de Equipamentos Científicos Limitada, Araraquara, São Paulo, Brasil Modelo: CP-600 Nr-série: 919

5. Autoclave vertical, fabricada pela Phoenix Indústria e Comércio de Equipamentos Científicos Limitada, Araraquara, São Paulo, Brasil Modelo : AV 60 No 6614

6. Estufa para secagem e esterilização, fabricada por Marconi Equipamentos Laboratoriais Limitada, Piracicaba, São Paulo, Brasil Modelo: MA 033 Série: 9819

 Espectrofotômetro – Biospectro, produzido por Equipar Ltda, Curitiba, PR, Brasil. Modelo: SP-220;

8. Agitador de tubos, fabricado por Phoenix Indústria e Comércio de Equipamentos Científicos Limitada, Araraquara, São Paulo, Brasil Modelo: AP 56 Série: 9803

9. Estufa bacteriológica, produzida por Marconi Equipamentos Laboratoriais Limitada, Piracicaba, São Paulo, Brasil Modelo – MA 0324 Série – 9819011

10. Incubadora de bancada shaker, fabricada por Quimis Aparelhos Científicos Ltda, Diadema, SP, Brasil. Modelo: Q816M20;

11. Mesa difusora de iluminação com LEDs azuis (455 nm) desenvolvido no Instituto de Física da Universidade de São Paulo, campus de São Carlos (IFSC), denominada "*Bio Table*".

12. Mesa difusora de iluminação com LEDs vermelhos (660 nm) desenvolvido no Institudo de Física da Universidade de São Paulo, campus de SãoCarlos (IFSC), denominada "*Dual Table*".

4.4 Preparo de soluções e meios de cultura

O meio de cultura RPMI (Sigma-Aldrich, Saint Louis, Missouri, EUA; Lote n° 127K83042) foi preparado para a inoculação dos micro-organismos e para a contaminação dos orifícios da placa de cultura^{16, 39}. O meio de cultura RPMI foi proporcionado, manipulado e esterilizado segundo as recomendações do fabricante. Esse meio de cultura constitui-se de um caldo nutriente que propicia o crescimento de vários tipos de micro-organismos, incluindo a espécie testada neste estudo. Para o preparo do meio, foi utilizada uma proporção de 111 g de pó para 1 L de água destilada. O meio de cultura, tubos Falcon, béqueres e demais instrumentos de auxílio foram então esterilizados em autoclave vertical a 121 °C por 20 min. Após esse procedimento, eles foram resfriados, lentamente, até atingirem a temperatura ambiente, e armazenados em refrigerador a 5 °C até a sua utilização nos procedimentos experimentais.

As soluções salinas utilizadas nos experimentos foram preparadas pela diluição completa de 8,5 g de cloreto de sódio em 1 L de água destilada. Após a dissolução, foi realizado a esterilização em autoclave vertical a 121 °C por 20 min e resfriados lentamente até atingirem a temperatura ambiente. Finalmente, foram armazenados em refrigerador a 5 °C até a utilização nos procedimentos experimentais.

O meio de cultura selecionado para a semeadura das placas de Petri é o *Mannitol Salt Agar* (Mannitol Salt Agar, produzido por Acumedia Manufactures Inc., Baltimore, Maryland, EUA. Cod 7143A. Lote nº 0007-101)^{16, 39}. Esse meio de cultura foi proporcionado, manipulado e esterilizado segundo as recomendações do fabricante. Para o preparo do meio, foi utilizada uma proporção de 111 g de pó para 1 L de água destilada. Após o seu preparo, a solução resultante foi dispensada em erlenmeyer devidamente identificados, datados e tampados com papel alumínio. Em seguida, foi levado à autoclave vertical para esterilização a 121 °C por 20 min. O meio de cultura, ainda na fase líquida, foi vertido em placas de Petri descartáveis. As placas de Petri foram, individualmente, fechadas e mantidas na câmara de fluxo laminar até a solidificação do meio de cultura, sendo, então, devidamente identificadas, datadas e incubadas em estufa bacteriológica a 37 °C por 24 h. Estes

procedimentos foram realizados com o objetivo de verificar a esterilização das placas de Petri e do meio de cultura. Após a incubação, foram descartadas deste estudo todas as placas que apresentarem quaisquer indícios de crescimento microbiano. A seguir, a parte inferior de cada placa de Petri foi externamente dividida em quadrantes com o auxílio de caneta retroprojetor, facilitando, posteriormente, os procedimentos de semeadura dos micro-organismos (diluição seriada por quadrante) (Figura 1). Finalmente, as placas de Petri foram armazenadas em refrigerador a 5 °C para serem utilizadas nos procedimentos de semeadura dos microorganismos.

Figura 1 – Placa de Petri com meio de cultura *Mannitol Salt Agar* e divisão externa em quadrantes. Araraquara, 2013.

Para a lavagem dos orifícios da placa de cultura, foi utilizado a solução salina divisora de fosfato – PBS (NaCl 100 mM, NaH2PO4 100 mM, pH 7,2)⁵⁷. Para a sua obtenção, foram preparadas duas soluções (A e B). Para o preparo da solução A, foi utilizada uma proporção de 4 g de NaCl, 0,12 g de KH₂PO₄, 0,1g de KCl para 250 mL de água destilada. Para o preparo da solução B, uma proporção de 0,72 g de Na₂HPO₄ para 250 mL de água destilada foi utilizada. A seguir, as soluções foram esterilizadas no interior de béqueres em autoclave vertical a 121 °C por 20 min e resfriadas, lentamente, até atingirem a temperatura ambiente. Após o resfriamento, as soluções foram misturadas em um béquer de 600 mL, o qual foi coberto com papel alumínio, identificado e datado.

Para a realização dos ensaios de redução de 2,3-bis (2-methoxy-4-nitro-5sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) nos orifícios da placa de cultura, foram utilizadas solução de PBS 200 mM, solução de XTT e solução de menadiona⁵⁷. Para o preparo da solução de PBS 200 mM, as soluções A e B foram obtidas como descrito anteriormente. Após sua esterilização, 18 g de glicose foram adicionados a solução A, que foi filtrada a vácuo e misturada à solução B em um béquer de 600 mL. A seguir, esse béquer foi também coberto com papel alumínio, identificado e datado. A solução de XTT foi preparada por meio da mistura de água ultra pura com pó de XTT a uma concentração de 1 mg/mL. Essa mistura foi filtrada a vácuo e dispensada em tubo Falcon de 20 mL, o qual foi mantido a - 70 °C até o momento da realização do experimento. A solução de menadiona foi preparada pela mistura de 0,007 g de pó de menadiona em 1 mL de acetona a 0,4 mM. A solução resultante foi vertida em tubo eppendorf e submetida a um procedimento de diluição seriada até 10^{-2} . Esta solução foi preparada imediatamente antes de cada experimento e foi utilizada a diluição seriada de 10^{-2} .

4.5 Preparo dos micro-organismos

Os micro-organismos selecionados para a realização deste experimento MSSA (ATCC 25923) e MRSA (ATCC 33591) foram obtidos junto à *American Type Culture Colection* e foram congelados a -70 °C em RPMI e estocado até o momento de sua utilização. Previamente à contaminação dos orifícios da placa de cultura, o micro-organismo foi semeado em placas de Petri sobre o meio de cultura *Mannitol Salt Agar* e incubado a 37 °C por 48 h. A seguir, uma alçada do micro-organismo foi transferida para um tubo Falcon contendo 10 mL meio de cultura RPMI e incubada a 37 °C durante 16 h (período denominado *overnight*)^{16, 39}.

Para o preparo da suspensão de contaminação dos orifícios das placas, os tubos Falcon foram centrifugados a 5000 rpm por 5 min e as células sedimentadas foram lavadas duas vezes com solução PBS estéril por meio de agitação e centrifugação. As células lavadas foram ressuspendidas em 10 mL de RPMI estéril e a densidade óptica da suspensão foi determinada e padronizada em uma concentração aproximada de 10⁷ UFC/mL⁴⁵, utilizando-se espectrofotômetro com comprimento de onda de 600 nm.

4.6 Procedimentos de formação de biofilme

Para o desenvolvimento de biofilme nas placas de cultura, a contaminação foi realizada em placas pré-estéreis de 96 orificios. Uma alíquota de 50 μ L da suspensão celular (10⁷ UFC/mL) e 50 μ L do meio de cultura RPMI foi transferida para cada orificio⁴⁵, em seguida a placa de cultura foi incubada a 37 °C sob agitação (75 rpm) por 90 min – fase de adesão. Após o período de adesão, as amostras foram lavadas cuidadosamente duas vezes com 100 μ L solução PBS estéril. Essa lavagem foi realizada duas vezes com a função de remover

as células não aderidas, tamponar o meio e remover os metabólitos. Em seguida, 150 μ L de RPMI estéril foram adicionados em cada orifício. As placas foram mantidas a 37 °C sob agitação durante 24h. Decorrido esse período, foram retirados dos orifícios da placa de cultura 75 μ L e foi então adicionados 75 μ L de RPMI novo, em seguida, as placas foram mantidas a 37 °C sob agitação durante mais 24 h, completando o período de 48 h de incubação (fase de maturação).

4.7 Grupos de estudos

Foram formados biofilmes de MSSA e MRSA com a finalidade de se avaliar a eficácia da aPDT na inativação desses micro-organismos. Os experimentos para cada grupo foram realizados em três ocasiões distintas. Para a aplicação da Terapia Fotodinâmica Antimicrobiana foi utilizado dois fotossensibilizadores e duas doses de luz: Curcumina (Cur: 20μ M, 40μ M e 80μ M – ~5,28 J/cm²) e Photodithazine[®] (PDZ: 50 mg/L e 75 mg/L – 5,28 J/cm² e 50 J/cm²). Os grupos de estudos obtidos estão apresentados na Tabela 1. Os grupos são descritos de acordo com algumas siglas, onde a sigla CP indica os grupos Controle Positivo (ausência de PS e iluminação), a sigla CL indica os grupos Controle Luz (ausência de PS com iluminação), a sigla R quando presente indica a presença do micro-organismo resistente (MRSA) e o símbolo * (asterisco) indica os grupos iluminados com a maior dose de luz (50 J/cm²).

Tabela 1	- Grupos experimentais segundo o fotossensibilizador utilizado, concentração do
	fotossensibilizador, micro-organismo, comprimento de onda do LED e Dose de luz.
	Araraquara, 2013.

Grupo	Fossensibilizador e Concentração	Dose de luz (J/cm ²)	Micro- organismo	Comprimento de onda (nm)
CP Cur	_	0	MSSA	_
Cur 20	Cur 20 µM	0	MSSA	_
Cur 40	Cur 40 µM	0	MSSA	_
Cur 80	Cur 80 µM	0	MSSA	_
CL Cur	_	5,28	MSSA	~ 455

aPDT Cur20	Cur 20 μM	5,28	MSSA	~ 455
aPDT Cur 40	Cur 40 µM	5,28	MSSA	~ 455
aPDT Cur 80	Cur 80 µM	5,28	MSSA	~ 455
CP Cur R	_	0	MRSA	_
Cur 20 R	Cur 20 µM	0	MRSA	_
Cur 40 R	Cur 40 µM	0	MRSA	_
Cur 80 R	Cur 80 µM	0	MRSA	_
CL Cur R	-	5,28	MRSA	~ 455
aPDT Cur20 R	Cur 20 µM	5,28	MRSA	~ 455
aPDT Cur 40 R	Cur 40 µM	5,28	MRSA	~ 455
aPDT Cur 80 R	Cur 80 µM	5,28	MRSA	~ 455
CP PDZ	_	0	MSSA	_
PDZ 50	PDZ 50 mg/L	0	MSSA	_
PDZ 75	PDZ 75 mg/L	0	MSSA	_
CL PDZ	_	5,28	MSSA	~ 660
aPDT PDZ 50	PDZ 50 mg/L	5,28	MSSA	~ 660
aPDT PDZ 75	PDZ 75 mg/L	5,28	MSSA	~ 660
CP PDZ*	_	50	MSSA	~ 660
aPDT PDZ 50*	PDZ 50 mg/L	50	MSSA	~ 660
aPDT PDZ 75*	PDZ 75 mg/L	50	MSSA	~ 660
CP PDZ R	_	0	MRSA	_
PDZ 50 R	PDZ 50 mg/L	0	MRSA	_
PDZ 75 R	PDZ 75 mg/L	0	MRSA	_
CL PDZ R	-	5,28	MRSA	~ 660
aPDT PDZ 50 R	PDZ 50 mg/L	5,28	MRSA	~ 660
aPDT PDZ 75 R	PDZ 75 mg/L	5,28	MRSA	~ 660
CL PDZ R*	_	50	MRSA	~ 660
aPDT PDZ 50 R*	PDZ 50 mg/L	50	MRSA	~ 660
aPDT PDZ 75 R*	PDZ 75 mg/L	50	MRSA	~ 660

4.8 Fonte de luz

Cada PS possui absorção de luz máxima em comprimentos de onda específicos, assim foram utilizados dois aparelhos de iluminação. Para iluminação da Cur foi utilizado o aparelho "*Bio Table*" (LEDs azuis) com comprimento de onda de 455 nm e para a PDZ foi utilizado o aparelho "*Dual Table*" (LEDs vermelhos) com comprimento de onda de 660 nm. O conhecimento da potência de saída do aparelho utilizado é um fator importante a ser considerado, pois este valor, juntamente com o tempo de iluminação, determina a quantidade de energia aplicada na amostra irradiada. Essa quantidade de energia é denominada dose de luz ou fluência, e é expressa pela energia por área (J/cm²). A fórmula empregada para o cálculo da dose é a seguinte:

Dose (J/cm^2) = Potência (W/cm^2) . Tempo (s)

Os aparelhos de LED utilizados neste estudo foram idealizados e desenvolvidos no Instituto de Física de São Carlos (IFSC), da Universidade de São Paulo (USP). Sendo a potência do aparelho "*Bio Table*" 22,0 mW/cm² e "*Dual Table*" 71,7 mW/cm² (Figura 2 – A e B, respectivamente). Nesse estudo a dose de luz utilizada para todos os grupos experimentais com o PS Cur foi de 5,28 J/cm² e para o PS PDZ 5,28 J/cm² e 50 J/cm². Dessa forma, o tempo de iluminação calculado para a Cur foi de 4 min e para a PDZ 75 s e 12 min (APÊNDICE 2).

Figura 2 – Na figura A, o aparelho "*Bio Table*" com LEDs azuis; Na figura B, o aparelho "*Dual Table*" com LEDs vermelhos. Araraquara, 2013.

4.9 Aplicação da Terapia Fotodinâmica Antimicrobiana

Após o período de incubação de 48 h os biofilmes formados foram lavados duas vezes com PBS (150 µL) e foram submetidos aos tratamentos descritos na Tabela 1.

Nos grupos experimentais que foram fotossenssibilizados pela Cur, foram pipetados 200 μ L do PS, ajustado nas concentrações de 20 μ M, 40 μ M e 80 μ M (APÊNDICE 1). Essas placas foram envolvidas por papel alumínio, permanecendo nesta condição durante 20 min (tempo de pré-irradiação) e, em seguida, cada placa foi iluminada com o aparelho *"Bio Table"* (~455 nm) a 5,28 J/cm², por 4 min (APÊNDICE 2). Para os grupos experimentais que foram fotossenssibilizados pelo PDZ, foram tratados com 200 μ L do PS, ajustado nas concentrações de 50 mg/L e 75 mg/L (APÊNDICE 1), a seguir, as placas contendo esses grupos experimentais foram envolvidas por papel alumínio, permanecendo nesta condição durante 20 min (tempo de pré-irradiação) e, em seguida, cada placa foi iluminada com o aparelho *"Dual Table"* (~660 nm) e de acordo com o grupo com a dose de luz de 5,28 J/cm² ou 50 J/cm², durante 75 s e 12 min, respectivamente (APÊNDICE 2).

Nos grupos experimentais com o PS em diferentes concentrações (Cur ou PDZ), porém com em ausência de iluminação, esses foram tratados com 200 µL do PS correspondente. Após o período foram submetidos aos demais procedimentos experimentais de acordo com o grupo.

Nos grupos experimentais com ausência dos PS, receberam somente 200 µL de solução salina, a iluminação esteve presente ou ausente, de acordo com grupo, e após esse período foram submetidos aos demais procedimentos experimentais de acordo com o seu grupo.

Posteriormente a aplicação da aPDT, a viabilidade dos micro-organismos nos biofilmes foi avaliada por meio da contagem de colônias (UFC/mL) e pelo Ensaio de XTT (atividade metabólica).

4.10 Ensaio de XTT

Após os procedimentos experimentais, os biofilmes foram submetidos à avaliação da viabilidade celular por meio do ensaio de redução de 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT). O Ensaio de XTT se baseia na redução do sal de tetrazolium pelo sistema de transporte de elétrons ativos em bactérias⁵¹.

Portanto, após a realização das condições experimentais e controle, as soluções de fotossensibilizadores e/ou solução salina, presentes nos poços associadas aos biofilmes, foram removidas e substituídas por 200 μ L da solução final de XTT. Em seguida, as placas foram incubadas a 37°C por 3 h⁵⁶. Após esse período, uma alíquota de 100 μ L do produto da degradação do XTT de cada amostra foi transferida a outra placa de 96 orifícios (Figura 3). Adicionalmente, uma alíquota de 100 μ L do XTT não reagido foi utilizada como "*Blank*". O resultado desta reação química, a absorbância, foi medido através das mudanças colorimétricas da solução de XTT, utilizando-se o espectrofotômetro (Elisa) com filtro 492 nm.

Figura 3 – Placa de 96 orifícios para leitura em espectrofotômetro, após 3 h de contato com a solução de XTT. Araraquara, 2013.

4.11 Contagem de colônias (UFC/mL)

Após os procedimentos experimentais, os biofilmes foram desarranjados com fricção para completo desprendimento do biofilme do orifício da placa e uma alíquota de 100 μ L foi transferido para o eppendorf, realizando-se a diluição seriada até 10⁻⁶ (Figura 4).

Figura 4 – Eppendorfs com 900 μL solução salina, em que foi realizado a diluição seriada de 10⁻¹ a 10⁻⁶. Araraquara, 2013.

O plaqueamento das amostras foi realizado em duplicata para uma melhor caracterização do valor obtido. Após a incubação das placas de Petri a 37°C por 48 h, foi realizado o cálculo do número de micro-organismos viáveis, em valores de UFC/mL, obtidos nas amostras experimentais e controles. Para o cálculo desses valores, as colônias viáveis presentes nas placas de Petri de cada duplicata foram contadas com o contador de colônias digital (Figura 5).

Figura 5 – Plaqueamento em duplicata, após 48 h, foi realizado a contagem das colônias (UFC/mL). Araraquara, 2013.

A contagem do número de colônias foi realizada em uma das diluições semeadas (10⁻³, 10⁻⁴, 10⁻⁵ e 10⁻⁶), cujos valores situavam-se entre 30 e 300 colônias. Após a contagem, foi obtida a média entre as duplicatas de cada amostra e o número de unidades formadoras de colônias por mililitro (UFC/mL) foi calculado. Para o cálculo de UFC/mL, foi utilizada a fórmula a seguir:

UFC/mL = <u>número de colônias X 10ⁿ</u>

q

Nessa fórmula, "n" equivale ao valor absoluto da diluição (3, 4, 5 ou 6), e "q" equivale à quantidade, em mL, pipetada para cada diluição quando nas semeaduras das placas. No presente estudo, q = 0,025 já que foram pipetados 25 µL para cada diluição. Os valores de UFC/mL obtidos foram deixados em notação científica. Os valores de UFC/mL obtidos foram extremamente elevados, então foram transformadas em logaritmo na base 10 (Log₁₀) para uma melhor compreensão dos resultados e também para possibilitar a análise pretendida neste trabalho.

4.12. Microscopia Confocal de Varredura à Laser

Para a realização da Microscopia Confocal de Varredura à Laser (MCVL), foram desenvolvidos corpos-de-prova a partir de placas de 24 orifícios pré-estéreis $\text{TPP}^{\mathbb{R}}$ confeccionada em poliestireno. Os corpos foram confeccionados com auxílio de fresa cilíndrica acoplada a motor de alta rotação, em seguida receberam polimento nas laterais e lavagem em água destilada estéril. Foi obtido assim corpos-de-prova arredondados e transparentes de 8 mm de diâmetro. Para realização da nova esterilização, utilizou-se a iluminação por luz UV por 20 min de cada lado, seguido por irradiação em micro-ondas por 3 min na potência 650 W. Então, realizou-se a formação dos biofilmes de MSSA e MRSA sobre os corpos-de-prova estéreis em placas de 24 orifícios. Após 48 h realizou-se de acordo com o grupo os procedimentos experimentais da aPDT. Foi aplicado sobre os biofilmes o kit de corante de viabilidade bacteriana LIVE/DEAD BacLigh™ (L-7012, Invitrogen, CA, USA). Esse kit trata-se de um ensaio de fluorescência baseado na mistura do SYTO 9 e do Iodeto de Propídeo (IP). O primeiro corante é um ácido nucleico de fluorescência verde, corando as células viáveis das bactérias, enquanto que o IP é um ácido nucleico de cor vermelha fluorescente que marca as cálulas bacterianas que não estão viáveis, ou seja, os micro-organismos em que as membranas foram danificadas³⁹. A mistura de ambos corantes foi adicionado a cada bilfilmes bacteriano e mantido incubado por 15 min. Então, eles foram colocadoes em lamínulas e examinados pelo microscópio confocal Leica TCS SPE (Leica Microsystems GmbH, Wetzlar, Germany). Cortes seriados de biofilmes no plano xy foram obtidos em intervalos de1 µM ao longo do eixo z, e verificado pelo modo de transmissão. A excitação/emissão máxima foi entre 480 nm e 500 nm para o SYTO 9 e entre 490 nm e 635 nm para o IP, permitindo assim o exame dos biofilme corados.

4.13 Tratamento estatístico

Os resultados obtidos foram tabulados (APÊNDICE 3) e foram submetidos a teste de normalidade, apresentando como resultado uma distribuição normal. Assim, foram realizadas análises de variância (ANOVA) de dois fatores de efeitos fixos (iluminação (ausência ou presença) e concentração do fotossensibilizador). Estas análises foram complementadas por comparações múltiplas de médias pelo teste de *Tukey* (p < 0.05).

Resultado

5 RESULTADO

A avaliação estatística da eficácia da Terapia Fotodinâmica Antimicrobiana na inativação de biofilmes de MSSA e MRSA, por meio da contagens de colônias (UFC/mL) e pela absorbância do ensaio de XTT, foi efetuada por análises de variância (ANOVA) de dois fatores de efeitos fixos. Essas análises foram complementadas por comparações múltiplas de médias pelo teste de *Tukey*. Previamente às análises, as contagens de colônias foram transformadas em logaritmos decimais (Log₁₀) para viabilizar as análises de variância. Adotou-se o nível de significância de 5% (p < 0.05).

5.1 Fotossensibilizador Curcumina

Na Tabela 2 são mostrados as médias e desvios padrão de absorbâncias resultantes do método XTT, aplicado para a avaliação de inativação de biofilmes dos microorganismos MSSA e MRSA, para diferentes concentrações do fotossensibilizador Curcumina (0, 20, 40 e 80 µM), na ausência ou presença de iluminação.

A ANOVA apontou efeito significativo da interação entre iluminação e concentração de Cur (p < 0,001), tanto para o MSSA como para o MRSA. O teste *Tukey* foi aplicado para a comparação de médias dessa interação com o resultado resumido na Tabela 2. Para ambos micro-organismos, na ausência de iluminação as médias de absorbância diminuíram significativamente conforme as concentrações de Cur aumentaram. Entretanto, quando a iluminação esteve presente, a redução foi maior na maior concentração do PS, chegando próximo a 94% para o MSSA e de 89% para o MRSA.

Grupo	MSSA			MRSA		
ernp e	Média	DP		Média	DP	
CN Cur	1,236	0,105	f	1,409	0,056	Н
Cur 20	1,102	0,066	de	1,195	0,091	F
Cur 40	1,025	0,114	d	1,098	0,101	Е
Cur 80	0,622	0,078	с	0,728	0,102	D
CL Cur	1,167	0,080	ef	1,303	0,126	G
aPDT Cur 20	0,173	0,021	b	0,478	0,097	С
aPDT Cur 40	0,112	0,009	ab	0,335	0,062	В
aPDT Cur 80	0,070	0,016	а	0,150	0,018	А

Tabela 2 – Médias e desvios padrão (DP) de absorbâncias do método XTT na avaliação de inativação de biofilme de MSSA e MRSA. Araraquara, 2013.

Médias para cada micro-organismo com letras iguais não são significativamente diferentes pelo teste de Tukey (p>0,05).

Nas Figuras 6 e 7 estão representadas graficamente as médias amostrais de absorbâncias, juntamente com intervalos de confiança de 95% para as médias populacionais. Esses intervalos permitem quantificar as diferenças observadas entre as médias.

Figura 6 – Médias amostrais (colunas) de absorbâncias do método XTT e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MSSA, de acordo com a presença ou ausência de iluminação e das concentrações de Cur. Araraquara, 2013.

Figura 7 – Médias amostrais (colunas) de absorbâncias do método XTT e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MRSA, de acordo com a presença ou ausência de iluminação e das concentrações de Cur. Araraquara, 2013.

Na Tabela 3 são dadas médias e desvios padrão de logaritmos de UFC/mL para a avaliação de inativação de biofilmes dos micro-organismos MSSA e MRSA, para diferentes concentrações de Cur (20 μ M, 40 μ M e 80 μ M), na ausência ou presença de iluminação. Tanto para o MSSA como para o MRSA, houve pela análise de variância efeito significativo da interação entre a concentração da Cur e iluminação. O teste de *Tukey* foi aplicado para interpretar esta interação e o resultado está resumido na Tabela 3. Em média, a diminuição do número de colônias sem a iluminação foi muito pequena, ficando na maior concentração de Cur próximo de 0,5 Log₁₀ em ambos micro-organismos. A iluminação promoveu maior redução no número de colônias, obtendo na maior concentração do PS uma redução próximo de 3 Log₁₀ para o MSSA e de 2 Log₁₀ para o MRSA.

Grupo	MSSA			MRSA			
	Média	DP		Média	DP		
CN Cur	8,987	0,031	g	9,159	0,029	G	
Cur 20	8,870	0,020	f	8,780	0,016	Е	
Cur 40	8,626	0,023	e	8,768	0,021	Е	
Cur 80	8,495	0,022	d	8,664	0,024	D	
CL Cur	8,873	0,023	f	9,068	0,013	F	
aPDT Cur 20	7,863	0,039	с	8,341	0,025	С	
aPDT Cur 40	7,145	0,036	b	7,610	0,013	В	
aPDT Cur 80	5,630	0.035	а	7,370	0,020	А	

Tabela 3 – Médias e desvios padrão (DP) de logaritmos de UFC/mL na avaliação de inativação de biofilme de MSSA e MRSA. Araraquara, 2013.

Médias para cada micro-organismo com letras iguais não são significativamente diferentes pelo teste de Tukey (p>0,05).

Na Figura 8 e 9 estão representadas graficamente as médias amostrais de logaritmos de UFC/mL, juntamente com intervalos de confiança de 95% para as médias populacionais. Esses intervalos, de amplitude muito pequena, indicam alta precisão nas médias calculadas.

Figura 8 – Médias amostrais (colunas) de logaritmo de UFC/mL e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MSSA, de acordo com a presença ou ausência de iluminação e das concentrações de Cur. Araraquara, 2013.

Figura 9 – Médias amostrais (colunas) de logaritmo de UFC/mL e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MRSA, de acordo com a presença ou ausência de iluminação e das concentrações de Cur. Araraquara, 2013.

5.2 Fotossensibilizador Photodithazine®

Na Tabela 4 são apresentadas as médias e desvios padrão de absorbâncias resultantes do método XTT, aplicado para a avaliação da atividade metabólica de biofilmes dos micro-organismos MSSA e MRSA, para diferentes concentrações do fotossensibilizador PDZ (50 e 75 mg/L) e dose de luz (0, 5,28 e 50 J/cm²), na ausência ou presença de iluminação.

A ANOVA indicou efeito significativo da interação entre iluminação e concentração de PDZ (p < 0,001), tanto para o MSSA como para o MRSA. O teste *Tukey* foi aplicado para a comparação de médias dessa interação com o resultado resumido na Tabela 4. Para ambos micro-organimos, na ausência da PDZ as médias de absorbância foram as maiores. As médias diminuíram sucessivamente conforme se aumentaram as concentrações da PDZ. Quando presente a iluminação, observou-se as maiores reduções do metabolismo. Para a menor dose de luz (5,28 J/cm²), foi observado na maior concentração do PS uma redução próxima de 43% para o MSSA e de 27% para o MRSA. Na maior dose de luz (50 J/cm²), houve uma redução ainda maior do metabolismo, assim para a maior concentração do PS foi observado uma redução próxima de 88% para o MSSA e de 72% para o MRSA.

Grupo	LED	MSSA		MF	RSA		
	(J/cm^2)	Média	DP		Média	DP	
CN PDZ	0	1,409	0,020	g	1,443	0,017	G
PDZ 50		1,246	0,036	f	1,382	0,010	F
PDZ 75		1,138	0,031	e	1,335	0,018	Е
CL PDZ	5,28	1,403	0,031	g	1,440	0,011	G
aPDT PDZ 50		0,927	0,024	d	1,204	0,007	D
aPDT PDZ 75		0,800	0,020	с	1,059	0,019	С
CL PDZ*	50	1,401	0,035	g	1,436	0,010	G
aPDT PDZ 50*		0,641	0,012	b	0,835	0,006	В
aPDT PDZ 75*		0,168	0,007	а	0,255	0,014	А

Tabela 4 – Médias e desvios padrão (DP) de absorbâncias do método XTT na avaliação de inativação de biofilme de MSSA e MRSA. Araraquara, 2013.

Médias para cada micro-organismo com letras iguais não são significativamente diferentes pelo teste de Tukey (p>0,05).

Nas Figuras 10 e 11 estão representadas graficamente as médias amostrais de absorbâncias, juntamente com intervalos de confiança de 95% para as médias populacionais. Esses intervalos permitem quantificar as diferenças observadas entre as médias.

Figura 10 – Médias amostrais (colunas) de absorbâncias do método XTT e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MSSA, de acordo com a presença ou ausência de iluminação, das concentrações de PDZ e dose de luz. Araraquara, 2013.

Figura 11 – Médias amostrais (colunas) de absorbâncias do método XTT e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MRSA, de acordo com a presença ou ausência de iluminação, das concentrações de PDZ e dose de luz. Araraquara, 2013.

Na Tabela 5 são dadas médias e desvios padrão de logaritmos de UFC/mL para a avaliação de inativação de biofilmes do micro-organismo MSSA e MRSA, para diferentes concentrações de PDZ, na ausência ou presença de iluminação e doses de luz. Houve pela análise de variância efeito significativo da interação entre concentração de PDZ e iluminação para os dois micro-organismos (p < 0,001). Então o teste de *Tukey* foi aplicado para interpretar a interação e o resultado está resumido na Tabela 5. Foram apontadas diferenças entre médias de grupos submetidos a doses diferentes de LED. As diminuições das médias de Log₁₀ (UFC/mL) são menores com a menor dose de luz (5,28 J/cm²) quando comparado com a maior dose de luz, ficando a redução próxima de 1 Log₁₀ para ambos os micro-organismos. A maior dose de luz (50 J/cm²) promoveu maior redução no número de colônias, ficando a média de MSSA em cerca de 3 Log₁₀ e de 2 Log₁₀ para o MRSA.

Grupo	LED	MSSA		MF	RSA		
	(J/cm^2)	Média	DP		Média	DP	
CN PDZ	0	9,066	0,006	h	10,065	0,004	Η
PDZ 50		8,923	0,019	f	9,827	0,008	F
PDZ 75		8,667	0,020	e	9,682	0,012	Е
CL PDZ	5,28	9,007	0,005	g	9,973	0,011	G
aPDT PDZ 50		8,601	0,017	d	9,583	0,017	D
aPDT PDZ 75		8,486	0,014	с	9,240	0,039	С
CL PDZ*	50	9,006	0,005	g	10,055	0,006	Η
aPDT PDZ 50*		6,405	0,022	b	8,487	0,020	В
aPDT PDZ 75*		6,123	0,030	а	8,143	0,035	А

Tabela 5 – Médias e desvios padrão (DP) de logaritmos de UFC/mL na avaliação de inativação de biofilme de MSSA. Araraquara, 2013.

Médias para cada micro-organismo com letras iguais não são significativamente diferentes pelo teste de Tukey (p>0,05).

Na Figura 12 e 13 estão representadas graficamente as médias amostrais de logaritmos de UFC/mL, juntamente com intervalos de confiança de 95% para as médias populacionais. Esses intervalos, de amplitude muito pequena, indicam alta precisão nas médias calculadas.

Figura 12 – Médias amostrais (colunas) de logaritmo de UFC/mL e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MSSA, de acordo com a presença ou ausência de iluminação das concentrações de PDZ e dose de luz. Araraquara, 2013.

Figura 13 – Médias amostrais (colunas) de logaritmo de UFC/mL e intervalos de confiança de 95% para as médias populacionais, na avaliação de inativação de biofilme de MRSA, de acordo com a presença ou ausência de iluminação, das concentrações de PDZ e dose de luz. Araraquara, 2013.

5.3 Análise por Microscopia Confocal de Varredura à Laser

Para avaliar a distribuição da viabilidade bacteriana após a aPDT através da estrutura dos biofilmes, foi utilizado o kit de coloração LIVE/DEAD[®] da *Invitrogen* (SYTO 9, verde = células viáveis; IP, vermelho = células não viáveis) associado a visualização por MCVL. Para isso foi obtido imagens *overlay* e vista lateral dos biofilmes com o PS na concentração e dose de luz de maior eficiência fotodinâmica (Cur 80 μ M – 5,28 J/cm²; PDZ 75 mg/L – 50 J/cm²). Além disso, foi também obtido imagens dos grupos controle negativo e controle positivo (com os PS em ausência de luz).

5.3.1 Curcumina

A Figura 14 apresenta a imagem *overlay* do grupo controle positivo (CP), controle Cur 80 e o grupo aPDT Cur 80 dos biofilmes de MSSA (A, B e C, respectivamente). Para o grupo CP, quase todas as células permaneceram verde, indicando que o biofilme de MSSA estava viável no período avaliado (Figura 14 A). Quando avaliado o grupo Cur 80, em ausência de luz, observou-se que a maioria da células estavam coradas em verde, porém observou-se um número maior de células coradas em vermelho (Figura 14 B). Essa observação confirma a citotoxicidade da Cur mesmo em ausência de luz, demonstrado anteriormente pelo Ensaio de XTT e pelo crescimento microbiano (UFC/mL). No grupo aPDT Cur 80 foi observado um maior número de células coradas em vermelho, indicando que a terapia foi eficiente em danificar a membrana das bactérias e assim levar a morte o MSSA (Figura 14 C).

Figura 14 – A: Imagem *overlay* de um biofilme de 42,8 μm de espessura do MSSA do grupo controle positivo. Com predominância da fluorescência verde do corante SYTO 9 indicando um grande número de células bacterianas viáveis; B: Imagem *overlay* de um biofilmes de 33,6 μm de espessura após 20 min de contato com a Cur; C: Imagem *overlay* de um biofilme de 28,6 μm de espessura após 20 min de contato com a Cur; C imagem *overlay* de um biofilme de 28,6 μm de espessura após 20 min de contato com a Cur e iluminado por 4 min. Presença de grande quantidade de fluorescência vermelha, indicando células não viáveis. Ampliação original: ×40. Araraquara, 2013.

A Figura 15 apresenta a imagem *overlay* dos biofilmes de MRSA coradas com as fluorescências verde e vermelha. O grupo controle positivo (CP) permaneceu altamente viável (coloração verde) durante todo o período do experimento (Figura 15 A). Quando avaliado o grupo Cur 80, em ausência de luz, foi observado pela arquitetura do biofilme algumas células coradas em vermelho, demonstrando a capacidade da Cur em causar danos a membrana (Figura 15 B). Para o grupo aPDT Cur 80, foi observado um aumento do número de células coradas em vermelho, estando distribuídas uniformemente nos biofilmes de MRSA (Figura 15 C). Figura 15 – A: Imagem *overlay* de um biofilme de 43,0 μm de espessura do MRSA do grupo controle positivo. Com predominância da fluorescência verde do corante SYTO 9 indicando um grande número de células bacterianas viáveis; B: Imagem *overlay* de um biofilme de 13,6 μm de espessura após 20 min de contato com a Cur; C: Imagem *overlay* de um biofilme de 25,7 μm de espessura após 20 min de contato com a Cur e iluminado por 4 min. Presença de grande quantidade de fluorescência vermelha, indicando células não viáveis. Ampliação original: ×40. Araraquara, 2013.

A vista lateral dos biofilmes de MSSA e MRSA são apresentadas na Figura 16. Essas imagens permitem visualizar as diferenças entre as arquiteturas de ambas as cepas de *S. aureus* e também a distribuição das células viáveis ou não através da estrutura do biofilme. Para os biofilmes de MSSA, as células viáveis estão concentradas em aglomerados, criando picos e vales com áreas não coradas (setas brancas) em uma arquitetura de biofilme específica (Figura 16 A, 16 B e 16 C). Para o MRSA, foi observado uma distribuição uniforme das células das bactérias, caracterizando uma estrutura homogênea (Figura 16 D, 16 E e 16 F). Os biofilmes de MSSA são mais espessos que o de MRSA, com uma média de 35 µm para a cepa sucetível e uma média de 25 µm para a resistente. Após o tratamento com aPDT, as células coradas em vermelho dos biofilmes de MSSA estavam predominantemente localizadas nas regiões inferiores e média do biofilme (seta amarela) (Figura 3C). Para os biofilmes de MRSA, as células não viáveis após a aPDT estavam distribuídas aleatoriamente por toda arquitetura, preferencialmente nas regiões superficiais e média (seta amarela) (Figura 3F). Figura 16 – A: Secção transversal e visão lateral de um biofilme de 42,8 μm de espessura do grupo controle positivo; B: Secção transversal e visão lateral de um biofilme de 33,6 μm de espessura após 20 min de contato com a Cur; C: Secção transversal e visão lateral de um biofilme de 33,6 μm de espessura após 20 min de contato com a Cur e iluminado por 4 min. D: Secção transversal e visão lateral de um biofilme de 43,0 μm de espessura do grupo controle negative; E: Secção transversal e visão lateral de um biofilme de 13,6 μm de espessura após 20 min de contato com a Cur; F: Secção transversal e visão lateral de um biofilme de 13,6 μm de espessura após 20 min de contato com a Cur; F: Secção transversal e visão lateral de um biofilme de 13,6 μm de espessura após 20 min de contato com a Cur; F: Secção transversal e visão lateral de um biofilme de 25,7 μm de espessura após 20 min de contato com a Cur; Araraquara, 2013.

5.3.2 Photodithazine[®]

A Figura 17 apresenta a imagem *overlay* do grupo controle positivo (CP), grupo PDZ 75 e o grupo aPDT PDZ 75 dos biofilmes de MSSA (A, B e C, respectivamente). Para o grupo CP, quase todas as células permaneceram verde, indicando que o biofilme de MSSA estava viável no período avaliado (Figura 17 A). Quando avaliado o grupo PDZ 75, em ausência de luz, observou-se que a maioria das células estavam coradas em verde, porém observou-se um número maior de células coradas em vermelho (Figura 17 B). Essa observação confirma a citotoxicidade da PDZ mesmo em ausência de luz, demonstrado anteriormente pelo Ensaio de XTT e pelo crescimento microbiano (UFC/mL). No grupo aPDT PDZ 75 foi observado um maior número de células coradas em vermelho, indicando que a terapia foi eficiente em danificar a membrana das bactérias e assim levar a morte o MSSA (Figura 17 C).

Figura 17 – A: Imagem *overlay* de um biofilme de 38,5 μm de espessura do MSSA do grupo controle positivo. Com predominância da fluorescência verde do corante SYTO 9 indicando um grande número de células bacterianas viáveis; B: Imagem *overlay* de um biofilmes de 21,4 μm de espessura após 20 min de contato com a PDZ; C: Imagem *overlay* de um biofilme de 44,2 μm de espessura após 20 min de contato com a PDZ e iluminado por 12 min. Presença de grande quantidade de fluorescência vermelha, indicando células não viáveis. Ampliação original: ×40. Araraquara, 2013.

A Figura 18 apresenta a visão geral dos biofilmes de MRSA coradas com as fluorescências verde e vermelha. O grupo controle positivi (CP) permaneceu altamente viável (coloração verde) durante todo o período do experimento (Figura 18 A). Quando avaliado o

grupo PDZ 75, em ausência de luz, foi observado pela arquitetura do biofilmes algumas células coradas em vermelho, demonstrando a capacidade da PDZ em causar danos a membrana (Figura 18 B). Para o grupo aPDT PDZ 75, foi observado um aumento do número de células coradas em vermelho, estando distribuídas uniformemente nos biofilmes de MRSA (Figura 18 C).

Figura 18 – A: Imagem *overlay* de um biofilme de 40,0 μm de espessura do MRSA do grupo controle positivo. Com predominância da fluorescência verde do corante SYTO 9 indicando um grande número de células bacterianas viáveis; B: Imagem *overlay* de um biofilme de 14,3 μm de espessura após 20 min de contato com a PDZ; C: Imagem *overlay* de um biofilme de 24,2 μm de espessura após 20 min de contato com a PDZ e iluminado por 12 min. Presença de grande quantidade de fluorescência vermelha, indicando células não viáveis. Ampliação original: ×40. Araraquara, 2013.

A vista lateral dos biofilmes de MSSA e MRSA são apresentadas na Figura 19. Essas imagens permitem visualizar as diferenças entre as arquiteturas de ambas as cepas de *S. aureus* e também a distribuição das células viáveis ou não através da estrutura do biofilme. Assim como nos grupos com a Cur, foi observado diferentes arquiteturas dos biofilmes, de acordo com o micro-organismo. Para os biofilmes de MSSA as células viáveis estavam concentradas em aglomerados, criando picos e vales com áreas não coradas (setas brancas) em uma arquitetura de biofilme específica (Figura 19 A, 19 B e 19 C). Para o MRSA, foi observado uma distribuição uniforme das células das bactérias, caracterizando uma estrutura homogênea (Figura 19 D, 19 E e 19 F). Os biofilmes de MSSA são mais espessos que o de MRSA, com uma média de 35 µm para a cepa sucetível e uma média de 25 µm para a resistente. Após o tratamento com aPDT, as células coradas em vermelho dos biofilmes de

MSSA estavam predominantemente localizadas nas regiões inferiores e média do biofilme (seta amarela) (Figura 19 C). Para os biofilmes de MRSA, as células não viáveis após a aPDT estavam distribuídas aleatoriamente por toda arquitetura, preferencialmente nas regiões superficiais e média (seta amarela) (Figura 19 F).

Figura 19 – A: Secção transversal e visão lateral de um biofilme de 38,5 μm de espessura do grupo controle positivo; B: Secção transversal e visão lateral de um biofilme de 21,4 μm de espessura após 20 min de contato com a PDZ; C: Secção transversal e visão lateral de um biofilme de 44,2 μm de espessura após 20 min de contato com a PDZ e iluminado por 12 min. D: Secção transversal e visão lateral de um biofilme de 40,0 μm de espessura do grupo controle positivo; E: Secção transversal e visão lateral de um biofilme de 14,3 μm de espessura após 20 min de contato com a PDZ; F: Secção transversal e visão lateral de um biofilme de 14,3 μm de espessura após 20 min de contato com a PDZ; F: Secção transversal e visão lateral de um biofilme de 14,3 μm de espessura após 20 min de contato com a PDZ; F: Secção transversal e visão lateral de um biofilme de 24,2 μm de espessura após 20 min de contato com a PDZ.

Discussão

6 DISCUSSÃO

Os micro-organismos avaliados nesse estudo in vitro, MSSA e MRSA, são frequentemente associados com infecções hospitalares, principalmente as cepas resistentes à meticilina. Ambas são comumente isoladas em indivíduos idosos e imunocomprometidos^{8, 28, 29}, resultando em infecções sistêmicas graves nesses pacientes. Infecções por MRSA estão frequentemente associadas a altas taxas de mortalidade^{12, 21, 32}, o que caracteriza esse tipo de infecção como um problema de saúde pública mundial. O MRSA é frequentemente encontrado em biofilme, considerada a mais comum forma de organização bacteriana na natureza¹⁴ e muitas vezes associada a infecções crônicas⁹. A estrutura do biofilme atua como um revestimento protetor atraindo diversas cepas, que formam uma estrutura envolvida em matriz de polímero extracelular responsável por aumentar em quase 1000 vezes a resistência a agentes antimicrobianos, tais como os detergentes e os antibióticos³⁵. Nesse contexto, estratégias alternativas para o tratamento de infecções crônicas localizadas têm sido sugeridas, incluindo a terapia fotodinâmica antimicrobiana (aPDT). Dessa forma, o presente estudo in vitro avaliou o efeito antimicrobiano da aPDT mediada pelos PSs Cur e PDZ em biofilmes de cepas *S. aureus* sucetível e resistente à meticilina.

A Cur é um pigmento natural amarelo obtido da planta *Curcuma longa* e tem sido estudada devido sua ação terapêutica demonstrada pelas suas propriedades anti-oxidativa, anti-séptica, analgésica, anti-inflamatória e anti-microbiana^{38, 48, 54}. Essa última característica chama a atenção de diversas áreas, incluindo a fotoquímica e fotobiologia em que se propõe à aPDT como um método alternativo para micro-organismos resistentes aos antibióticos. A associação da Cur com a luz foi proposta com o intuito de potencializar o efeito antimicrobiano deste pigmento, tornando-se um fotossensibilizador. Alguns autores afirmam que, diferentemente do que acontece com muitos PS, a Cur não se liga às células, ou liga-se fracamente a elas, deixando cerca de 90% na sua fase livre. A remoção da Cur não ligada, portanto, promove redução acentuada dos efeitos fototóxicos da Cur¹³. Dessa maneira, a Cur pode representar um PS efetivo e seguro, tornando possível a sua aplicabilidade clínica. A Photodithazine[®] é uma clorina obtida a partir da cianobactéria *Spirulina platensis*, encontrada em grande quantidade na Rússia, o que faz com que tenha baixo custo. Esse composto é classificado entre as clorinas, que são porfirinas hidrofílicas reduzidas que apresentam forte

banda de absorção na região vermelha do espectro fotomagnético. O PS PDZ vem sendo aplicado atualmente com sucesso na terapida fotodinâmica contra o câncer, devido ao seu alto rendimento quântico de formação de oxigênio singlete.

Em nosso estudo, a aPDT mediada pela Cur sobre biofilmes de MSSA e MRSA resultou em redução significativa na ativividade metabólica do biofilme e do número de colônias viáveis de bactérias para as duas cepas avaliadas. Para os biofilmes de MSSA, foi observada uma redução de 86% e 95% na sua atividade metabólica quando utilizado a Cur na concentração de 20 μ M e 80 μ M, respectivamente. Para os biofilmes de MRSA, a redução foi de aproximadamente de 66% e 90%, respectivamente. O ensaio de XTT nas bactérias é baseado na redução do sal metil-tetrazólio pelo sistema ativo de transporte de elétrons¹, diretamente relacionado com a atividade metabólica das bactérias. Dovigo et al.²⁰ também observaram que quando utilizou-se 40 μ M de Cur, a atividade metabólica de biofilmes de *C. albicans, C. glabrata,* e *C. Tropicalis* reduziu-se em 85%, 85%, e 73%, respectivamente, com uma dose de luz de 18 J/cm².

Em estudo recente foi observado que a concentração de 20 µM de Cur associado com uma fonte de luz LED resultou na morte de suspensões planctônicas de MSSA e MRSA⁴⁵. Diferentemente da fotoinativação completa observada na suspensão de bactéria, no presente estudo foi observado redução significativa de ~3,3 Log₁₀ para o biofilme de MSSA e de ~1,8 Log₁₀ para o biofilme de MRSA, utilizando-se a maior concentração de Cur (80 µM) associada a luz, quando comparado com o grupo controle positivo (CP). A dificuldade em se obter a inativação completa de biofilmes de bactérias pela aPDT já tem sido relatada^{17, 27}. No estudo de Hegge et al.²⁷, não foi detectado viabilidade da suspensão planctônica de S. Epidermidis após a aPDT utilizando uma solução super saturada de Cur e uma dose de luz de 18 J/cm². No entanto, foi observado nos biofilmes uma redução de menos de 1 Log₁₀ quando utilizado 10 µM de Cur associado a luz. Grinholc et al.²⁴ investigaram o efeito da aPDT contra 81 cepas de S. aureus, incluindo cepas suscetíveis e resistentes à meticilina, para determinar se diferentes isolados da mesma espécie podem responder de forma diferente a fotoinativação utilizando a protoporfirinadiarginate (PPArg2).Os autores encontraram que a resposta das cepas em suspensão planctônica não foi homogênea, variando de 0 a 3 Log₁₀ na contagem de colônias viáveis. Além disso, eles investigaram a capacidade das cepas em produzir biofilme in vitro com o intuito de esclarecer as diferenças observadas para a resistência à inativação fotodinâmica. Os resultados revelaram que, entre oito cepas altamente sensíveis, 6 (75%) não produzem biofilme, e para o grupo de 7 cepas resistentes ou intermediárias, apenas um isolado (14,3%) não foi capaz de formar biofilme. Nas culturas planctônicas os micro-organismos estão dispersos em meio líquido, ao contrário, nos biofilmes os micro-organismos estão organizados em uma comunidade de células envolta por uma matriz polimérica de substâncias extracelulares. Devido a essa organização diferenciada, o comportamento e a suscetibilidade dos micro-organismos se alteram durante o processo de desenvolvimento do biofilme³⁴, o que resulta em conseqüências importantes para o tratamento. A organização dos micro-organismos em biofilmes os torna menos suscetíveis à ação da aPDT provavelmente devido a organização séssil e em multicamadas observadas em biofilmes, o que garante vantagens ecológicas, proteção contra agentes antimicrobianos e dificuldade na penetração do PS nas camadas mais profundas⁴⁴. Dessa forma, torna-se evidente que o desenvolvimento de biofilmes deve ser considerado um fator de virulência destes micro-organismos, o que resulta em maior dificuldade no tratamento das infecções bacterianas. Considerando esses aspectos, os resultados obtidos no presente estudo utilizando a aPDT mediada pela Cur são promissores, uma vez que em uma única aplicação da aPDT utilizando 4 min de iluminação (LED), promoveu redução de 3 e 2 Log₁₀ para o MSSA e MRSA, respectivamente.

Em nosso estudo, utilizando-se a PDZ como PS, quando utilizado a maior dose de luz (50 J/cm²) foi observado que a aPDT promoveu uma redução significativa na atividade metabólica dos biofilmes de MSSA e MRSA, obtendo aproximadamente redução de 88% e 72%, respectivamente. Além disso foi observado redução significativa de ~2,9 Log₁₀ para o biofilme de MSSA e de ~1,9 Log₁₀ para o biofilme de MRSA, utilizando-se a maior dose de luz avaliada (50 J/cm²), quando comparado com o grupo controle positivo (CP). O Ensaio de XTT constatou essa redução acentuada na atividade metabólica imediatamente após a aplicação do aPDT, entretanto, esses micro-organismos voltaram a se desenvolver quando colocados em um meio rico em nutrientes (*Mannitol Agar Salt*). Tem sido sugerido que os micro-organismos apresentam a capacidade de reduzir seu metabolismo frente a uma agressão, entretanto, eles podem continuar viáveis como foi observado nesse estudo. Como demonstrado pela Microscopia Confocal de Varredura à Laser (MCVL) realizada imediatamente após a aPDT, provavelmente, a substância fotossensibilizadora penetrou diferentemente em ambos os biofilmes, atuando somente na camada superficial do MRSA e

76

mediada por um composto conjugado a base de clorina pode reduzir em até 90% o biofilme formado por *Actinomyces naeslundii* sobre a superfície do esmalte bovino associando a aPDT a ondas fotomecânicas geradas pelo laser. Os autores concluíram que a PDZ pode ser utilizada na aPDT para o tratamento de periodontite crônica, pois reduziu a formação de biofilme em aproximadamente 80%⁶¹.

Na literatura tem sido relatado que a aPDT mediada pelo PDZ foi efetiva na inativação de culturas planctônicas de fungos e bactérias. Strakhovskaia et al.63 demonstraram a eficiência fotodinâmica da PDZ quando associada a iluminação para fotoinativação de suspensões planctônicas de C. guilliermondii. Park et al.43 demonstrou a eficácia da aPDT mediada por uma clorina na fotoinativação de S. aureus. As suspensões de MSSA foram tratadas com concentrações de 10 µM e 20 µM e mantidas em contato com a substância por 50 min, em seguida, foram iluminadas. Os autores observaram completa inviabilização do crescimento bacteriano. Com o mesmo intuito, Tegos et al.66 avaliou a eficácia da aPDT mediada por conjugados policatiônicos (PEI) com a clorina (ce6) em 3 formas moleculares: PEI-ce6 lin, PEI-ce6 LMW e PEI-ce6 HMW, na fotoinativação de suspensões de S. aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa e C. albicans. O PEI-ce6 HMW foi efetivo na inativação de todos os micro-organismos avaliados, enquanto que o conjugado PEI-ce6 lin foi efetivo apenas na inativação do S. aureus e C. albicans. Outro estudo avaliou a eficácia da aPDT mediada por um derivado da porfirina (tetrahydroporphyrin-tetratosylat – THPTS), associado com a iluminação sobre suspensões planctônicas de MSSA, MRSA, E. coli e P. aeruginosa. Após os tratamentos, o número de contagem de colônias reduziu em até 6 Log_{10} para os todos os micro-organismos avaliados⁵⁶. Esses resultados ressaltam que é fundamental considerar a forma de organização dos microorganismos ao avaliar os resultados obtidos com a aplicação da aPDT^{21, 31}.

A fototoxicidade dos PSs para as cepas bacterianas parece ser mediado pelo estado excitado do PS gerado pela excitação de luz, que resulta em energia ou transferência de eletrón para o oxigênio molecular, com consequente formação de ROS, o que promove a destruição das células microbianas²⁷. A análise MCVL utilizando o kit de coloração LIVE/DEAD[®] permitiu avaliar a viabilidade ou não da estrutura dos biofilmes após a aPDT. Embora a contagem de bactérias fluorescentes verdes ou vermelhas não tenha sido realizada, as imagens claramente demonstram que após tratamento com aPDT ocorreu um aumento

acentuado de células coradas em vermelho, mostrando assim a presença de membranas de bactérias danificadas como resultado da fototoxicidade dos fotossensibilizadoes.

No presente estudo, ambos PSs utilizados, sem associação de luz exibiram potencial de reduzir o metabolismo dos biofilmes e também o crescimento microbiano, para todas as concentrações avaliadas. Por outro lado, as imagens obtidas no MCVL, confirmaram esses resultados uma vez que pôde ser observado aumento de membranas danificadas nos biofilmes quando comparado com o controle, para os dois micro-organismos. Nossos resultados estão de acordo com a literatura quando utilizado os dois PS. A Cur possui diversas propriedades, entre elas a ação anti-bacteriana mesmo em condições com ausência de iluminação^{38, 48, 54}, promovendo assim a ação citotóxica observada na MCVL. A PDZ é classificada entre as clorinas, que são porfirinas hidrofílicas reduzidas que têm demonstrado maior eficiência em relação às Porfirinas^{23, 43}. Por outro lado, Schastak et al.⁵³ utilizaram o PS *tetrahydroporphyrin-tetratosylat* (THPTS), que é uma Porfirina, na aplicação da aPDT sobre bactérias e quando realizado MCVL não observaram citoxicidade do PS com ausência de luz.

Outro aspecto importante é que as imagens de MCVL demonstraram claramente as diferenças entre ambas as cepas de *S. aureus* na arquitetura dos biofilmes. Embora, os biofilmes de MSSA foram mais espessos do que os de MRSA, eles apresentaram uma estrutura com picos e vales que podem ter levado a uma melhor distribuição e penetração do PS, resultando numa maior atividade fototóxica para os biofilmes de MSSA(~ 3,3 Log₁₀) quando comparado com os de MRSA (~ 1,8 Log₁₀) para a Cur. Para a PDZ, também houve uma maior atividade fototóxica para os biofilmes de MSSA(~ 2,9 Log₁₀) comparado com os de MRSA (~ 1,9 Log₁₀). As cepas dos biofilmes resistentes apresentaram uma arquitetura mais uniforme, sem aglomerados de células. Além disso, Szpakowska et al.⁶⁴ relataram uma maior resistência das cepas de MRSA na aPDT, devido a uma estrutura de polissacarídeo capsular na superfície das células bacterianas, o que limitaria a penetração da PS para dentro das células de MRSA, reduzindo assim os efeitos tóxicos da EROs gerados durante a inativação fotodinâmica⁶⁴.

As substâncias fotossensibilizadoras são facilmente degradadas após a exposição a luz. Dovigo et al.²⁰ encontraram que os efeitos máximos da Cur são obtidos quando utilizado uma dose de luz de \sim 5,28 J/cm² com um comprimento de onda \sim 455 nm, e após esse período, ocorre um aumento de substâncias degradadas, o que estabiliza o efeito da

Cur, mantendo assim um patamar e conseqüente declínio em sua atividade citotóxica. Dessa forma, a dose de luz utilizada nesse estudo foi de 5,28 J/cm² e o tempo de iluminação calculado de 4 min. Correa et al.¹¹ demonstraram que a PDZ apresenta atividade fotodinâmica até uma dose de ~ 50 J/cm², em um comprimento de onda de ~ 660 nm. Nessa dose de luz a sustância alcançará um patamar e posterior declínio em sua absorção. Desse modo, para efeitos comparativos adotamos nesse estudo uma dose menor que a recomendada pela literatura (5,28 J/cm²) e uma dose de acordo com a sua atividade fotodinâmica (50 J/cm²). Os resultados do presente estudo demonstraram que a menor dose de luz utilizada (5,28 J/cm²) não proporciona os efeitos máximos da substância fotossensibilizadora na inviabilização dos micro-organismos. A Cur possui uma fotodegradação mais acentuada, o que permite aplicação de uma menor dose de luz, com consequente menor tempo de iluminação. De outro modo, a PDZ necessita de uma maior dose de luz e assim consequentemente maior tempo de iluminação. Todavia, quando comparamos os efeitos da Cur e da PDZ, os resultados demonstraram que foi obtida uma redução do crescimento microbiano e da atividade metabólica, com valores muito próximos quando utilizado a dose de luz adequada a cada substância, no comprimento de onda específico para cada um dos PSs avaliados.

Considerando os resultados obtidos, este estudo in vitro demonstrou que uma única aplicação de aPDT mediada pela Cur (80 μM) com a dose de luz de 5,28 J/cm² e aPDT mediada pela PDZ (75 mg/L) associada a 50 J/cm² resultou em redução significativa na atividade metabólica e na viabilidade dos biofilmes MSSA e MRSA. Esse resultados demonstram que a aPDT pode ser considerada uma terapia promissora para atuar de forma sinérgica para o tratamento de pacientes idosos e imunocomprometidos. Além disso, estudos in vitro utilizando diferentes concentrações, bem como investigações em associação com antibióticos são necessários para confirmar o potencial da Cur e da PDZ em agir como um fotossensibilizador eficaz na aPDT.

7 CONCLUSÃO

Com base nas condições experimentais do presente estudo e de acordo com a metodologia empregada, foi possível concluir que:

- 1. A aPDT mediada pela Cur e PDZ, reduziram significativamente a atividade metabólica e a viabilidade dos biofilmes de MSSA e MRSA;
- 2. A redução da atividade metabólica e da viabilidade dos micro-organismos foi mais acentuada nas maiores concentrações dos PSs;
- 3. A maior dose de luz (50 J/cm²) apresentou os melhores resultados para a PDZ;
- 4. O MRSA apresentou menor suscetibilidade a aPDT, independente do PS utilizado;
- 5. A MCVL demonstrou diferentes arquiteturas dos biofilmes de MSSA e MRSA;
- 6. Houve fototoxicidade aos PSs em ausência de iluminação, porém a fototoxicidade aumentou acentuadamente após a aplicação da aPDT;
- 7. Para todos os micro-organismos, independente do PS, não houve completa inativação dos biofilmes formados.

Referências

REFERÊNCIAS*

1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol. 2007; 595: 1-75.

2. Altieri KT, Sanitá PV, Machado AL, Giampaolo ET, Pavarina AC, Vergani CE. Effectiveness of two disinfectant solutions and microwave irradiation in disinfecting complete dentures contaminated with methicillin-resistant Staphylococcus aureus. J Am Dent Assoc. 2012; 143(3): 270-7.

3. Bertoloni G, Reddi E, Gatta M, Burlini C, Jori G. Factors influencing the haematoporphyrinsensitized photoinactivation of Candida albicans. J Gen Microbiol. 1989; 135(4): 957-66.

4. Binkley CJ, Haugh GS, Kitchens DH, Wallace DL, Sessler DI. Oral microbial and respiratory status of persons with mental retardation/intellectual and developmental disability: an observational cohort study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 108(5): 722-31.

5. Buehlmann M, Frei R, Fenner L, Dangel M, Fluckiger U, Widmer AF. Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus carriers. Infect Control Hosp Epidemiol. 2008; 29(6): 510-6.

6. Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiplecell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007; 1776(1): 86-107.

7. Cavalcante RS, Imasato H, Bagnato VS, Perussi JR. A combination of techniques to evaluate photodynamic efficiency of photossensitizers. Laser Phys Lett. 2009; 6(1): 64-70.

8. Chadwick PR. Revised UK guidelines for the control of methicillin-resistant Staphylococcus aureus in hospitals. Int J Antimicrob Agents. 1999; 11(2): 89-91.

9. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 2001; 183(18): 5385-94.

10. Chang SC, Hsieh SM, Chen ML, Sheng WH, Chen YC. Oral fusidic acid fails to eradicate methicillin-resistant Staphylococcus aureus colonization and results in emergence of fusidic acid-resistant strains. Diagn Microbiol Infect Dis. 2000; 36(2): 131-6.

11. Correa JC, Bagnato VS, Imasato H, Perussi JR. Previous illumination of a water soluble chlorine photosensitizer increases its cytotoxicity. Laser Physics. 2012; 22(9): 1387-94.

12. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003(1); 36: 53-9.

^{*} De acordo com o manual da FOAr/UNESP, adaptadas das normas Vancouver. Disponível no site: http://www.nlm.nih.gov/bsd/uniform_requirements.html

13. Dahl TA, McGowan WM, Shand MA, Srinivasan VS. Photokilling of bacteria by natural dye curcumin. Arch Microbiol. 1989; 151(2): 183-5.

14. Demidova TN, Hamblin MR. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother. 2005; 49(6): 2329-35.

15. Didilescu AC, Skaug N, Marica C, Didilescu C. Respiratory pathogens in dental plaque of hospitalized patients with chronic lung diseases. Clin Oral Invest. 2005; 9(3): 141-7.

16. Dovigo LN, Pavarina AC, Ribeiro DG, Oliveira JA, Vergani CE, Machado AL. Microwave disinfection of complete dentures contaminated in vitro with selected bacteria. J Prosthodont. 2009; 18(7): 611-7.

17. Dovigo LN, Pavarina AC, Ribeiro DG, Adriano CS, Bagnato VS. Photodynamic inactivation of four Candida species induced by Photogem[®]. Braz J Microbiol. 2010; 41: 42-9.

18. Dovigo LN, Pavarina AC, Ribeiro AP, Brunetti IL, Costa CA, Jacomassi DP, Bagnato VS, Kurachi C. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol. 2011; 87(4): 895-903.

19. Dovigo LN, Pavarina AC, Mima EGO, Giampaolo ET, Vergani CE, Bagnato VS. Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses. 2011; 54(2): 123-30.

20. Dovigo LN, Pavarina AC, Carmello JC, Machado AL, Brunetti IL, Bagnato VS. Susceptibility of clinical isolates of Candida to photodynamic effects of Curcumin. Lasers Surg Med. 2011; 43(9): 927-34.

21. Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis. 2003; 36(5): 592-8.

22. Epstein J, Sanderson IR, Macdonald TT. Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr. 2010; 103(11): 1545-57.

23. Ferreira J, Menezes PFC, Kurachi C, Sibata C, Allison RR, Bagnato VS. Photostability of different chlorine photossensitizers. Laser Phys Lett. 2008; 5(2): 156-61.

24. Grinholc M, Szramka B, Kurlenda J, Graczyk A, Bielawski KP. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. J Photochem Photobiol B. 2008; 90(1): 57-63.

25. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labishinski H, Hiramatsu K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother. 1998; 42(2): 199-209.

26. Harbarth S, Dharan S, Liassine N, Herrault P, Auckenthaler R, Pittet D. Randomized, placebocontrolled, double-blind trial to evaluate the efficacy of mupirocin for eradicating carriage of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1999; 43(6): 1412-6.

27. Hegge AB, Bruzell E, Kristensen S, Tonnesen HH. Photoinactivation of Staphylococcus epidermidis biofilms and suspensions by the hydrophobic photosensitizer curcumin- effect of selected nanocarrier: studies on curcumin and curcuminoides XLVII. Eur J Pharm Sci. 2012; 47(1): 65-74.

28. Hemidal A, Nord CK. Colonization of the oropharynx with pathogenic microorganisms – A potencial risk for infection in compromised patients. Chemotherapia. 1985; 4(2): 186-91.

29. Honma K, Tawara Y, Okuda K. Detection of methicillin-resistant Staphylococcus aureus in human saliva and on denture surfaces. Bull Tokyo Dent Coll. 1994; 35(4): 217-20.

30. Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, et al. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med. 2006; 38(5): 468-81.

31. Juzeniene A. Chlorin e6-based photosensitizers for photodynamic therapy and photodiagnosis. Photodiagnosis Photodyn Ther. 2009; 6(2): 94-6.

32. Kim T, Oh PI, Simor AE. The economic impact of methicillin-resistant Staphylococcus aureus in Canadian hospitals. Infect Control Hosp Epidemiol. 2001; 22(2): 99-104.

 Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res. 2007; 86(8): 694-707.

34. Lamfon H, Porter SR, McCullough M, Pratten J. The susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. J Antimicrob Chemother. 2004; 53(2): 383-5.

35. Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001; 45(4): 999–1007.

36. Lu WP, Sun Y, Bauer MD, Paule S, Koenigs PM, Kraft WG. Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with betalactams using electrospray mass spectrometry. Biochemistry. 1999; 38(20): 6537-46.

37. Maeda Y, Kenny F, Coulter WA, Loughrey A, Nagano Y, Goldsmith CE, et al. Bactericidal activity of denture-cleaning formulations against planktonic health care–associated and community-associated methicillin-resistant Staphylococcus aureus. Am J Infect Control. 2007; 35(9): 619-22.

38. Martins CVB, Silva DL, Neres ATM, Magalhães TFF, Watanabe GA, Modolo LV, et al. Curcumin as a promising antifungal of clinical interest. J Antimicrob Chemother. 2009; 63(2): 337-9.

39. Mima EG, Pavarina AC, Neppelenbroek KH, Spolidorio DMP, Giampaolo ET, Vergani CE. Effect of different exposure times of microwave irradiation on the disinfection of a hard chairside reline resin. J Prosthodont. 2008; 17(4): 312-7.

40. Mylotte J. Nursing home-acquired pneumonia. Clin Infect Dis. 2002; 35: 1205-11.

41. Naughton B, Mylotte J, Tayara A. Outcome of nursing home-acquired pneumonia: derivation and application of a practical model to predict 30 day mortality. J Am Geriatr Soc. 2000; 48(10): 1292-9.

42. Niederman MS. Nosocomial pneumonia in the elderly patient: chronic care facility and hospital considerations. Clin Chest Med. 1993; 14(3): 479-90.

43. Park JH, Moon YH, Bang IS, Kim YC, Kim SA, Ahn SG, Yoon JH. Antimicrobial effect of photodynamic therapy using a highly pure chlorine e6. Laser Med Sci. 2010; 25(5): 705-10.

44. Perezous LF, Flaitz CM, Goldschmidt ME, Engelmeier RL. Colonization of Candida species in denture wearers with emphasis on HIV infection: a literature review. J Prosthet Dent. 2005; 93(3): 288-93.

45. Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME. Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol Med Microbial 2010; 59(3): 493-503.

46. Peterson LR, Quick JN, Jensen B, Homann S, Johnson S, Tenquist J, et al. Emergence of ciprofloxacin resistance in nosocomial methicillin-resistant Staphylococcus aureus isolates. Resistance during ciprofloxacin plus rifampin therapy for methicillin-resistant S. aureus colonization. Arch Intern Med. 1990; 150(10): 2151-5.

47. Pietrokovski J, Azuelos J, Tau S, Mostavoy R. Oral findings in elderly nursing home residents in selected countries: oral hygiene conditions and plaque accumulation on denture surfaces. J Prosthet Dent. 1995; 73(2): 136-41.

48. Priyadarsini KI. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C: Photochem Rev. 2009; 10(2): 81–95.

49. Raghavendran K, Mylotte J, Scannapieco F. Nursing home-associated pneumonia, hospitalacquired pneumonia and ventilator-associated pneumonia: the contribution of dental biofilms and periodontal inflammation. Periodontol 2000. 2007; 44(1): 164-77.

50. Ribeiro AP, Pavarina AC, Dovigo LN, Brunetti IL, Bagnato VS, Vergani CE, Costa CA. Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts. Lasers Med Sci. 2013; 28(2): 391-8.

51. Roslev P, King GM. Application of a tetrazolium salt with a water-soluble formazan as an indicator of viability in respiring bacteria. Appl Environ Microbiol. 1993; 59(9): 2891-6.

52. Rossi T, Peltonen R, Laine J, Eerola E, Vuopio-Varkila J, Kotilainen P. Eradication of the long-term carriage of methicillin-resistant Staphylococcus aureus in patients wearing dentures: a follow-up of 10 patients. J Hosp Infect. 1996; 34(4): 311-20.

53. Schastak S, Ziganshyna S, Gitter B, Wiedemann P, Claudepierre T. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength. PLoS One. 2010; 5(7): e11674.

54. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005; 41(13): 1955-68.

55. Sheng WH, Wang JT, Lauderdale TL, Weng CM, Chen D, Chang SC. Epidemiology and susceptibilities of methicillin-resistant Staphylococcus aureus in Taiwan: emphasis on chlorhexidine susceptibility. Diagn Microbiol Infect Dis. 2009; 63(3): 309-13.

56. Silva WJ, Seneviratne J, Parahitiyawa N, Rosa EA, Samaranayake LP, Del Bel Cury AA. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J. 2008; 19(4): 364-9.

57. Simor AE, Phillips E, McGeer A, Konvalinka A, Loeb M, Devlin HR, et al. Randomized controlled trial of chlorhexidine gluconate for washing, intranasal mupirocin, and rifampin and doxycycline versus no treatment for the eradication of methicillin-resistant Staphylococcus aureus colonization. Clin Infect Dis. 2007; 44(2): 178-85.

58. Smith AJ, Brewer A, Kirkpatrick P, Jackson MS, Young J, Watson S, et al. Staphylococcal species in the oral cavity from patients in a regional burns unit. J Hosp Infect. 2003; 55(3): 184-9.

59. Smith K, Hunter IS. Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol. 2008; 57(Pt 8): 966-73.

60. Smith K, Perez A, Ramage G, Lappin D, Gemmell CG, Lang S. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microbiol. 2008; 57(Pt 8): 1018-23.

61. Soukos NS, Mulholland SE, Socransky SS, Doukas AG. Photodestruction of human dental plaque bacteria: Enhancement of photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med. 2003; 33(3): 161-68.

62. Stenstrom AG, Moan J, Brunborg G, Eklund T. Photodynamic inactivation of yeast cells sensitized by hematoporphyrin. Photochem Photobiol. 1980; 32(3): 349-52.

63. Strakhovskaia MG, Belenikina NS, Ivanova EV, Chemeris YK, Stranadko EF. The photodynamic inactivation of the yeast Candida guilliermondii in the presence of photodithazine. Microbiology. 2002; 71(3): 345-8.

64. Szpakowska M, Lasocki K, Grzybowski J, Graczyk A. Photodynamic activity of the haematoporphyrin derivative with rutin and arginine substituents (HpD-Rut(2)-Arg(2)) against Staphylococcus aureus and Pseudomonas aeruginosa. Pharmacol Res. 2001; 44(3): 243-6.

65. Tablan OC, Anderson LJ, Besser R, Bridges C, Hajjeh R. Guidelines for preventing healthcare-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep. 2004; 53: 1-36. 66. Tegos GP, Anbe M, Yang C, Demidova TN, Satti M, Mroz P, et al. Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin (e6) for broad-spectrum antimicrobial photoinactivation. Antimicrob Agents Chemother. 2006; 50(4): 1402-10.

67. Terpenning MS, Taylor GW, Lopatin DE, Kerr CK, Dominguez BL, Loesche WJ. Aspiration pneumonia: dental and oral risk factors in an older veteran population. J Am Geriatr Soc. 2001; 49(5): 557-63.

68. Tonnesen HH, Vries H, Karlsen J, Van Henegouwen GB. Studies on Curcumin and curcuminoids IX: Investigation of photobiological activity of Curcumin using bacterial indicator systems. J Pharm Sci. 1987; 76(5): 371-3.

69. Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol. 2012; 88(3): 499-511.

70. Verghese A, Berk S L. Bacterial pneumonia in the elderly. Medicine. 1983; 62(5): 271-85.

71. Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother. 1998; 42(1): 13-28.

72. Walker ES, Vasquez JE, Dula R, Bullock H, Sarubbi FA. Mupirocin-resistant, methicillinresistant Staphylococcus aureus: does mupirocin remain effective? Infect Control Hosp Epidemiol. 2003; 24(5): 342-6.

73. Wang SQ, Balagula Y, Osterwalder U. Photoprotection: a review of the current and future technologies. Dermatol Ther. 2010; 23(1): 31-47.

74. Yoneyama T, Yoshida M, Ohrui T, Mukaiyama H, Okamoto H, Hoshiba K, et al. Oral care reduces pneumonia in older patients in nursing homes. J Am Geriatr Soc. 2002; 50(3): 430-3.

75. Zeina B, Greenman J, Purcell WM, Das B. Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol. 2001; 144(2): 274-8.

APÊNDICE 1

Cálculos realizados para a obtenção das proporções utilizadas no preparo das concentrações da Curcumina e do Photodithazine[®].

- Curcumina 600 μM solução estoque de Cur
- Preparo de Concentração de 20 μM de Cur para o volume final de 6000 μL (uma ocasião, aplicação de 200 μL em cada orifício):

 $\begin{aligned} \mathbf{C_{inicial} \cdot V_{inicial} = C_{final} \cdot V_{final}} \\ 600 \ \mu M \ . \ V_{inicial} = 20 \ \mu M \ . \ 6000 \ \mu L} \\ V_{inicial} = 200 \ \mu L \end{aligned}$

Dessa forma, para o preparo dessa concentração foi utilizado 200 µL de Cur e 5800 µL de solução salina.

Preparo de Concentração de 40 μM de Cur para o volume final de 6000 μL (uma ocasião, aplicação de 200 μL em cada orifício):

 $C_{inicial} \cdot V_{inicial} = C_{final} \cdot V_{final}$ 600 µM · V_{inicial} = 40 µM · 6000 µL V_{inicial} = 400 µL

Dessa forma, para o preparo dessa concentração foi utilizado 400 µL de Cur e 5600 µL de solução salina.

Preparo de Concentração de 80 μM de Cur para o volume final de 6000 μL (uma ocasião, aplicação de 200 μL em cada orifício):

 $C_{inicial} \cdot V_{inicial} = C_{final} \cdot V_{final}$ 600 µM · V_{inicial} = 80 µM · 6000 µL V_{inicial} = 800 µL

Dessa forma, para o preparo dessa concentração foi utilizado 800 µL de Cur e 5200 µL de solução salina.

- Photodithazine[®] 5000 mg/L concentração de solução de PDZ
- Preparo de Concentração de 50 mg/L de PDZ para o volume final de 6000 μL (uma ocasião, aplicação de 200 μL em cada orifício):

Logo, x = 1%

$$\begin{array}{c} 6000 \ \mu L - 100\% \\ Y - 1\% \end{array}$$

Logo, $y=60 \mu L$

 $Dessa \ forma, \ para \ o \ preparo \ dessa \ concentração \ foi \ utilizado \ 60 \ \mu L \ de \ PDZ \ e \ 5940 \ \mu L \ de \ solução \ salina.$

Preparo de Concentração de 75 mg/L de PDZ para o volume final de 6000 μL (uma ocasião, aplicação de 200 μL em cada orifício):

Logo, x= 1,5%

Logo, $y=90 \mu L$

Dessa forma, para o preparo dessa concentração foi utilizado 90 μL de PDZ e 5910 μL de solução salina.

APÊNCICE 2

Cálculos realizados para obtenção do tempo de iluminação das amostras. A dose de luz (J/cm²) é calculada por meio de uma fórmula, na qual o seu valor é diretamente proporcional à potência de luz do parelho (W/cm²) e ao tempo de iluminação (segundos):

Dose (J/cm²) = Potência (W/cm²). Tempo (s)

É importante ressaltar que a intensidade de luz é obtida por meio da multiplicação da potência de saída do aparelho (W) pela área de iluminação (cm²). O valor da potência é fixo para cada equipamento e foi fornecido pelo Instituto de Física de São Carlos (IFSC) juntamente com as instruções para utilização.

Curcumina

O aparelho "*Bio Table*" (LEDs azuis) desenvolvido para essa iluminação possui o valor de potênicia de 22,0 mW/cm². Assim, para inserir esse valor na fórmula foi preciso fazer a transformação de unidades, sendo o valor convertido 22 . 10^{-3} W/cm². Cálculo do tempo de iluminação para a dose de 5,28 J/cm²:

$$5,28 \text{ J/cm}^2 = 0,022 \text{ W/cm}^2 \text{ . T (s)}$$

T = 240 s

Dessa forma, o tempo de iluminação das amostras calculado foi de 4 min.

* Photodithazine[®]

O aparelho "*Dual Table*" (LEDs vermelhos) desenvolvido para essa iluminação possui o valor de potênicia de 71,7 mW/cm². Assim, para inserir esse valor na fórmula foi preciso fazer a transformação de unidades, sendo o valor convertido 71,7 . 10^{-3} W/cm².

Cálculo do tempo de iluminação para a dose de 5,28 J/cm²:

$$5,28 \text{ J/cm}^2 = 0,071 \text{ W/cm}^2 \text{ . T (s)}$$

T = ~ 75 s

Dessa forma, o tempo de iluminação das amostras calculado foi de 75 segundos.

Cálculo do tempo de iluminação para a dose de 50 J/cm²:

50 J/cm² = 0,071 W/cm² . T (s)
T = 704,2 s =
$$\sim$$
 12 min

Dessa forma, o tempo de iluminação das amostras calculado foi de 12 min.

APÊNDICE 3

As Tabelas de A1 a A8 se referem aos resultados obtidos com o PS Cur no UFC/mL e no ensaio de XTT; As tabelas de A9 a A20 se referem aos resultados obtidos com o PS PDZ no UFC/mL e no ensaio de XTT.

Tabela A1 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) em ausência de iluminação, após 48 h de semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	5	216	209	212,5	85000000	8,929419
	2A	5	228	235	231,5	926000000	8,966611
	3A	5	214	222	218	872000000	8,940516
	4A	5	232	241	236,5	946000000	8,975891
	5A	5	258	272	265	1,06E+09	9,025306
	1B	5	246	223	234,5	938000000	8,972203
	2B	5	266	245	255,5	1,022E+09	9,009451
CN Cur	3B	5	238	228	233	932000000	8,969416
	4B	5	279	258	268,5	1,074E+09	9,031004
	5B	5	238	264	251	1,004E+09	9,001734
	1C	5	249	231	240	96000000	8,982271
	2C	5	235	244	239,5	958000000	8,981366
	3C	5	262	270	266	1,064E+09	9,026942
	4C	5	267	252	259,5	1,038E+09	9,016197
	5C	5	242	237	239,5	958000000	8,981366
	1A	5	195	192	193,5	774000000	8,888741
	2A	5	182	188	185	74000000	8,869232
	3A	5	178	187	182,5	730000000	8,863323
	4A	5	172	179	175,5	702000000	8,846337
	5A	5	165	172	168,5	674000000	8,82866
	1B	5	176	178	177	708000000	8,850033
	2B	5	198	193	195,5	782000000	8,893207
Cur 20	3B	5	201	195	198	792000000	8,898725
	4B	5	173	180	176,5	706000000	8,848805
	5B	5	180	184	182	728000000	8,862131
	1C	5	192	196	194	776000000	8,889862
	2C	5	189	191	190	76000000	8,880814
	3C	5	182	185	183,5	734000000	8,865696
	4C	5	198	188	193	772000000	8.887617

	5C	5	185	191	188	752000000	8,876218
	1A	5	100	102	101	404000000	8,606381
	2A	5	96	108	102	408000000	8,61066
	3A	5	101	105	103	412000000	8,614897
	4A	5	114	119	116,5	466000000	8,668386
	5A	5	107	109	108	432000000	8,635484
	1B	5	95	101	98	392000000	8,593286
	2B	5	106	111	108,5	434000000	8,63749
Cur 40	3B	5	113	108	110,5	442000000	8,645422
	4B	5	103	106	104,5	418000000	8,621176
	5B	5	106	100	103	412000000	8,614897
	1C	5	97	98	97,5	39000000	8,591065
	2C	5	103	102	102,5	41000000	8,612784
	3C	5	112	119	115,5	462000000	8,664642
	4C	5	115	104	109,5	438000000	8,641474
	5C	5	108	103	105,5	422000000	8,625312
	1A	5	78	72	75	30000000	8,477121
	2A	5	77	75	76	304000000	8,482874
	3A	5	81	86	83,5	334000000	8,523746
	4A	5	73	78	75,5	302000000	8,480007
	5A	5	75	68	71,5	286000000	8,456366
	1B	5	82	74	78	312000000	8,494155
	2B	5	79	83	81	324000000	8,510545
Cur 80	3B	5	75	78	76,5	306000000	8,485721
	4B	5	86	84	85	34000000	8,531479
	5B	5	72	79	75,5	302000000	8,480007
	1C	5	74	76	75	30000000	8,477121
	2C	5	86	80	83	332000000	8,521138
	3C	5	81	76	78,5	314000000	8,49693
	4C	5	86	82	84	336000000	8,526339
	5C	5	78	75	76,5	306000000	8,485721

Tabela A2 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) e dose de luz 5,28 J/cm², após 48 h de semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	5	183	176	179,5	718000000	8,856124
	2A	5	201	189	195	780000000	8,892095
	3A	5	180	183	181,5	726000000	8,860937
	4A	5	192	195	193,5	774000000	8,888741
	5A	5	165	170	167,5	67000000	8,826075
	1B	5	188	184	186	744000000	8,871573

	2B	5	191	206	198,5	794000000	8,899821
CL Cur	3B	5	183	178	180,5	722000000	8,858537
	4B	5	212	204	208	832000000	8,920123
	5B	5	182	188	185	74000000	8,869232
	1C	5	190	197	193,5	774000000	8,888741
	2C	5	193	186	189,5	758000000	8,879669
	3C	5	186	188	187	748000000	8,873902
	4C	5	189	183	186	744000000	8,871573
	5C	5	177	172	174,5	698000000	8,843855
	1A	5	19	21	20	8000000	7,90309
	2A	5	22	16	19	7600000	7,880814
	3A	5	16	13	14,5	58000000	7,763428
	4A	5	14	17	15,5	62000000	7,792392
	5A	5	15	21	18	72000000	7,857332
	1B	5	18	20	19	7600000	7,880814
	2B	5	13	11	12	48000000	7,681241
aPDT Cur	20	E	16	10	175	7000000	7.945009
20	3B 4D	5	10	19	17,5	/0000000	7,845098
	4B	5	19	21	20	8000000	7,90309
	5B	5	22	20	21	84000000	7,924279
	10	5	21	18	19,5	/8000000	7,892095
	2C	5	19	17	18	/2000000	7,857332
	3C	5	16	15	15,5	62000000	7,792392
	4C	5	l /	21	19	76000000	7,880814
	<u> </u>	5	18	19	18,5	/400000	7,869232
	IA	4	36	33	34,5	13800000	7,139879
	2A	4	31	29	30	12000000	7,079181
	3A	4	28	32	30	12000000	7,079181
	4A	4	37	33	35	14000000	7,146128
	5A	4	33	35	34	13600000	7,133539
	IB	4	41	38	39,5	15800000	7,198657
	2B	4	36	37	36,5	14600000	7,164353
aPDT Cui 40	3B	4	34	37	35 5	14200000	7 152288
10	4R	4	39	33	36	14400000	7,152200
	5B	4	33	30	31.5	12600000	7,100371
	1C	4	35	34	34.5	13800000	7 139879
	2C	4	38	40	39	15600000	7 193125
	20 30	4	38	35	36.5	14600000	7,199129
	4C	4	34	35	34 5	13800000	7,101333
	5C	4	37	39	38	15200000	7 181844
	14	2	123	117	120	480000	5 681241
	24	2	115	117	113.5	454000	5 657056
	34	2	104	88	96	384000	5 584331
	ΔΔ	2	97	101	96.5	386000	5 586587
	T1 1	4	14	101	, U, J	200000	2,200207

	5A	2	101	111	106	424000	5,627366
	1B	2	106	99	102,5	410000	5,612784
	2B	2	112	97	104,5	418000	5,621176
aPDT Cur							
80	3B	2	109	118	113,5	454000	5,657056
	4B	2	99	104	101,5	406000	5,608526
	5B	2	94	98	96	384000	5,584331
	1C	2	105	101	103	412000	5,614897
	2C	2	107	103	105	420000	5,623249
	3C	2	122	119	120,5	482000	5,683047
	4C	2	102	108	105	420000	5,623249
	5C	2	125	117	121	484000	5,684845

Tabela A3 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) em ausência de iluminação, após 48 h de semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	6	32	34	33	1320000000	9,120574
	2A	6	38	37	37,5	1500000000	9,176091
	3A	6	37	41	39	1560000000	9,193125
	4A	6	31	35	33	1320000000	9,120574
	5A	6	35	38	36,5	1460000000	9,164353
	1B	6	41	38	39,5	1580000000	9,198657
	2B	6	36	33	34,5	1380000000	9,139879
CN Cur R	3B	6	43	41	42	1680000000	9,225309
	4B	6	39	34	36,5	1460000000	9,164353
	5B	6	36	32	34	1360000000	9,133539
	1C	6	39	40	39,5	1580000000	9,198657
	2C	6	42	37	39,5	1580000000	9,198657
	3C	6	37	31	34	1360000000	9,133539
	4C	6	32	37	34,5	1380000000	9,139879
	5C	6	35	33	34	1360000000	9,133539
	1A	5	144	138	141	564000000	8,751279
	2A	5	163	156	159,5	638000000	8,804821
	3A	5	146	151	148,5	594000000	8,773786
	4A	5	142	153	147,5	590000000	8,770852
	5A	5	154	149	151,5	606000000	8,782473
	1B	5	152	153	152,5	61000000	8,78533
	2B	5	148	144	146	584000000	8,766413
Cur 20 R	3B	5	153	161	157	628000000	8,79796
	4B	5	161	156	158,5	634000000	8,802089
	5B	5	155	161	158	632000000	8,800717

	1C	5	147	144	145,5	582000000	8,764923
	2C	5	153	149	151	604000000	8,781037
	3C	5	156	152	154	616000000	8,789581
	4C	5	150	143	146,5	586000000	8,767898
	5C	5	148	142	145	580000000	8,763428
	1A	5	152	144	148	592000000	8,772322
	2A	5	149	135	142	568000000	8,754348
	3A	5	136	127	131,5	526000000	8,720986
	4A	5	143	147	145	580000000	8,763428
	5A	5	147	139	143	572000000	8,757396
	1B	5	139	144	141,5	566000000	8,752816
	2B	5	141	144	142,5	570000000	8,755875
Cur 40 R	3B	5	145	178	161,5	646000000	8,810233
	4B	5	144	158	151	604000000	8,781037
	5B	5	156	153	154,5	618000000	8,790988
	1C	5	143	154	148,5	594000000	8,773786
	2C	5	148	156	152	608000000	8,783904
	3C	5	138	146	142	568000000	8,754348
	4C	5	150	143	146,5	586000000	8,767898
	5C	5	146	153	149,5	598000000	8,776701
	1A	5	111	112	111,5	446000000	8,649335
	2A	5	102	106	104	416000000	8,619093
	3A	5	122	117	119,5	478000000	8,679428
	4A	5	106	108	107	428000000	8,631444
	5A	5	118	121	119,5	478000000	8,679428
	1B	5	119	121	120	48000000	8,681241
	2B	5	123	125	124	496000000	8,695482
Cur 80 R	3B	5	112	109	110,5	442000000	8,645422
	4B	5	108	111	109,5	438000000	8,641474
	5B	5	121	119	120	48000000	8,681241
	1C	5	127	124	125,5	502000000	8,700704
	2C	5	116	119	117,5	47000000	8,672098
	3C	5	115	117	116	464000000	8,666518
	4C	5	111	108	109,5	438000000	8,641474
	5C	5	119	116	117,5	47000000	8,672098

Tabela A4 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) e dose de luz 5,28 J/cm², após 48 h de semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	5	298	302	300	120000000	9,079181
	2A	5	285	293	289	1156000000	9,062958

	3A	5	311	304	307,5	1230000000	9,089905
	4A	5	278	282	280	1120000000	9,049218
	5A	5	289	277	283	1132000000	9,053846
	1B	5	295	292	293,5	1174000000	9,069668
	2B	5	291	276	283,5	1134000000	9,054613
CL Cur R	3B	5	287	292	289,5	1158000000	9,063709
	4B	5	296	306	301	1204000000	9,080626
	5B	5	306	301	303,5	1214000000	9,084219
	1C	5	264	292	278	1112000000	9,046105
	2C	5	290	288	289	1156000000	9,062958
	3C	5	292	300	296	1184000000	9,073352
	4C	5	295	302	298,5	1194000000	9,077004
	5C	5	299	291	295	1180000000	9,071882
	1A	5	50	52	51	204000000	8,30963
	2A	5	53	48	50,5	202000000	8,305351
	3A	5	48	44	46	184000000	8,264818
	4A	5	60	55	57,5	230000000	8,361728
	5A	5	56	61	58,5	234000000	8,369216
	1B	5	51	58	54,5	218000000	8,338456
	2B	5	58	55	56,5	226000000	8,354108
aPDT Cur		_			-		
20 R	3B	5	61	55	58	232000000	8,365488
	4B	5	52	63	57,5	230000000	8,361728
	5B	5	55	62	58,5	234000000	8,369216
	1C	5	59	53	56	224000000	8,350248
	2C	5	53	57	55	220000000	8,342423
	3C	5	57	49	53	212000000	8,326336
	4C	5	54	52	53	212000000	8,326336
	5C	5	52	59	55,5	222000000	8,346353
	1A	4	98	103	100,5	40200000	7,604226
	2A	4	103	102	102,5	41000000	7,612784
	3A	4	101	97	99	39600000	7,597695
	4A	4	102	99	100,5	40200000	7,604226
	5A	4	100	102	101	40400000	7,606381
	1B	4	96	103	99,5	39800000	7,599883
	2B	4	103	98	100,5	40200000	7,604226
aPD1 Cur	3B	1	108	113	110.5	44200000	7 645422
40 K	3D 4B	т Л	105	00	102	44200000	7,043422
	5R	-+ _/	111	10/	102	4300000	7 633/68
	1C	т 1	101	00	107,5	40000000	7,033400
	20	т Л	101	102	103 5	41/100000	7,00200
	2C 3C	+ 1	103	00	105,5	4020000	7 601226
		ч Л	102	27 06	100,5	40200000	7,004220
	+C 5C	Ч Л	00	90 105	100	4000000	7,00200
	50	+	22	105	104	1000000	1,01000

	1 ^a	4	58	63	60,5	24200000	7,383815
	2 ^a	4	56	59	57,5	23000000	7,361728
	3 ^a	4	55	59	57	22800000	7,357935
	4 ^a	4	52	57	54,5	21800000	7,338456
	5 ^a	4	57	56	56,5	22600000	7,354108
	1B	4	59	52	55,5	22200000	7,346353
	2B	4	60	58	59	23600000	7,372912
aPDT Cur							
80 R	3B	4	55	56	55,5	22200000	7,346353
	4B	4	61	59	60	24000000	7,380211
	5B	4	63	68	65,5	26200000	7,418301
	1C	4	55	62	58,5	23400000	7,369216
	2C	4	61	58	59,5	23800000	7,376577
	3C	4	58	59	58,5	23400000	7,369216
	4C	4	60	62	61	24400000	7,38739
	5C	4	62	59	60,5	24200000	7,383815

Tabela A5 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) em ausência de iluminação, após leitura da redução do sal de XTT. Araraquara, 2013.

Grupo	Amostras	Viabilidade celular
	1A	1,267
	2A	1,17
	3A	1,235
	4A	1,095
	5A	1,278
	1B	1,116
	2B	1,33
CN Cur	3B	1,363
	4B	1,279
	5B	1,335
	1C	1,298
	2C	1,134
	3C	1,205
	4C	1,042
	5C	1,387
	1A	1,173
	2A	1,032
	3A	1,102
	4A	0,989
	5A	1,049
	1B	1,106

	2B	1,102
Cur 20	3B	1,205
	4B	1,043
	5B	1,068
	1C	1,172
	2C	1,082
	3C	1,053
	4C	1,151
	5C	1,198
	1A	1,29
	2A	1,228
	3A	0,929
	4A	0,978
	5A	1,073
	1B	0,987
	2B	0,943
Cur 40	3B	0,898
	4B	0,964
	5B	1,104
	1C	0,921
	2C	1,102
	3C	1,032
	4C	0,978
	5C	0,954
	1A	0,567
	2A	0,65
	3A	0,673
	4A	0,532
	5A	0,491
	1B	0,639
	2B	0,741
Cur 80	3B	0,676
	4B	0,586
	5B	0,661
	1C	0,752
	2C	0,656
	3C	0,569
	4C	0,631
	5C	0,512

Grupo	Amostras	Viabilidade celular		
	1A	1,122		
	2A	1,179		
	3A	1,117		
	4A	1,132		
	5A	1,044		
	1B	1,083		
	2B	1,213		
CL Cur	3B	1,094		
	4B	1,292		
	5B	1,096		
	1C	1,123		
	2C	1,278		
	3C	1,245		
	4C	1,205		
	5C	1,279		
	1A	0,165		
	2A	0,189		
	3A	0,144		
	4A	0,168		
	5A	0,157		
	1B	0,151		
	2B	0,182 0,205 0,213		
aPDT Cur 20	3B			
	4B			
	5B	0,163		
	1C	0,177		
	2C	0,165		
	3C	0,193		
	4C	0,178		
	5C	0,146		
	1A	0,105		
	2A	0,101		
	3A	0,113		
	4A	0,125		
	5A	0,106		
	1B	0,096		
	2B	0,098		
aPDT Cur 40	3B	0,111		
	4B	0,127		

Tabela A6 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) e dose de luz 5,28 J/cm², após leitura da redução do sal de XTT. Araraquara, 2013.

	5B	0,116
	1C	0,114
	2C	0,122
	3C	0,109
	4C	0,115
	5C	0,117
	1A	0,063
	2A	0,077
	3A	0,084
	4A	0,049
	5A	0,068
	1B	0,071
	2B	0,062
aPDT Cur 80	3B	0,059
	4B	0,053
	5B	0,075
	1C	0,064
	2C	0,1
	3C	0,085
	4C	0,096
	5C	0,047

Tabela A7 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) em ausência de iluminação, após leitura da redução do sal de XTT. Araraquara, 2013.

Grupo	Amostras	Viabilidade celular
	1A	1,311
	2A	1,363
	3A	1,416
	4A	1,369
	5A	1,41
	1B	1,382
	2B	1,493
CN Cur R	3B	1,475
	4B	1,452
	5B	1,448
	1C	1,405
	2C	1,318
	3C	1,405
	4C	1,487
	5C	1,399
	1A	1,268

	2A	1,188
	3A	1,138
	4A	1,226
	5A	1,415
	1B	1,237
	2B	1,24
Cur 20 R	3B	1,192
	4B	1,189
	5B	1,304
	1C	1,149
	2C	1,074
	3C	1,113
	4C	1,102
	5C	1,094
	1A	1,063
	2A	1,087
	3A	1,141
	4A	1,254
	5A	1,203
	1B	1,001
	2B	1,122
Cur 40 R	3B	1,215
	4B	1,002
	5B	1,117
	1C	0,986
	2C	0,911
	3C	1,189
	4C	1,003
	5C	1,183
	1A	0,945
	2A	0,909
	3A	0,708
	4A	0,75
	5A	0,712
	1B	0,696
	2B	0,879
Cur 80 R	3B	0,64
	4B	0,655
	5B	0,608
	1C	0,682
	2C	0,713
	3C	0,667
	4C	0,701
	5C	0,655

Grupo	Amostras	Viabilidade celular
	1A	1,314
	2A	1,385
	3A	1,444
	4A	1,36
	5A	1,275
	1B	1,337
	2B	1,428
CL Cur R	3B	1,464
	4B	1,114
	5B	1,087
	1C	1,325
	2C	1,059
	3C	1,382
	4C	1,266
	5C	1,304
	1A	0,398
	2A	0,638
	3A	0,442
	4A	0,409
	5A	0,459
	1B	0,46
	2B	0,532
aPDT Cur 20 R	3B	0,475
	4B	0,557
	5B	0,58
	1C	0,339
	2C	0,399
	3C	0,487
	4C	0,648
	5C	0,344
	1A	0,358
	2A	0,374
	3A	0,373
	4A	0,442
	5A	0,383
	1B	0,367
	2B	0,288
aPDT Cur 40 R	3B	0,385
	4B	0,243

Tabela A8 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de Cur (0, 20, 40 e 80 μ M) e dose de luz 5,28 J/cm², após leitura da redução do sal de XTT. Araraquara, 2013.

	5B	0,389
	1C	0,23
	2C	0,319
	3C	0,269
	4C	0,334
	5C	0,276
	1A	0,139
	2A	0,15
	3A	0,159
	4A	0,116
	5A	0,157
	1B	0,151
	2B	0,134
aPDT Cur 80 R	3B	0,194
	4B	0,172
	5B	0,14
	1C	0,138
	2C	0,153
	3C	0,144
	4C	0,155
	5C	0,148

Tabela A9 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) em ausência de iluminação, após 48 horas da semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	5	285	292	288,5	1154000000	9,062206
	2A	5	288	280	284	1136000000	9,055378
	3A	5	288	283	285,5	1142000000	9,057666
	4A	5	290	297	293,5	1174000000	9,069668
	5A	5	286	290	288	1152000000	9,061452
	1B	5	289	292	290,5	1162000000	9,065206
	2B	5	295	296	295,5	1182000000	9,072617
CN PDZ	3B	5	286	291	288,5	1154000000	9,062206
	4B	5	293	296	294,5	1178000000	9,071145
	5B	5	295	298	296,5	1186000000	9,074085
	1C	5	292	296	294	1176000000	9,070407
	2C	5	289	294	291,5	1166000000	9,066699
	3C	5	288	293	290,5	1162000000	9,065206
	4C	5	296	290	293	1172000000	9,068928
	5C	5	298	294	296	1184000000	9,073352
	1A	5	210	211	210,5	842000000	8,925312

	2A	5	212	205	208,5	834000000	8,921166
	3A	5	197	203	200	80000000	8,90309
	4A	5	195	198	196,5	786000000	8,895423
	5A	5	201	196	198,5	794000000	8,899821
	1B	5	196	203	199,5	798000000	8,902003
	2B	5	203	208	205,5	822000000	8,914872
PDZ 50	3B	5	201	209	205	820000000	8,913814
	4B	5	213	200	206,5	826000000	8,91698
	5B	5	221	215	218	872000000	8,940516
	1C	5	214	208	211	844000000	8,926342
	2C	5	222	219	220,5	882000000	8,945469
	3C	5	226	221	223,5	894000000	8,951338
	4C	5	221	223	222	888000000	8,948413
	5C	5	218	216	217	868000000	8,93852
	1A	5	113	113	113	452000000	8,655138
	2A	5	115	117	116	464000000	8,666518
	3A	5	111	128	119,5	478000000	8,679428
	4A	5	128	120	124	496000000	8,695482
	5A	5	112	134	123	492000000	8,691965
	1B	5	113	115	114	456000000	8,658965
	2B	5	121	116	118,5	474000000	8,675778
PDZ 75	3B	5	109	105	107	428000000	8,631444
	4B	5	115	109	112	448000000	8,651278
	5B	5	122	116	119	476000000	8,677607
	1C	5	121	118	119,5	478000000	8,679428
	2C	5	123	114	118,5	474000000	8,675778
	3C	5	125	121	123	492000000	8,691965
	4C	5	108	113	110,5	442000000	8,645422
	5C	5	110	106	108	432000000	8,635484

Tabela A10 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 5,28 J/cm², após 48 horas da semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	5	251	259	255	1020000000	9,0086
	2A	5	254	258	256	1024000000	9,0103
	3A	5	250	257	253,5	1014000000	9,006038
	4A	5	258	255	256,5	1026000000	9,011147
	5A	5	253	258	255,5	1022000000	9,009451
	1B	5	256	254	255	1020000000	9,0086
	2B	5	248	250	249	996000000	8,998259
CL PDZ	3B	5	253	249	251	1004000000	9,001734

	4B	5	260	255	257,5	103000000	9,012837
	5B	5	249	252	250,5	1002000000	9,000868
	1C	5	252	257	254,5	1018000000	9,007748
	2C	5	255	259	257	1028000000	9,011993
	3C	5	260	254	257	1028000000	9,011993
	4C	5	253	249	251	1004000000	9,001734
	5C	5	254	248	251	1004000000	9,001734
	1A	5	97	106	101,5	406000000	8,608526
	2A	5	86	94	90	36000000	8,556303
	3A	5	102	105	103,5	414000000	8,617
	4A	5	94	102	98	392000000	8,593286
	5A	5	93	99	96	384000000	8,584331
	1B	5	100	95	97,5	39000000	8,591065
	2B	5	104	97	100,5	402000000	8,604226
aPDT PDZ		_					
50	3B	5	98	103	100,5	402000000	8,604226
	4B	5	97	104	100,5	402000000	8,604226
	5B	5	102	106	104	416000000	8,619093
	1C	5	105	101	103	412000000	8,614897
	2C	5	96	100	98	392000000	8,593286
	3C	5	101	96	98,5	394000000	8,595496
	4C	5	109	103	106	424000000	8,627366
	5C	5	95	106	100,5	402000000	8,604226
	1A	5	76	72	74	296000000	8,471292
	2A	5	73	79	76	304000000	8,482874
	3A	5	74	71	72,5	29000000	8,462398
	4A	5	84	75	79,5	318000000	8,502427
	5A	5	79	74	76,5	306000000	8,485721
	1B	5	74	72	73	292000000	8,465383
	2B	5	79	73	76	304000000	8,482874
aPDT PDZ	20	-	0.1	70	70.5	21000000	0.500.407
/5	3B	5	81	/8	79,5	318000000	8,502427
	4B	5	/8	80	79	316000000	8,499687
	5B	5		78	77,5	31000000	8,491362
	IC	5	75	73	74	296000000	8,471292
	2C	5	83	76	79,5	318000000	8,502427
	3C	5	78	81	79,5	318000000	8,502427
	4C	5	73	79	76	30400000	8,482874
	5C	5	75	77	76	304000000	8,482874
Tabela A11 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 50 J/cm², após 48 horas da semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	6	249	255	252	1,01E+09	9,003461
	2A	6	253	253	253	1,01E+09	9,005181
	3A	6	255	249	252	1,01E+09	9,003461
	4A	6	248	253	250,5	1E+09	9,000868
	5A	6	253	250	251,5	1,01E+09	9,002598
	1B	6	257	255	256	1,02E+09	9,0103
	2B	6	244	261	252,5	1,01E+09	9,004321
CL PDZ*	3B	6	253	257	255	1,02E+09	9,0086
	4B	6	254	262	258	1,03E+09	9,01368
	5B	6	245	256	250,5	1E+09	9,000868
	1C	6	255	264	259,5	1,04E+09	9,016197
	2C	6	248	256	252	1,01E+09	9,003461
	3C	6	256	253	254,5	1,02E+09	9,007748
	4C	6	254	258	256	1,02E+09	9,0103
	5C	6	249	254	251,5	1,01E+09	9,002598
	1A	3	68	62	65	2600000	6,414973
	2A	3	67	63	65	2600000	6,414973
	3A	3	71	67	69	2760000	6,440909
	4A	3	67	63	65	2600000	6,414973
	5A	3	68	62	65	2600000	6,414973
	1B	3	62	65	63,5	2540000	6,404834
	2B	3	58	60	59	2360000	6,372912
aPDT PDZ							
50*	3B	3	69	61	65	2600000	6,414973
	4B	3	64	61	62,5	2500000	6,39794
	5B	3	67	70	68,5	2740000	6,437751
	1C	3	63	59	61	2440000	6,38739
	2C	3	58	55	56,5	2260000	6,354108
	3C	3	66	59	62,5	2500000	6,39794
	4C	3	65	64	64,5	2580000	6,41162
	5C	3	64	62	63	2520000	6,401401
	1A	3	37	39	38	1520000	6,181844
	2A	3	33	36	34,5	1380000	6,139879
	3A	3	29	35	32	1280000	6,10721
	4A	3	35	33	34	1360000	6,133539
	5A	3	33	35	34	1360000	6,133539
	1B	3	28	33	30,5	1220000	6,08636
	2B	3	35	32	33,5	1340000	6,127105
aPDT PDZ	3B	3	31	37	34	1360000	6,133539

75*							
	4B	3	31	36	33,5	1340000	6,127105
	5B	3	26	31	28,5	1140000	6,056905
	1C	3	38	34	36	1440000	6,158362
	2C	3	34	32	33	1320000	6,120574
	3C	3	33	29	31	1240000	6,093422
	4C	3	32	37	34,5	1380000	6,139879
	5C	3	31	33	32	1280000	6,10721

Tabela A12 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) em ausência de iluminação, após 48 horas da semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log ₁₀
	1A	6	289	295	292	1,168E+10	10,06744
	2A	6	292	287	289,5	1,158E+10	10,06371
	3A	6	293	295	294	1,176E+10	10,07041
	4A	6	286	290	288	1,152E+10	10,06145
	5A	6	291	288	289,5	1,158E+10	10,06371
	1B	6	288	293	290,5	1,162E+10	10,06521
	2B	6	293	294	293,5	1,174E+10	10,06967
CN PDZ							
R	3B	6	290	296	293	1,172E+10	10,06893
	4B	6	287	284	285,5	1,142E+10	10,05767
	5B	6	295	288	291,5	1,166E+10	10,0667
	1C	6	292	293	292,5	1,17E+10	10,06819
	2C	6	291	286	288,5	1,154E+10	10,06221
	3C	6	287	283	285	1,14E+10	10,0569
	4C	6	292	289	290,5	1,162E+10	10,06521
	5C	6	285	292	288,5	1,154E+10	10,06221
	1A	6	162	167	164,5	658000000	9,818226
	2A	6	173	175	174	696000000	9,842609
	3A	6	166	170	168	672000000	9,827369
	4A	6	168	173	170,5	682000000	9,833784
	5A	6	171	166	168,5	674000000	9,82866
	1B	6	165	163	164	656000000	9,816904
	2B	6	170	164	167	6680000000	9,824776
PDZ 50							
R	3B	6	165	168	166,5	6660000000	9,823474
	4B	6	172	165	168,5	674000000	9,82866
	5B	6	166	161	163,5	654000000	9,815578
	1C	6	176	168	172	6880000000	9,837588
	2C	6	169	164	166,5	6660000000	9,823474

	3C	6	172	166	169	676000000 9,829947
	4C	6	168	165	166,5	666000000 9,823474
	5C	6	174	170	172	6880000000 9,837588
	1A	6	126	119	122,5	490000000 9,690196
	2A	6	119	123	121	484000000 9,684845
	3A	6	122	124	123	492000000 9,691965
	4A	6	120	115	117,5	470000000 9,672098
	5A	6	117	114	115,5	462000000 9,664642
	1B	6	125	122	123,5	494000000 9,693727
	2B	6	118	124	121	484000000 9,684845
PDZ 75						
R	3B	6	120	127	123,5	494000000 9,693727
	4B	6	121	123	122	4880000000 9,68842
	5B	6	115	123	119	476000000 9,677607
	1C	6	114	116	115	460000000 9,662758
	2C	6	116	121	118,5	474000000 9,675778
	3C	6	123	128	125,5	502000000 9,700704
	4C	6	124	118	121	484000000 9,684845
	5C	6	117	114	115,5	462000000 9,664642

Tabela A13 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 5,28 J/cm², após 48 horas da semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

			Duplicata	Duplicata			
Grupo	Amostra	Diluição	1	2	Média	UFC/mL	Log10
	1A	6	237	241	239	9560000000	9,980458
	2A	6	225	230	227,5	910000000	9,959041
	3A	6	223	226	224,5	8980000000	9,953276
	4A	6	241	237	239	9560000000	9,980458
	5A	6	232	226	229	9160000000	9,961895
	1B	6	241	235	238	9520000000	9,978637
	2B	6	236	242	239	9560000000	9,980458
CL PDZ R	3B	6	230	236	233	9320000000	9,969416
	4B	6	228	234	231	9240000000	9,965672
	5B	6	231	226	228,5	9140000000	9,960946
	1C	6	245	240	242,5	9700000000	9,986772
	2C	6	236	233	234,5	9380000000	9,972203
	3C	6	241	239	240	960000000	9,982271
	4C	6	244	249	246,5	9860000000	9,993877
	5C	6	231	234	232,5	930000000	9,968483
	1A	6	98	102	100	400000000	9,60206
	2A	6	89	94	91,5	3660000000	9,563481
	3A	6	93	97	95	380000000	9,579784

	4A	6	95	92	93,5	374000000 9,572872
	5A	6	102	94	98	392000000 9,593286
	1B	6	87	91	89	356000000 9,55145
	2B	6	101	103	102	408000000 9,61066
aPDT PDZ 50		-			- -	
R	3B	6	99	91	95	380000000 9,579784
	4B	6	92	86	89	356000000 9,55145
	5B	6	96	97	96,5	386000000 9,586587
	1C	6	104	8	56	224000000 9,350248
	2C	6	97	94	95,5	382000000 9,582063
	3C	6	94	99	96,5	386000000 9,586587
	4C	6	100	95	97,5	390000000 9,591065
	5C	6	98	101	99,5	398000000 9,599883
	1A	6	39	42	40,5	162000000 9,209515
	2A	6	50	46	48	192000000 9,283301
	3A	6	35	41	38	1520000000 9,181844
	4A	6	37	43	40	160000000 9,20412
	5A	6	45	48	46,5	186000000 9,269513
	1B	6	41	45	43	1720000000 9,235528
	2B	6	42	48	45	180000000 9,255273
aPDT PDZ 75						
R	3B	6	38	41	39,5	158000000 9,198657
	4B	6	43	39	41	164000000 9,214844
	5B	6	39	40	39,5	158000000 9,198657
	1C	6	44	39	41,5	166000000 9,220108
	2C	6	51	46	48,5	194000000 9,287802
	3C	6	47	51	49	196000000 9,292256
	4C	6	43	46	44,5	178000000 9,25042
	5C	6	46	52	49	196000000 9,292256

Tabela A14 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 50 J/cm², após 48 horas da semeadura em placas de Petri com *Mannitol Salt Agar*. Araraquara, 2013.

Grupo	Amostra	Diluição	Duplicata 1	Duplicata 2	Média	UFC/mL	Log10
	1A	6	276	286	281	1,12E+10	10,05077
	2A	6	287	283	285	1,14E+10	10,0569
	3A	6	278	289	283,5	1,13E+10	10,05461
	4A	6	285	292	288,5	1,15E+10	10,06221
	5A	6	283	288	285,5	1,14E+10	10,05767
	1B	6	278	285	281,5	1,13E+10	10,05154
	2B	6	288	282	285	1,14E+10	10,0569
CL PDZ R*	3B	6	285	279	282	1,13E+10	10,05231

	4B	6	291	286	288,5	1,15E+10	10,06221
	5B	6	283	289	286	1,14E+10	10,05843
	1C	6	289	293	291	1,16E+10	10,06595
	2C	6	279	285	282	1,13E+10	10,05231
	3C	6	278	276	277	1,11E+10	10,04454
	4C	6	275	279	277	1,11E+10	10,04454
	5C	6	286	284	285	1,14E+10	10,0569
	1A	5	72	77	74,5	2,98E+08	8,474216
	2A	5	66	70	68	2,72E+08	8,434569
	3A	5	82	73	77,5	3,1E+08	8,491362
	4A	5	71	84	77,5	3,1E+08	8,491362
	5A	5	72	79	75,5	3,02E+08	8,480007
	1B	5	79	83	81	3,24E+08	8,510545
	2B	5	81	78	79,5	3,18E+08	8,502427
aPDT PDZ 50		_		- <i>t</i>		• • • • • • • •	
R*	3B	5	76	84	80	3,2E+08	8,50515
	4B	5	75	80	77,5	3,1E+08	8,491362
	5B	5	69	75	72	2,88E+08	8,459392
	1C	5	74	79	76,5	3,06E+08	8,485721
	2C	5	76	82	79	3,16E+08	8,499687
	3C	5	80	78	79	3,16E+08	8,499687
	4C	5	72	76	74	2,96E+08	8,471292
	5C	5	77	83	80	3,2E+08	8,50515
	1A	5	44	34	39	1,56E+08	8,193125
	2A	5	28	31	29,5	1,18E+08	8,071882
	3A	5	45	37	41	1,64E+08	8,214844
	4A	5	36	33	34,5	1,38E+08	8,139879
	5A	5	39	33	36	1,44E+08	8,158362
	1B	5	35	29	32	1,28E+08	8,10721
	2B	5	33	35	34	1,36E+08	8,133539
aPDT PDZ 75	25	_	20	2.4		1.4(1):00	0.1.6.40.50
R*	3B	5	39	34	36,5	1,46E+08	8,164353
	4B	5	36	30	33	1,32E+08	8,120574
	5B	5	37	33	35	1,4E+08	8,146128
	1C	5	41	34	37,5	1,5E+08	8,176091
	2C	5	32	33	32,5	1,3E+08	8,113943
	3C	5	34	34	34	1,36E+08	8,133539
	4C	5	39	31	35	1,4E+08	8,146128
	5C	5	31	36	33,5	1,34E+08	8,127105

Grupo	Amostras	Viabilidade celular		
	1A	1,408		
	2A	1,44		
	3A	1,396		
	4A	1,427		
	5A	1,388		
	1B	1,432		
	2B	1,386		
CN PDZ	3B	1,388		
	4B	1,39		
	5B	1,418		
	1C	1,408		
	2C	1,399		
	3C	1,386		
	4C	1,425		
	5C	1,44		
	1A	1,341		
	2A	1,206		
	3A	1,233		
	4A	1,275		
	5A	1,192		
	1B	1,289		
	2B	1,242		
PDZ 50	3B	1,253		
	4B	1,235		
	5B	1,248		
	1C	1,241		
	2C	1,226		
	3C	1,24		
	4C	1,256		
	5C	1,212		
	1A	1,109		
	2A	1,145		
	3A	1,22		
	4A	1,179		
	5A	1,272		
	1B	1,142		
	2B	1,123		
PDZ 75	3B	1,138		

4B

1,102

Tabela A15 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) em ausência de iluminação, após leitura da redução do sal de XTT. Araraquara, 2013.

5B	1,098
1C	1,129
2C	1,138
3C	1,129
4C	1,119
 5C	1,133

Tabela A16 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 5,28 J/cm², após leitura da redução do sal de XTT.

Grupo	Amostras	Viabilidade celular
	1A	1,412
	2A	1,382
	3A	1,428
	4A	1,435
	5A	1,35
	1B	1,389
	2B	1,421
CL PDZ	3B	1,443
	4B	1,399
	5B	1,431
	1C	1,416
	2C	1,333
	3C	1,402
	4C	1,387
	5C	1,411
	1A	0,992
	2A	0,935
	3A	0,946
	4A	0,91
	5A	0,911
	1B	0,922
	2B	0,914
aPDT PDZ 50	3B	0,912
	4B	0,898
	5B	0,945
	1C	0,893
	2C	0,922
	3C	0,934
	4C	0,935
	5C	0,936
	1A	0,803

	2A	0,792
	3A	0,797
	4A	0,781
	5A	0,785
	1B	0,783
	2B	0,789
aPDT PDZ 75	3B	0,826
	4B	0,855
	5B	0,773
	1C	0,803
	2C	0,802
	3C	0,801
	4C	0,794
	5C	0,812

Tabela A17 – Valores originais obtidos com a exposição dos biofilmes de MSSA (ATCC 25923) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 50 J/cm², após leitura da redução do sal de XTT.

Grupo	Amostras	Viabilidade celular
	1A	1,381
	2A	1,473
	3A	1,391
	4A	1,322
	5A	1,422
	1B	1,433
	2B	1,387
CL PDZ*	3B	1,388
	4B	1,376
	5B	1,402
	1C	1,445
	2C	1,393
	3C	1,419
	4C	1,406
	5C	1,378
	1A	0,641
	2A	0,623
	3A	0,643
	4A	0,618
	5A	0,626
	1B	0,641
	2B	0,655
aPDT PDZ 50*	3B	0,632

	4B	0,643
	5B	0,654
	1C	0,656
	2C	0,648
	3C	0,653
	4C	0,635
	5C	0,654
	1A	0,166
	2A	0,163
	3A	0,173
	4A	0,166
	5A	0,164
aPDT PDZ 75*	1B	0,171
	2B	0,168
	3B	0,165
	4B	0,168
	5B	0,173
	1C	0,164
	2C	0,165
	3C	0,164
	4C	0,162
	5C	0,191

Tabela A18 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) em ausência de iluminação, após leitura da redução do sal de XTT. Araraquara, 2013.

Grupo	Amostras	Viabilidade celular
	1A	1,433
	2A	1,442
	3A	1,453
	4A	1,472
	5A	1,451
	1B	1,448
	2B	1,436
CN PDZ R	3B	1,449
	4B	1,452
	5B	1,45
	1C	1,397
	2C	1,435
	3C	1,425
	4C	1,446
	5C	1,458

	1A	1,394
	2A	1,365
	3A	1,385
	4A	1,388
	5A	1,38
	1B	1,402
	2B	1,388
PDZ 50 R	3B	1,391
	4B	1,378
	5B	1,369
	1C	1,374
	2C	1,376
	3C	1,382
	4C	1,387
	5C	1,373
	1A	1,357
	2A	1,351
	3A	1,295
	4A	1,342
	5A	1,335
	1B	1,346
	2B	1,329
PDZ 75 R	3B	1,327
	4B	1,332
	5B	1,34
	1C	1,296
	2C	1,348
	3C	1,338
	4C	1,352
	5C	1,344

Tabela A19 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 5,28 J/cm², após leitura da redução do sal de XTT.

Grupo	Amostras	Viabilidade celular
	1A	1,435
	2A	1,421
	3A	1,43
	4A	1,422
	5A	1,448
	1B	1,444
	2B	1,436

CL PDZ R	3B	1,462
	4B	1,443
	5B	1,445
	1C	1,438
	2C	1,452
	3C	1,44
	4C	1,437
	5C	1,449
	1A	1,213
	2A	1,198
	3A	1,202
	4A	1,215
	5A	1,207
	1B	1,212
	2B	1,204
aPDT PDZ 50 R	3B	1,189
	4B	1,195
	5B	1,201
	1C	1,206
	2C	1,205
	3C	1,194
	4C	1,21
	5C	1,204
	1A	1,045
	2A	1,083
	3A	1,008
	4A	1,068
	5A	1,075
	1B	1,063
	2B	1,076
aPDT PDZ 75 R	3B	1,065
	4B	1,062
	5B	1,077
	1C	1,042
	2C	1,044
	3C	1,058
	4C	1,054
	5C	1,063

Grupo	Amostras	Viabilidade celular
	1A	1,441
	2A	1,417
	3A	1,425
	4A	1,424
	5A	1,438
	1B	1,442
	2B	1,437
CL PDZ R*	3B	1,444
	4B	1,446
	5B	1,418
	1C	1,443
	2C	1,436
	3C	1,447
	4C	1,439
	5C	1,443
	1A	0,838
	2A	0,839
	3A	0,825
	4A	0,837
	5A	0,842
	1B	0,835
	2B	0,841
aPDT PDZ 50 R*	3B	0,828
	4B	0,828
	5B	0,836
	1C	0,839
	2C	0,834
	3C	0,841
	4C	0,833
	5C	0,827
	1A	0,23
	2A	0,243
	3A	0,248
	4A	0,278
	5A	0,28
	1B	0,258
	2B	0,246
aPDT PDZ 75 R*	3B	0,256
	4B	0.273

Tabela A20 – Valores originais obtidos com a exposição dos biofilmes de MRSA (ATCC 33591) a diferentes concentrações de PDZ (0, 50 e 75 mg/L) e dose de luz 50 J/cm², após leitura da redução do sal de XTT.

5B	0,263
1C	0,254
2C	0,253
3C	0,238
4C	0,256
5C	0,245

Autorizo a reprodução deste trabalho (Direitos de publicação reservado ao autor)

Araraquara, 15 de Março de 2013

Geraldo Camilo de Souza Pinto