RESSALVA

Atendendo solicitação do(a) autor(a), o texto completo deste trabalho será disponibilizado somente a partir de 10/10/2017.

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Faculdade de Ciências e Tecnologia Câmpus de Presidente Prudente

Análise de Aspectos Fundamentais de Métodos de Partículas

Luciano Pereira da Silva

Orientador: Prof. Dr. Messias Meneguette Junior

Programa: Matemática Aplicada e Computacional

Presidente Prudente, Abril, 2017

UNIVERSIDADE ESTADUAL PAULISTA

Faculdade de Ciências e Tecnologia de Presidente Prudente Programa de Pós-Graduação em Matemática Aplicada e Computacional

Análise de Aspectos Fundamentais de Métodos de Partículas

Luciano Pereira da Silva

Orientador: Prof. Dr. Messias Meneguette Junior

Dissertação apresentada ao Programa de Pós-graduação em Matemática Aplicada e Computacional da Universidade Estadual Paulista Júlio de Mesquita Filho como requisito parcial para obtenção do Título de Mestre em Matemática Aplicada e Computacional.

Presidente Prudente, Abril, 2017

Dedico esse trabalho à minha querida irmã Elessandra (in memoriam), que em momento algum deixará de viver em meu coração e sempre estará presente em minhas memórias. Não houve um dia se quer em que não lutasse para concluir esse tão sonhado projeto de vida, e todo meu esforço não foi em vão. Esse título é nosso Tata. A saudade permanecerá até o dia de nosso reencontro, te amo.

FICHA CATALOGRÁFICA

S581a	Silva, Luciano Pereira da. Análise de aspectos fundamentais de métodos de partículas / Luciano Pereira da Silva Presidente Prudente : [s.n.], 2017 100 f.
	Orientador: Messias Meneguette Junior Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia Inclui bibliografia
	1. SPH. 2. Desordem das partículas. 3. Equação de Poisson. I. Meneguette Junior, Messias. II. Universidade Estadual Paulista. Faculdade de Ciências e Tecnologia. III. Título.

UNIVERSIDADE ESTADUAL PAULISTA

Câmpus de Presidente Prudente

CERTIFICADO DE APROVAÇÃO

TÍTULO DA DISSERTAÇÃO: Análise de Aspectos Fundamentais de Métodos de Partículas

AUTOR: LUCIANO PEREIRA DA SILVA ORIENTADOR: MESSIAS MENEGUETTE JUNIOR

Aprovado como parte das exigências para obtenção do Título de Mestre em MATEMÁTICA APLICADA E COMPUTACIONAL, pela Comissão Examinadora:

Prof. Dr. MESSIAS MENEGUETTE JUNIÓR Departamento de Matemática e Computação / Faculdade de Ciencias e Tecnologia de Presidente Prudente

Profa. Dra. ADRIANA LUIZA DO PRADO

Departamento de Matemática / Universidade Federal do Paraná

, C. Brandi

Profa. Dra. ANALICE COSTACURTA BRANDI Departamento de Matemática e Computação / Faculdade de Ciencias e Tecnologia de Presidente Prudente

Presidente Prudente, 10 de abril de 2017

Agradecimentos

Agradeço primeiramente a Deus, pela força, saúde e misericórdia.

Aos meus pais Julio e Cleunice, que nunca deixaram de me apoiar em todas as minhas decisões e bravamente lutaram para que nada me faltasse durante os estudos.

Aos meus irmãos que cuidaram de meus pais em todo o tempo que estive ausente, especialmente à minha cunhada Luzia.

Aos meus sobrinhos Priscila, Gabriele, Eduardo e Beatriz.

Aos meus avós, Carmelita e Oriosvaldo.

A toda família, em especial ao meu tio Orlando ("tio Nande"), que foi de uma generosidade ímpar, me proporcionando luz em meio a tanta escuridão, me apoiando como um verdadeiro Pai. Te amo tio.

Ao meu amigo e responsável por todo encorajamento, Petrônio Montezuma. Certamente sem ele esse sonho seria muito mais difícil de se tornar realidade.

Aos meus amigos e companheiros de trabalho da UTFPR de Campo Mourão.

Ao meu amigo de graduação Denis Ricardo. Só Deus para retribuir tudo o que ele fez por mim. Você mora em meu coração.

A minha amiga de mestrado Ellen Gervazoni e sua família, nosso contato transcendeu a amizade, você foi minha confidente, um anjo que intercedeu por mim em todos os momentos difíceis.

Ao Prof. Dr. Messias Meneguetti Júnior pela orientação, paciência, cafezinhos, e principalmente por acreditar que eu seria capaz de superar todos os obstáculos que a vida colocou a minha frente.

A todos os professores que tive durante o Mestrado. Em especial a professora Vanessa. As professoras Cristiane Nespoli e Gilcilene Sanchez, pelo carinho e sensibilidade.

A professora Analice, por todo carinho que sempre teve por mim, e pelas correções dos trabalhos publicados.

Ao conselho, coordenação e amigos do PosMAC.

Aos meus pais Prudentinos, Vlademir e Dora Lina Loma, que durante dois anos foram juntamente com seus filhos e netos, a minha família.

Aos meus amigos e companheiros de lar, Eder José e Victor Rodrigues.

Aos meus grandes amigos: Adriana Kawabata, Pedro Catella, Juliana Marcatto, Marcio Barros, João Eduardo, Monique Lipe, Margarete Betio, Maria Lúcia Aponi e Roberto Cavali por todo carinho compreensão e amor.

As novas amigas: Mírian Vidotto e Katia Barreto por me ajudarem a superar o luto longe de casa e de minha família.

A minha grande amiga/irmã, guerreira, e fonte de inspiração, Sara Coelho da Silva.

A mim, pela coragem, determinação, persistência e muitas horas de estudo.

A CAPES pelo apoio financeiro.

"O futuro tem muitos nomes. Para os fracos é o inalcançável. Para os medrosos, o desconhecido. Para os valentes, a oportunidade." Victor Hugo

Resumo

Atualmente, devido ao grande avanço tecnológico, o uso dos métodos de partículas (Meshfree Particle Methods), vem ganhando espaço nas simulações numéricas de escoamentos. O marco inicial foi o método Smoothed Particle Hydrodynamics (SPH) que se mostrou bastante eficiente para problemas de escoamento compressível, mas nem tanto para escoamento incompressível. Rapidamente surgiram estratégias para problemas incompressíveis, como o Incompressible Smoothed Particle Hydrodynamics (ISPH) e o Moving Particle Semi-Implicit (MPS): em ambos os métodos a pressão é atualizada por uma equação de Poisson. Assim, para se obter uma boa aproximação das equações de Navier-Stokes é necessário resolver bem a equação de Poisson. Os métodos de partículas (MPM) estão sendo usados nas mais diversas áreas e seu desenvolvimento e adequação são objetos de pesquisas no momento. O estudo desta dissertação visa uma análise comparativa dos aspectos teóricos do SPH: abordagem euleriana e lagrangiana; o formalismo, que tem como base a representação integral de uma função; discretização por duas aproximações fundamentais que são da função núcleo e por partículas e as respectivas consistências; tratamento de fronteiras e, também, um estudo detalhado sobre a influência da desordem das partículas, preocupação esta bastante recente na literatura e cujo entendimento não está ainda bem sistematizado. Um estudo comparativo, será efetuado por meio da equação de Poisson, que é objeto principal desta dissertação. A análise será feita inicialmente com as partículas fixas, uniformemente distribuídas e comparadas com distribuições perturbadas sem correção de auto ajuste. Além disso, foram desenvolvidos os códigos em $Matlab^{(\mathbb{R})}$ para e geração das soluções numéricas utilizando partículas desordenadas.

Palavras-Chave: Simulação, Método de partículas, Smoothed Particle Hydrodynamics, Desordem das partículas, Consistência, Equação de Poisson.

Abstract

Currently, due to technological advances, the use of meshfree particle methods has high importance in flow numerical simulations. The milestone was the Smoothed Particle Hydrodynamics (SPH) method, which proved quite efficient for problems of compressible flow, but less so for incompressible one. Quickly emerged strategies for incompressible problems, such as Incompressible Smoothed Particle Hydrodynamics (ISPH) and Moving Particle Semi-Implicit (MPS): in both methods the pressure is updated by a Poisson equation. Thus, to obtain a good approximation of the Navier-Stokes equations it is necessary to solve the Poisson equation. Meshfree Particle Methods (MPM) are being used in several areas and their development and adaptation are research matter at the moment. This study will provide a solid expertise in MPM, since it seeks a comparative analysis of theoretical aspects of MPM: Eulerian and Lagrangian approaches; formalism of MPMs that is based on integral representation of a function; discretization by two fundamental approximations that are of the kernel and by particles as well as the respective consistencies; boundary treatment and also a detailed study on the influence of particle disorder, a concern that is quite recent in the literature and whose understanding is not yet well systematized. A comparative study will be carried out through the Poisson equation, which is the main object of this dissertation. The analysis will be done initially with the fixed particles, uniformly distributed and compared with disturbed distributions without correction of self-adjustment. In addition, the codes in $Matlab^{(\mathbb{R})}$ were developed for the generation of numerical solutions using disordered particles.

Keywords: Simulation, Meshfree Particle Method, Smoothed Particle Hydrodynamics, Particle Disorder, Consistency, Poisson Equation.

Lista de Figuras

1.1	Escoamento de partículas com volume fixo.	20
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Domínio de influência sobre uma partícula por meio da função núcleo A função núcleo (2.6) e suas duas primeiras derivadas	23 26 27 28 29 30 30 30
$4.1 \\ 4.2$	Distribuição de 225 partículas no domínio com distância uniforme entre elas Perturbação canônica de partículas com distância irregular, randômica e limitada	39 40
$4.3 \\ 4.4$	Distribuição de 225 partículas perturbadas no domínio	40 40
$4.5 \\ 4.6$	aplicada a perturbação canônica	41 41
$\begin{array}{c} 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \end{array}$	caótica	42 44 45 45
5.1	Representação de uma função núcleo com diferentes distribuições de partículas e truncamento na fronteira. Fonte [24]	51
$6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5$	Esquema de desordem ou perturbação canônica de partículas com $\Delta x = \Delta y.$. Análise da estimativa do erro global de G_0 para campo constante via parâmetro h . Análise da estimativa do erro global de G_+ para campo constante via parâmetro h . Comparação do erro global entre G_0 e G_+ para campo constante via parâmetro h . Comparação da estimativa do erro global entre G_0 e G_+ para campo constante via parâmetro h .	54 58 59 59
$6.6 \\ 6.7 \\ 6.8$	via parâmetro η	59 60 61 61
6.9	Comparação da estimativa do erro global entre G_0 , G_+ e G para campo linear via parâmetro h .	61

6.10	Comparação da estimativa do erro global entre G_0 , G_+ e G para campo linear via parâmetro n_1	62
6.11	Análise da estimativa do erro global de MCG para campo linear via parâmetro h.	64
6.12	Análise da estimativa do erro global de MEA para campo linear via parâmetro h.	64
6.13	Comparação da estimativa do erro global entre MCG e MEA para campo linear	
	via parâmetro η	64
7.0	Aproximações para a função linear $f(x,y) = x + y$	75
7.0	Aproximações para a função linear $f(x, y) = x + y \operatorname{com} \eta = 0.0001.$	76
7.0	Aproximações para a função linear $f(x, y) = x + y \operatorname{com} \eta = 0.3215.$	77
7.1	Aproximações para a função $f(x) = sen(6x)$	80
7.2	Aproximações para a função $f(x) = sen(6x)$ com perturbação $\eta = 0.3215$	80
8.1	Aproximação para a equação (8.7) com função núcleo new quártico e tratamento	
	normal de fronteira.	86
8.2	Aproximação para a equação (8.7) com função núcleo new quártico e tratamento	
	normal de fronteira.	87
8.3	Aproximação para a equação (8.8) com função núcleo <i>new</i> quártico, 6400 partí- culas e tratamento normal de fronteira	89
8.4	Aproximação para a equação (8.8) com função núcleo <i>new</i> quártico 6400 partí-	05
0.1	culas e tratamento de fronteira por partículas fantasmas do tipo I e II	90
8.5	Aproximação para a equação (8.8) com função núcleo <i>new</i> quártico, 6400 partí-	00
	culas e tratamento de fronteira por partículas <i>dummy</i>	91
8.6	Aproximação para a equação (8.9) com tratamento de fronteira por partículas	
	dummy.	93
8.7	Aproximação para a equação (8.9) com perturbação $\eta = 0.3215$ e tratamento de	
	fronteira por partículas dummy.	94
8.8	Aproximação para a equação (8.9) com perturbação $\eta=0.4999$ e tratamento de	05
	tronteira por particulas <i>dummy</i>	95
A.1	Interface do programa Smoothed Particle Hydrodynamics Test	101

Lista de Tabelas

7.1	Resultados obtidos na aproximação para $f(x) = 1 \operatorname{com} h = 1.5\Delta v.$	72
7.2	Resultados obtidos na aproximação para $f(x) = 1 \operatorname{com} h = 1.2k\Delta v.$	73
7.3	Resultados obtidos na aproximação para $f(x) = x \operatorname{com} h = 1.2k\Delta v.$	73
7.4	Erros de aproximação da função linear $f(x, y) = x + y$ livre de fronteira.	74
7.5	Erros de aproximação da função linear $f(x, y) = x + y$ com fronteira	74
7.6	Erros de aproximação da função linear $f(x, y) = x + y \operatorname{com} \eta = 0.0001.$	75
7.7	Erros de aproximação da função linear $f(x, y) = x + y \operatorname{com} \eta = 0.3215.$	76
7.8	Erros de aproximação da função linear $f(x) = sen(6x)$	80
8.1	Erros de aproximação da equação (8.7) com variação da razão $\frac{h}{\Delta x}$.	85
8.2	Erros de aproximação da equação (8.7) com variação da razão $\frac{h}{\Delta x}$ e $\eta =$	
	0.3215	86
8.3	Erros de aproximação da equação (8.7) com variação da razão $\frac{h}{\Delta x}$ e η =	
	0.4999	86
8.4	Erros de aproximação da equação (8.7) com variação do número de partí-	~ -
~ ~	culas com $\eta = 0$	87
8.5	Erros de aproximação da equação (8.7) com variação do número de partí-	~ -
0.0	culas com $\eta = 0.3215$	87
8.6	Erros de aproximação da equação (8.7) com variação do numero de parti-	07
0 7	cutas com $\eta = 0.4999$	81
8.1	Erros de aproximação da equação (8.8) com tratamento normal de fronteira.	88
8.8	Erros de aproximação da equação (8.8) com tratamento de fronteira por	00
0 0	Error de approximação de acusção (8.8) com tratamento de fronteiro por	89
0.9	Erros de aproximação da equação (8.8) com tratamento de fronteira por	00
0 10	Error de approximação de acusção (8.0) com tratamento de fronteiro por	90
0.10	Erros de aproximação da equação (8.9) com tratamento de fronteira por	05
0 1 1	Síntega dos regultados obtidos no posquiso	90
0.11	sintese dos resultados obtidos na pesquisa	91

Lista de Siglas

CSPM: Corrective Smoothed Particle Method.

FPM: Finite Particle Method.

ISPH: Incompressible Smoothed Particle Hydrodynamics.

MDF: Método de Diferenças Finitas.

MCG: Monaghan-Cleary-Gingold.

MEA: Formulation Morris et al..

MEF: Métodos de Elementos Finitos.

MPM: Meshfree Particle Method.

MPS: Moving Particle Semi-Implicit.

SPH: Smoothed Particle Hydrodynamics.

Sumário

Re	esum	0	5	
Al	bstra	ct	7	
\mathbf{Li}	sta d	e Figuras	8	
\mathbf{Li}	sta d	e Tabelas	10	
\mathbf{Li}	sta d	e Siglas	13	
	Cap	ítulos		
1	Intr	odução	19	
2	Esti	ruturação Básica para o SPH	21	
	2.1	Representação integral de uma função	21	
	2.2	Aproximação utilizando partículas	22	
	2.3	Função núcleo	22	
		2.3.1 Propriedades da Função Núcleo	23	
	2.4	Funcão núcleo SPH: definição e modelos	25	
		2.4.1 Modelos clássicos de funções núcleo SPH	25	
3	Smoothed Particle Hydrodynamics 33			
	3.1	O método SPH	33	
	3.2	Operadores SPH	33	
		3.2.1 Operador divergente	34	
		3.2.2 Operador gradiente	34	
		3.2.3 Operador laplaciano	35	
4	Con	cepção Numérica das Partículas do Método SPH	39	
	4.1	Modelos de distribuição das partículas	39	
		4.1.1 Distribuição uniforme	39	
		4.1.2 Distribuição perturbada	40	
		4.1.3 Distribuição caótica	41	
	4.2	Recrutamento de partículas no suporte compacto	41	
		4.2.1 Recrutamento de partículas influentes por força bruta	42	
		4.2.2 Recrutamento de partículas influentes por malha uniforme	42	
	4.3	Tratamento de fronteira	43	
	-	4.3.1 O tratamento de fronteira por partículas fantasmas	43	
		4.3.2 Partículas dummu	44	
	4.4	Estrutura do código para aproximação do operador gradiente	45	

5 Consistência do Núcleo SPH: análise com distribuição uniforme da tículas					
	5 1	Aprovimação do uma função	41		
	0.1	$5 1 1 \qquad \text{A provimação das dorivadas do uma função}$	41		
	5.2	Consistência da aproximação por partículas	40 50		
	0.2		00		
6	Influ	Influência da Desordem das Partículas e do Comprimento de Suavização			
	Sob	re os Operadores SPH	53		
	6.1	Desordem canônica de partículas	53		
	6.2	Modelo de malha para testes numericos	54		
	6.3	Avaliação da consistência	54		
		$6.3.1 \text{Definiçao} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	54		
		6.3.2 Funções erro	55		
	C A	b.3.3 Resultados de testes da consistencia	55		
	0.4	Avaliação do operador gradiente SPH	55		
		$\begin{array}{c} 6.4.1 \text{Tipos de Gradiente} \\ \hline \end{array}$	50 50		
		$6.4.2$ Função da condição de consistencia C_0 na estimativa do gradiente .	00 50		
		$0.4.3 \text{Ilpos de Campos} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	50		
		6.4.5 Decrete dec	57		
	GE	0.4.0 Resultados	07 69		
	0.0	Avanação do operador laplaciano SPH	02 69		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 62		
		6.5.2 Fupeño erro	00 62		
		6.5.4 Pegultadeg	00 62		
		0.5.4 Resultados	05		
7	O P	roblema de Inconsistência das Partículas no Método SPH	67		
•	71	Partícula inconsistanto	68		
•	7.1	Partícula inconsistente	68 68		
•	7.1 7.2	Partícula inconsistente	68 68 68		
•	7.1 7.2	Partícula inconsistente	68 68 68 70		
•	7.1 7.2 7.3	Partícula inconsistente	68 68 68 70 72		
•	7.17.27.3	Partícula inconsistenteRestauração da consistência das partículas7.2.1Abordagem CSPM7.2.2Abordagem FPMResultados numéricos7.3.1Zero ordem de consistência (C^0)	68 68 68 70 72 72		
•	7.17.27.3	Partícula inconsistente	68 68 68 70 72 72 72 73		
•	7.17.27.37.4	Partícula inconsistente	68 68 68 70 72 72 73 77		
•	7.17.27.37.4	Partícula inconsistente	68 68 68 70 72 72 72 73 77 77		
•	7.17.27.37.4	Partícula inconsistente	68 68 68 70 72 72 73 77 77		
•	7.17.27.37.4	Partícula inconsistente	68 68 68 68 70 72 72 73 77 77 77		
•	7.17.27.37.4	Partícula inconsistente	68 68 68 70 72 72 73 77 77 77 79 80		
	 7.1 7.2 7.3 7.4 A E	Partícula inconsistente	68 68 68 70 72 72 73 77 77 77 79 80 83		
8	7.1 7.2 7.3 7.4 A E 8.1	Partícula inconsistente	68 68 68 68 70 72 72 73 77 77 79 80 83 83		
8	 7.1 7.2 7.3 7.4 A E 8.1 8.2 	Partícula inconsistente	68 68 68 70 72 72 73 77 77 77 79 80 83 83 84		
8	 7.1 7.2 7.3 7.4 A E 8.1 8.2 	Partícula inconsistente	68 68 68 70 72 72 73 77 77 77 79 80 83 83 84 84		
8	 7.1 7.2 7.3 7.4 A E 8.1 8.2 	Partícula inconsistente	68 68 68 70 72 73 77 77 77 77 79 80 83 83 84 84 91		
8	 7.1 7.2 7.3 7.4 A E 8.1 8.2 A p ê 	Partícula inconsistente Restauração da consistência das partículas Restauração da consistência das partículas 7.2.1 Abordagem CSPM 7.2.2 Abordagem FPM 7.2.2 Resultados numéricos 7.2.1 Resultados numéricos 7.2.2 Resultados numéricos 7.3.1 Zero ordem de consistência (C ⁰) 7.3.2 Primeira ordem de consistência (C ¹) 7.3.2 Um método SPH de alta ordem via função núcleo inversa 7.4.1 O método SPH inverso 7.4.1 O método SPH inverso 7.4.2 Uma adaptação do método SPH inverso com a função núcleo Dome-shaped modificada 7.4.3 Resultados numéricos com o método SPH inverso 7.4.3 Cquação de Poisson 7.4.3 Discretização SPH para a equação de Poisson 7.4.3 A equação de Poisson com condições Dirichlet de fronteira 8.2.1 A equação de Poisson com condições mistas de fronteira 8.2.2 A equação de Poisson com condições mistas de fronteira 7.4.3	68 68 68 70 72 72 73 77 77 79 80 83 83 84 84 91		
8	 7.1 7.2 7.3 7.4 A E 8.1 8.2 A p ê Smo 	Partícula inconsistente Restauração da consistência das partículas Restauração da consistência das partículas 72.1 Abordagem CSPM 72.2 Abordagem FPM 72.2 Resultados numéricos 73.1 Zero ordem de consistência (C ⁰) 73.2 7.3.1 Zero ordem de consistência (C ⁰) 7.3.2 Primeira ordem de consistência (C ¹) Um método SPH de alta ordem via função núcleo inversa 74.1 O método SPH inverso 74.2 Uma adaptação do método SPH inverso com a função núcleo Dome-shaped modificada 74.3 7.4.3 Resultados numéricos com o método SPH inverso 74.3 Cquação de Poisson 90 90 Discretização SPH para a equação de Poisson 90 90 8.2.1 A equação de Poisson com condições Dirichlet de fronteira 90 8.2.2 A equação de Poisson com condições mistas de fronteira 90 8.2.2 A equação de Poisson com condições mistas de fronteira 90 Primeires 90 90 90 Primeires 90 90 90 Primeires 90 90 90 <td< td=""><td>68 68 68 68 70 72 72 73 77 77 77 79 80 83 83 83 84 91 99</td></td<>	68 68 68 68 70 72 72 73 77 77 77 79 80 83 83 83 84 91 99		
8 8	 7.1 7.2 7.3 7.4 A E 8.1 8.2 A p é Smo A.1 	Partícula inconsistente Restauração da consistência das partículas Restauração da consistência das partículas 7.2.1 Abordagem CSPM 7.2.2 Abordagem FPM 7.2.2 Resultados numéricos 7.2.1 Resultados numéricos 7.2.2 7.2.2 Abordagem FPM 7.2.2 Abordagem FPM Resultados numéricos 7.3.1 Zero ordem de consistência (C^0) 7.3.2 Trimeira ordem de consistência (C^1) 7.3.2 Um método SPH de alta ordem via função núcleo inversa 7.4.1 O método SPH inverso 7.4.2 Uma adaptação do método SPH inverso com a função núcleo Dome-shaped modificada 7.4.3 7.4.3 Resultados numéricos com o método SPH inverso 7.4.3 Cquação de Poisson 7.4.3 Resultados numéricos com o método SPH inverso 7.4.3 Cquação de Poisson 8.2.1 A equação de Poisson com condições Dirichlet de fronteira 8.2.2 A equação de Poisson com condições mistas de fronteira 7.4.3 Resultados numéricos Test - SPHT Iniciando o programa SPHT 7.4.3 SPHT 1.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.	68 68 68 70 72 73 77 77 77 79 80 83 83 84 84 91 99 99		

Referências

Capítulo 1 Introdução

Atualmente, devido ao grande avanço tecnológico o uso dos métodos de partículas vem ganhando espaço nas simulações de escoamento de fluido. O primeiro método de partículas desenvolvido foi o *Smoothed Particle Hydrodynamics* (SPH) para simular problemas astrofísicos. Desde então tem sido estudado e melhorado para ser aplicado em uma variedade de problemas, incluindo as equações de Navier-Stokes.

O presente trabalho tem por objetivo construir as bases para investigar a consistência do método SPH que, como sabido, ao ser aplicado necessita de aproximações para os operadores Gradiente, Divergente e Laplaciano. A utilização do método das partículas para modelar problemas matemáticos acontece em praticamente todas as áreas, mas sua análise continua sendo objeto de estudos em crescente atividade na comunidade acadêmica [6, 1]. Na prática há movimentação das partículas, mas a análise da consistência é feita para problemas testes considerando partículas fixas.

O diferencial proposto é a utilização de partículas fixas mas desordenadas, ou seja, que estão espacialmente dispostas de forma randômica, e não mais uniformemente distribuídas. Deverão ser efetuados vários testes visando verificar a influência de uma dada desordem, o comprimento de suavização e um número crescente de partículas, para os operadores SPH. No trabalho, considera-se primeiramente a desordem canônica, conforme [6], que especifica uma reconfiguração de partículas uniformemente distribuídas por meio de uma perturbação leve que muda randomicamente a posição de cada uma das partículas. Um caso não abordado na literatura é o de uma distribuição randômica, que denomina-se por caótica, ou seja, a desordem advém de posições geradas aleatoriamente; comparações são efetuadas com a canônica para um mesmo número de partículas. Os testes de consistência são então realizados.

A consistência é comumente estudada por meio de uma distribuição uniforme das partículas, de certa forma, equivalente a uma malha regular. Na prática dificilmente isso acontece. Assim, considera-se neste estudo uma distribuição randômica, ou, em outras palavras, nos perguntamos, de que maneira uma desordem, por exemplo, representada por uma perturbação na regularidade das partículas, influencia a precisão do método? Dessa forma, a consistência é estudada como a capacidade do método em resolver um problema com solução polinomial, de forma a recuperar a j-ésima derivada do polinômio de i-ésima ordem e rotulado de C_i^j . Note que a recuperação do polinômio não garante que suas derivadas também sejam recuperadas. Portanto, é preciso levar em conta a consistência para as derivadas também.

São quatro as condições de consistência, C_0^0 , C_0^1 , C_1^0 e C_1^1 sendo que cada condição de consistência C_i^j é quantificada por uma função de erro local em cada partícula, conforme [6]. De forma geral, como metodologia, são usadas ideias de [1] para considerar (medir)

a desordem das partículas e então [6] para verificar a influência da desordem e quais as restrições exigidas para a consistência.

Para iniciar a formalização do método SPH, primeiramente destaca-se duas diferentes abordagens que especificam as características do processo de simulação computacional.

Os métodos de partículas utilizam abordagem Lagrangeana, então a seguir uma breve descrição será feita. Nota-se que as quantidades físicas associadas aos elementos de fluido variam ao longo do tempo. Seguindo por exemplo [24], essas variações podem ser descritas da seguinte forma:

Descrição Euleriana: ao invés de acompanhar o movimento ao longo do escoamento, considera-se um conjunto de posições fixas $\mathbf{x_i}$ no espaço como se fossem partículas e, em seguida calcula-se as variações das quantidades físicas do fluido sempre nessas posições (veja a Figura 1.1(a)). A posição de uma partícula $\mathbf{x_i}$ é chamada de coordenada espacial.

Descrição Lagrangeana: o fluido é representado por uma coleção de partículas de fluido onde cada partícula se locomove com o escoamento, veja a Figura 1.1(b).

Figura 1.1: Escoamento de partículas com volume fixo.

Na Figura 1.1 (a) a partícula fluido permanece fixa enquanto o escoamento passa por ela, por outro lado em (b) a partícula fluido se movimenta acompanhando o escoamento.

Dessa forma, formaliza-se a seguir o método SPH e considera-se a descrição Lagrangeana, de modo a especificar uma nova configuração das partículas na discretização do domínio. Para isso, utiliza-se partículas desordenadamente distribuídas e procura-se determinar quais as influências dessa desordenação ao aproximar os operadores SPH e a equação de *Poisson*, principal motivação desta pesquisa. Sendo assim, amplia-se as análises iniciadas por [30] e propõem-se novas estratégias com a finalidade de melhorar a consistência da aproximação por partículas.

Considerações finais

A Tabela 8.11 apresenta de forma sucinta os resultados obtidos neste estudo ao longo de sua evolução. Sua disposição por linhas e colunas definem toda a trajetória da pesquisa, incluindo toda a parte de programação em $Matlab^{(\mathbb{R})}$. A primeira coluna representa a investigação realizada, tendo como base a literatura e/ou testes numéricos. A segunda coluna determina a base necessária para gerar um resultado para o problema investigado, por fim, a terceira coluna destaca os resultados obtidos e validados com base em livros e artigos nacionais e internacionais. Enquanto isso, as linhas determinam a ordem cronológica das investigações.

	1	
Investigação	Dados	Sugestão
A morrisma a sã a	operador gradiente	gradiente diferença G_{-}
Aproximação	operador laplaciano	MEA
Postauração da consistância	função constante	método FPM
Restauração da consistencia	função linear	método FPM
	$\eta = 0$	partículas dummy
Tratamento de fronteira	$\eta = 0.3215$	partículas dummy
	$\eta = 0.4999$	partículas dummy
\mathbf{P}_{a}	$60 \le N \le 100$	$\alpha = 1.3$
Farametro α para $\eta = 0$	N<60 ou $N>100$	α não determinado
Parâmetro α para $\eta > 0$	$60 \le N \le 100$	$\alpha > 1.3$
Função núcleo	equação de <i>Poisson</i>	<i>new</i> quártico
Domínio	$[0,1] \times [0,1]$	discretizar com 6400 partículas
Equação de Poisson	condição de Neumann	diferenças compactas 6^a ordem

Tabela 8.11: Síntese dos resultados obtidos na pesquisa.

A soluções numéricas foram calculadas com software $Matlab^{\textcircled{R}}$ R2012a utilizando processador $core^{\textcircled{R}}$ i7 de 2.20 GHz e 6.0 GB de memória RAM, sem placa de vídeo dedicada. O tempo computacional para a geração da solução numérica da equação de *Poisson* é de \approx 7 segundos para 1600 partículas e \approx 7 minutos para 14400 partículas.

Referências

- [1] M. Antuono; B. Bouscasse; A. Colagrossi; S. Marrone. A measure of spatial disorder in particle methods. *Computer Physics Communications*, 18(10):2609–2621, 2014.
- [2] T. Belytschko; Y. Krongauz; D. Organ; M. Fleming; P. Krysl. Meshless methods: an overview and recent developments. *Computer Methods in Applied Mechanics and Engineering*, 139:3–47, 1996.
- [3] J. K. Chen; J. E. Beraun; T. C. Carney. A corrective smoothed particle method for boundary value problems in heat conduction. *International Journal for Numerical Methods in Engineering*, 46:231–252, 1999.
- [4] S. Cummins; M. Rudman. An SPH projection method. Journal of Computational Physics, 152:584–607, 1999.
- [5] D. A. Fulk. A numerical analysis of smoothed particle hydrodynamics. PhD thesis, Air Force Institute of Technology, 1994.
- [6] C. Geoffroy; B. Samuel; W. Lars; K. Rainer; B. Hans-Jorg. Influence of particle disorder and smoothing length on SPH operator accuracy. *Conference Paper - 10th international SPHERIC workshop*, June 2015.
- [7] R. A. Gingold; J. J. Monaghan. Smoothed particle hydrodynamics theory and application to non-spherical stars. *Royal Astronomical Society*, 181:375–389, 1977.
- [8] S. Koshizuka; Y. Oka. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123:421–434, 1996.
- [9] F. Le; M. J. Christophe; L. Julien; A. Andrea; C. Joelle. A high-order SPH method by introducing inverse kernels. *Chinese Journal of Aeronautics*, 2017.
- [10] G. R. Li; S. Quek. Finite Element Method: A Practical Course. Butterworth-Heinemann, 2003.
- [11] L. D. Libersky; A. G. Petscheck. High strain lagrangian hydrodynamics a threedimensional SPH code for dynamic material response. *Journal of Computational Physics*, 109:67–75, 1993.
- [12] M. B. Liu; G. Liu; K. Lam. Construing smoothed functions in smoothed particle hydrodynamics with applications. *Journal of Computational and Applied Mathematics*, 155:263–284, 2003.
- [13] M. B. Liu; G.R. Liu. Restoring particle consistency in smoothed particle hydrodynamics. Applied Numerical Mathematics, 56:19–36, 2006.

- [14] G. R. Liu; M. B. Liu, Smoothed Particle Hydrodynamics: a meshfree particle method. World Scientific Publishing, 1 edition, 2003.
- [15] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. Astron. Journal, 82:1013–1024, 1977.
- [16] F. Macià; M. Antuono; L. M. González; A. Colagrossi. Theoretical analysis of the no-slip boundary condition enforcement in SPH methods. *Progress of Theoretical Physics*, 125(6):1091–1121, 2011.
- [17] J. J. Monaghan. Smoothed particle hydrodynamics. Anual Review of Astronomical and Astrophysics., 30:543–574, 1992.
- [18] J. J. Monaghan. Simulating free surface flow with SPH. Journal of Computational Physics, 110:339–406, 1994.
- [19] J. J. Monaghan; A. Kovharyan. SPH simulating of multi-phase flow. Computer Physics Communications, 87:225–235, 1995.
- [20] J. J. Monaghan; J. C. Lattanzio. A refined particle method for astrophysical problems. Astronomy and Astrophysics, 149:135–143, 1985.
- [21] J. J. Monaghan; P. Cleary. Conduction modelling using smoothed particle hydrodynamics. Journal of Computational Physics, 148:227–264, 1999.
- [22] J. P. Morris. A study of the stability properties of SPH. Applied Mathematics Reports and Preprints, 1994. Monash University.
- [23] J. P. Morris. Analysis of smoothed particle hydrodynamics with applications. PhD thesis, Monash University, 1996.
- [24] A. Paiva; F. Petronetto; G. Tavares; T. Lewiner. Simulação de Fuidos sem Malha: Uma introdução ao método SPH. IMPA, 2009.
- [25] F. Petronetto. A Equação de Poisson e a Decomposição de Helmholtz-Hodge com Operadores SPH. PhD thesis, PUC-Rio, Rio de Janeiro, 2008.
- [26] N. J. Quinlan; M. Basa; M. Lastiwka. Truncation error in mesh-free particle methods. International Journal for Numerical Methods in Engineering, 66(13):2064– 2085, 2006.
- [27] A. Souto-Iglesias; F. Macià; L.M. González; J.L. Cercos-Pita. On the consistency of MPS. Computer Physics Communications, 184(3):732–745, 2013.
- [28] L. F. Souza. Instabilidade Centrífuga e Transição para Turbulência em Escoamentos Laminares Sobre Superfícies Côncavas. PhD thesis, ITA - Campo Montenegro, São José dos Campos, 2003.
- [29] M. L. P. Souza; M. S. Braitt. Discretização da equação de poisson para aplicação em eletroosmose. Anais I Congresso de Matemática Aplicada e Computacional, 2011.
- [30] A. S. Takata. Aspectos teórico-práticos dos métodos SPH e MPS. Master's thesis, FCT/UNESP-PP, Presidente Prudente, 2015.
- [31] D. Violeau. Fluid Mechanics and the SPH Method: Theory and Applications. Oxford University Press, 2012.

[32] X. F. Yang; S. L. Peng; M. B. Liu. A new kernel function for SPH with applications to free surface flows. *Journal of Applied Mathematical Modelling*, 38:3822–3833, 2014.