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In this work, we analyze the canonical structure of Podolsky’s generalized electro-
dynamics on the null-plane. We show that the constraint structure presents a set of
second-class constraints, which are exclusive of the analysis on the null-plane, and
an expected set of first-class ones. An inspection on the field equations leads to the
generalized radiation gauge on the null-plane. Dirac Brackets are then introduced by
considering the problem of uniqueness under the chosen initial-boundary conditions
of the theory. C© 2011 American Institute of Physics. [doi:10.1063/1.3653510]

I. INTRODUCTION

Most physical systems, including fundamental fields in quantum field theory, are described by
Lagrangians that depend at most on first-order derivatives. However, there is a continuous interest
on theories with higher-order derivatives, either do accomplish generalizations or to get rid of some
undesirable properties of first-order theories. This interest had begun in the half of the 19th century,
when Ostrogradski1 developed the generalized Hamiltonian formalism in classical mechanics.

As examples of systems treated by higher-order Lagrangians, we mention the attempts to solve
the problem of renormalization of the gravitational field by inserting quadratic terms of the Riemann
tensor and its contractions2 on the Einstein-Hilbert action. Recent developments in this direction
have been made by Cuzinatto et al.3, 4 We may also highlight the recently discovered new massive
gravity,5 which describes a unitary, parity-preserving second-order gravitational theory with massive
gravitons in 2 + 1 dimensions.

Higher-order Lagrangians have also emerged as effective theories on the infrared sector of the
QCD,6 where it enforces a good asymptotic behavior of the gluon propagator. It is important to
remark that the inclusion of higher-order derivatives in field theory of supersymmetric fields has
shown to be a powerful regularization mechanism.7 A very attractive property of quantum field
theories with higher-order terms is that of the improvement of the convergence of the corresponding
Feynman diagrams.8

The first model of a higher-order derivative field theory is a generalization of the electromagnetic
field proposed in the works of Podolsky, Schwed, and Bopp,9 which culminated in the Podolsky’s
generalized electrodynamics. It is suggested to modify the Maxwell-Lorentz theory in order to avoid
divergences such as the electron self-energy and the vacuum polarization current. These difficulties
can be traced to the fact that the classical electrodynamics involve an r− 1 singularity that results
in an infinite value of the electron self-energy. The Lagrangian density is, therefore, modified by a
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second-order derivative term:

L = −1

4
Fμν Fμν + 1

2
a2∂λFμλ∂γ Fμγ . (1)

Podolsky’s theory already has many interesting features at the classical level. It solves the
problem of infinite energy in the electrostatic case and also gives the correct expression for the
self-force of charged particles at short distances, as showed by Frenkel,10 solving the problem of
the singularity at r → 0. It has been shown by Cuzinatto et al.4 that the above Lagrangian density
is the only possible generalization of the electromagnetic field that preserves invariance under U(1).
Besides, the theory yields field equations that are still linear in the fields.

Another important prediction of the model is the existence of massive photons, whose mass
is proportional to the inverse of the Podolsky’s parameter a. This feature allows experiments that
may test the generalized electrodynamics as a viable effective theory. The determination of an upper
bound value for the mass of the photon is actually a current concern both in the theoretical11 and the
experimental framework.12

The canonical quantization of the field was tried in the work of Podolsky and Schwed.9 However,
Podolsky’s theory inherits the same difficulties from the standard electromagnetic field, the presence
of a degenerate variable, which forced them to use a Fermi-like Lagrangian. The chosen gauge fixing
condition, the usual Lorenz condition, does not fulfill the requirements for a good choice of gauge
in the context of Podolsky’s theory. The first consistent approach to the quantization of the field
was given by Galvão and Pimentel,13 where Dirac’s canonical formalism14 is used with the correct
choice of gauge.

The first attempts of quantization of Podolsky’s field were made in instant-form, where the
“laboratory time” t = x0 is the evolution parameter of the theory. It is actually possible to define five
different forms of Hamiltonian dynamics, each one related to different sub-groups of the Poincaré
group.15 Other of the simplest form of dynamics is the front-form dynamics, which is the Hamiltonian
dynamics of fields over a null-plane x0 + x3 = cte. The “time” or evolution parameter is chosen to
be the coordinate x+ ≡ 1/

√
2(x0 + x3). This parameter choice was mistaken, for some time, to the

so-called infinite-momentum frame,16 which is a limit process to analyze field theories in a frame
near to the speed of light. The front-form dynamics implies a choice of coordinate system, not a
physical reference frame, where the classical (quantum) evolution of the system is given by the
definition of appropriate fundamental “equal-time” brackets (commutators), defined on a null-plane
of constant x+ , plus a special set of initial-boundary data.

In this paper, we study the Hamiltonian dynamics of the Podolsky’s generalized electrodynamics
on the null-plane. Since this theory is constrained, we may build a consistent canonical approach
using the Dirac’s Hamiltonian method. Our focus is to find the complete set of constraints of the
theory, to build a consistent gauge fixing procedure and Dirac brackets, as well as to establish the
complete equivalence between the Lagrangian and Hamiltonian approaches.

There are some good reasons, both physical and mathematical, to analyze relativistic fields on
the null-plane. One of them is the fact that this kind of dynamics usually presents a set of second-
class constraints not present in instant-form, which reduces the number of independent degrees of
freedom necessary to describe such theories. This is closely related to the fact that the stability group
of the Poincaré group in front-form, which is the sub-group of transformations that relates field
configurations in a single surface x+ = cte, has seven generators, one more than the six kinematic
generators in instant-form. Besides, the algebra of these kinematic generators takes its simplest form
in front-form dynamics. This is so because a boost in a fixed spatial direction is simply a diagonal
scale transformation, which does not mix the coordinates x+ and x− . For some important systems,
this feature is responsible for a complete separation of physical degrees of freedom, resulting in a
clean and excitation-free quantum vacuum. This is actually verified, for example, in Yang-Mills,17

QCD,18 and spontaneous symmetry breaking models.19

The paper is organized as follows. In Sec. II, we discuss the null-plane coordinates, which
are the natural coordinate system for the front-form dynamics, and we review the initial-boundary
value problem for the fields, establishing appropriate conditions to achieve a unique solution of the
dynamic equations on the null-plane. Section III will be devoted to a review on the Hamiltonian

Downloaded 18 Jul 2013 to 200.130.19.215. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



102902-3 Podolsky’s electrodynamics on the null-plane J. Math. Phys. 52, 102902 (2011)

formalism for higher-order Lagrangians. In Sec. IV, the canonical approach is applied for the
generalized electromagnetic field in null-plane coordinates. In Sec. V, we establish a set of consistent
gauge conditions and corresponding Dirac brackets to describe the physical dynamics of the theory.
Section VI will be devoted for the final remarks.

II. THE NULL-PLANE COORDINATES

As the start point for the analysis of a second-order field theory, we have the action

S [φ] ≡
∫

�

dω L
(
φ, ∂φ, ∂2φ

)
,

where L is a Lagrangian density and dω is a four-volume element of a four-volume � of the space-
time. For relativistic theories, the Lagrangian density must be chosen to be invariant under any
particular parameter choice. However, although the Lagrangian formalism preserves this invariance,
the same does not occur in the Hamiltonian formalism, which requires a parameterization in order
to be fully carried out.

Dirac has shown20 that the usual dynamics, the instant-form, where the Galilean time x0 = t
is the parameter that defines the evolution of the system from a given initial three-surface 	t=t0 to
a later surface 	t=t1 , is not the only possible choice of parameterization. He calls attention for two
other forms of Hamiltonian dynamics: the punctual-form and the front-form. Later, two other forms
were discovered.21

An important advantage pointed out by Dirac is the fact that seven of the ten Poincaré generators
are kinematical on the null-plane, while the conventional theory constructed in instant-form has only
six of these generators. Therefore, the structure of the phase space is distinct in both cases. As
such, a description of the physical systems on the null-plane could give additional information
from those provided by the conventional formalism.22 Another remarkable feature is that regular
theories become constrained when analyzed on the null-plane. In general, it leads to a reduction
in the number of independent field operators in the respective phase space due to the presence of
second-class constraints.

The natural coordinate system of instant-form dynamics is the rectangular system xμ ≡ (x0,
x1, x2, x3). We can pass to null-plane coordinates with the linear transformation x′ = 
x where the
transformation matrix and its inverse are given by


 ≡ 1√
2

⎛
⎜⎜⎝

1 0 1

1 0 −1

0
√

2 · I 0

⎞
⎟⎟⎠ , 
−1 = 1√

2

⎛
⎜⎜⎝

1 1 0

0 0
√

2 · I

1 −1 0

⎞
⎟⎟⎠ ,

where I is the 2 × 2 identity matrix and x′μ ≡ (x+ , x− , x1, x2).
Lorentz tensors are covariant under this transformation, but the transformation itself is not of

Lorentz type:22 if in usual coordinates, we define the Minkowski metric as η ≡diag(1, − 1, − 1,
− 1), the metric in null-plane coordinates will be given by

η′ = 
 η 
−1 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 −I

⎞
⎟⎠ .

Using this metric (from now on, we will ignore the comma), we can see that the norm of a vector is
not a quadratic form, but will be linear in the longitudinal components.

Of special interest is the D’Alambertian operator

� ≡ ∂μ∂μ = 2∂−∂+ + ∂i∂
i . (2)

Since the evolution parameter is x+ , a field equation like (� + m2)φ = 0 will be linear on the
velocity ∂ + φ, which does not occur in instant-form. Therefore, the analysis of initial-boundary
value problem is changed from a Cauchy to a characteristics initial-boundary value problem. This
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is due to the fact that a quadratic Lagrangian on ∂0φ is actually of first order on ∂ + φ. In the case of
the scalar field on the null-plane, it is sufficient to fix the values of the fields on both characteristics
surfaces to solve the field equations.23

This can be seen in Podolsky’s case by the Euler-Lagrange (EL) equations of the Lagrangian
(1): (

1 + a2�
)
�Aμ − ∂μ

(
1 + a2�

)
∂ν Aν = 0. (3)

This equation is of fourth-order in ∂0Aμ but only second-order in ∂ + Aμ. Therefore, in instant-form,
it is necessary to specify four conditions, the values of the field and its derivatives until third-order
on an initial surface x0 = 0 to uniquely write a solution.

On the null-plane, the equation is just of second-order, but the existence of two characteristics
surfaces demands the knowledge of four initial-boundary conditions as well. The normal vector of
a null-plane lies in the same plane; therefore, the knowledge of the value Aμ on a null-plane implies
in its normal derivative ∂ + Aμ. Thus, the solution of the field equations is uniquely determined if
A is specified on the null-plane x+ = cte and three boundary conditions are imposed on x− = cte,
which, in our case, consists on the value of the derivatives of the field up to third-order.

In the canonical framework, it was Steinhardt24 who showed that for linear Lagrangians, the
initial condition on x+ = cte plus a Hamiltonian function are insufficient to predict uniquely all
physical processes. Boundary conditions along the x− = cte plane must also be determined. He also
observed that the matrix formed by the Poisson brackets (PBs) of the second-class constraints does not
have a unique inverse and that the presence of arbitrary functions is associated with the insufficiency
of the initial value data. It is also responsible for the existence of a hidden subset of first-class
constraints, which is associated with improper gauge transformations.25 By imposing appropriate
initial-boundary conditions on the fields, the hidden first-class constraints can be eliminated in order
to the total Hamiltonian be a true generator of the physical evolution. It will also determine a unique
inverse of the second class constraint matrix that allows to obtain the correct Dirac brackets (DBs)
among the fundamental variables. Thus, in the study of the Podolsky’s theory, we follow the same
tune outlined in Ref. 26.

III. SECOND-ORDER DERIVATIVES ON THE NULL-PLANE

Let us consider a generic Lagrangian density L(φ, ∂φ, ∂2φ) dependent on a number n of fields
φa(x) and its first and second derivatives. The application of Hamilton’s principle yields the following
EL equations:

δL
δφa

− ∂μ

[
δL

δ
(
∂μφa

)
]

+ ∂μ∂ν

[
δL

δ
(
∂μ∂νφa

)
]

= 0,

which is the equation that originates (3) from (1). Because the system is Poincaré invariant, the EL
equations imply conservation of the symmetric energy-momentum tensor

Tμν ≡ ∂μφa δL
δ (∂νφa)

− Lημν − 2∂μφa∂λ

[
δL

δ (∂ν∂λφa)

]

+∂λ

[
∂μφa δL

δ (∂ν∂λφa)

]
− ∂λ

(

μλν + �μλν

)
, (4)

where


μλν ≡ 1

2

[
δL

δ (∂μφa)
− ∂v

(
δL

δ (∂μ∂νφa)

)]
(Iλν)a

b φb,

�μλν ≡ 1

2

δL
δ (∂μ∂αφa)

(Iλν)a
b ∂αφb.

(Iλν)a
b are the infinitesimal generators of the Poincaré group.
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The conserved charge is given by the expression

G ≡ −aμ Pμ − 1

2
ωμν Mμν

with generators

Pμ ≡
∫

σ

dσ νTμν,

Mμν ≡
∫

σ

dσα
(
Tαμxν − Tανxμ

)
.

In the above expressions, σ is a three-surface orthogonal to the parameterization axis.
If we choose the null-plane, we will be interested in the dynamical generator P+ , which is given

by

P+ ≡
∫

d3xT+−,

where we adopt d3x ≡ dx− dx1dx2. Here, we have the canonical Hamiltonian density

Hc ≡ T+− =
[

δL
δ (∂+φa)

− ∂+
δL

δ (∂+∂+φa)
− 2∂−

δL
δ (∂−∂+φa)

− 2∂i
δL

δ (∂i∂+φa)

]
∂+φa

+∂+∂+φa δL
δ (∂+∂+φa)

− L. (5)

This result suggests the following definition for the canonical momenta:

pa ≡
∫

d3x

[
δL

δ (∂+φa)
− ∂+

δL
δ (∂+∂+φa)

− 2∂−
δL

δ (∂−∂+φa)
− 2∂i

δL
δ (∂i∂+φa)

]
, (6a)

πa ≡
∫

d3x
δL

δ (∂+∂+φa)
, (6b)

where the fields φ and ∂ + φ are treated as independent canonical fields.
It is straightforward to show that the EL equations can be written by

Wab∂
4
+φb = Fa

(
φ, ∂φ, ∂2φ, ∂3φ

)
where the generalized Hessian matrix is

Wab ≡ δπa

δ(∂2+φb)
=

∫
d3x

δL
δ(∂2+φa)δ(∂2+φb)

. (7)

It is the regularity or the singularity of this matrix that determines the regularity or the singularity of
the system.

In this analysis, we have ignored the boundary conditions of the fields, which is a quite mislead-
ing attitude, since the null-plane dynamics requires a different analysis of initial-boundary conditions
than the instant-form dynamics. The discussion about the initial-boundary value problem in this case
will be made properly during the canonical procedure, so at this point, we just make sure that the
conditions of the fields are equivalent of those in instant-form, in other words, the fields and all
required derivatives go to zero at the boundary of the three-surface.

IV. THE HAMILTONIAN ANALYSIS

From the Lagrangian density (1) and the definitions (6), follow the canonical momenta for the
Podolsky’s field

pμ = Fμ+ − a2
[
ημ−∂−∂λF+λ + ημi∂i∂λF+λ − 2∂−∂λFμλ

]
, (8a)

πμ = a2ημ+∂λF+λ. (8b)
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The Hessian matrix of this system is

W μν = δπμ

δ(∂2+ Aν)
= −a2ημ+δν

−η++ = 0.

As we saw in the earlier section, the fields Aμ and ∂ + Aμ should be treated as independent variables.
Therefore, we will use the notation Āμ ≡ ∂+ Aμ, being Aμ and Āμ independent fields. Then, we are
able to define the primary constraints

φ1 = π+ ≈ 0,

φi
2 = π i ≈ 0,

φ3 = p+ − ∂−π− ≈ 0,

φi
4 = pi − ∂iπ

− + Fi− + 2a2∂−
[
∂i Ā− − 2∂− Āi + ∂i∂− A+ − ∂ j Fi j

] ≈ 0.

The canonical Hamiltonian density can be expressed by

Hc = pμ Āμ + π− (
∂− Ā+ − ∂ i Āi + ∂ i∂i A+

) + 1

4
Fi j Fi j − 1

2

(
Ā− − ∂− A+

)2

− (
Āi − ∂i A+

)
F−i + 1

2
a2

(
∂i Ā− − 2∂− Āi + ∂i∂− A+ − ∂ j Fi j

)2
. (9)

With the canonical Hamiltonian Hc = ∫
d3xHc(x) and the primary constraints, we build the primary

Hamiltonian

HP ≡ Hc +
∫

d3xua(x)φa(x), {a} = {1, 2, 3, 4} . (10)

To proceed with the calculus of the consistency conditions, we use the primary Hamiltonian as
the generator of the x+ evolution and define the fundamental equal x+ Poisson Brackets with the
expressions {

Aμ(x), pν(y)
} = {

Āμ(x), πν(y)
} = δν

μδ3(x − y), (11)

where δ3(x − y) ≡ δ(x− − y−)δ2(x − y). We verify that the condition φ̇1 ≈ 0 gives just the con-
straint φ3 ≈ 0, which is already satisfied. The consistency for the remaining constraints gives
equations for some Lagrange multipliers. Notice that the conditions for φi

2 and φ3,

φ̇i
2 = −φi

4 + 4a2∂−∂−u4
i ≈ 0,

φ̇3 = ∂− p− + ∂i pi + 4a2∂i∂−∂−u4
i ≈ 0,

give equations for the same parameters u4
i . These equations must be consistent to each other. From the

first, we have ∂−∂−u4
i ≈ 0 and applying this result on the second condition, a secondary constraints

appears:

χ ≡ ∂− p− + ∂i pi ≈ 0.

For this secondary constraint, χ̇ = 0 and no more constraints can be found. The analysis leaves us
with the following set:

χ = ∂− p− + ∂i pi ≈ 0,

φ1 = π+ ≈ 0,

φi
2 = π i ≈ 0 ,

φ3 = p+ − ∂−π− ≈ 0,

φi
4 = pi − ∂iπ

− + Fi− + 2a2∂−
[
∂i Ā− − 2∂− Āi + ∂i∂− A+ − ∂ j Fi j

] ≈ 0.

It happens that χ and φ1 are first-class constraints, while φi
2 , φ3, and φi

4 are second-class ones.
However, by constructing the matrix of the second-class constraints, we found that it is singular of
rank 4, which indicates that there must exist a first-class constraint, associated with the zero mode
of this matrix, and its construction is made from the corresponding eigenvector that gives a linear
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combination of second-class constraints. The combination happens to be just 
2 ≡ φ3 − ∂iφ
i
2, and

it is independent of χ and φ1. Therefore, we have the renamed set of first-class constraints


1 ≡ π+ ≈ 0, (12a)


2 ≡ p+ − ∂−π− − ∂kπ
k ≈ 0, (12b)


3 ≡ ∂− p− + ∂i pi ≈ 0, (12c)

and a set of irreducible second-class constraints

�i
1 ≡ π i ≈ 0 , (13a)

�i
2 ≡ pi − ∂iπ

− + Fi− + 2a2∂−
[
∂i Ā− − 2∂− Āi + ∂i∂− A+ − ∂ j Fi j

] ≈ 0 . (13b)

The second-class constraints do not appear in the instant-form dynamics for this theory: they are a
common effect of the null-plane dynamics.

Here, we are in position to write the total Hamiltonian

HT ≡ Hc +
∫

d3xua(x)
a(x) +
∫

d3xλI
i (x)�i

I (x), (14)

with which we are able to calculate the canonical equations of the system for the variables Aμ, Āμ,
pμ, and πμ.

For Aμ, we have the equations

∂+ Aμ = Āμ + δ+
μ u2 − δ−

μ ∂−u3 − δi
μ

[
∂i u

3 − λ2
i

]
, (15)

which just means that the canonical variable Āμ is defined as ∂ + Aμ plus a linear combination of the
still arbitrary Lagrange multipliers. The equations for Āμ give

∂+ Āμ ≈ δ+
μ u1 + δ−

μ

[
∂− Ā+ + ∂i Āi − ∂i∂i A+ + ∂−u2 + ∂iλ

2
i

] + δi
μ

[
∂i u

2 + λ1
i

]
. (16)

The equation for Ā+ is just ∂+ Ā+ ≈ u1, which is expected since Ā+ is a degenerate variable. The
expression for Ā− can be written, using (15), as

∂μF−μ ≈ − [
∂ i∂i + ∂+∂+

]
u3. (17)

The Hamiltonian equations for the momenta pμ are given, with (15) and π − = a2∂λF+ λ, by

∂+ p+ ≈ ∂λFλ+ − a2∂i∂−∂λFλi − a2∂i∂i∂λFλ+ + (
1 + a2∂i∂i

)
∂−∂−u3,

∂+ p− ≈ ∂i Fi− + ∂i∂i u3,

∂+ pi ≈ ∂−F−i + ∂ j F ji − a2∂μ∂μ∂ j Fi j − ∂−∂i u3.

The equations for πμ are, using the fact that π + and π i are weakly zero,

p+ ≈ a2∂−∂λF+λ,

p− ≈ F−+ + a2∂−∂λF−λ + ∂−u3 − a2∂−∂i∂i u3,

pi ≈ Fi+ − a2
(
∂ i∂λF+λ − 2∂−∂λFiλ

) + 2a2∂−∂−∂i u3.

The last equations reproduce the definition of the canonical momenta p with some combination of
the Lagrange multipliers. If we use these equation on the earlier equations for ∂ + pμ, and also using
(17), we have (

1 + a2�
)
∂λFλ+ + (

1 + a2∂i∂i
)
∂−∂−u3 ≈ 0, (18a)(

1 + a2�
)
∂λFλ− + a2∂+∂−∂i∂i u

3 ≈ 0, (18b)(
1 + a2�

)
∂λFλi − (

1 + 2a2∂+∂−
)
∂−∂i u

3 ≈ 0. (18c)

These equations are compatible with the Lagrangian field equations (3) only if suitable gauge
conditions are chosen in order to eliminate the Lagrange multiplier u3.
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V. GAUGE FIXING AND DIRAC BRACKETS

At this stage, we consider the set of first-class constraints (12) that must be considered as
generators of gauge transformations. The problem of choosing proper gauge conditions has to be
solved to fully eliminate the redundant variables of the theory at the classical level, and therefore, to
proceed with a consistent quantization of the Podolsky’s field.

As it has been already stated in Sec. I, the first attempt to find gauge conditions in the instant-
form of the theory was made by using the Lorenz gauge ∂μAμ = 0. However, as shown in Ref. 13,
the Lorenz condition is not a good gauge choice for the Podolsky’s field, since it does not fulfill the
necessary requirements for a consistent gauge: it does not fix the gauge, it is not preserved by the
equations of motion, and it is not attainable. Moreover, it is also clear that the solutions of the field
equations (3) cannot consist only by transverse fields.

The analysis of the correct gauge fixing on the null-plane can be made by closely inspecting the
EL equations of the system. If we look for the μ = + equation, it produces the explicit solution
for A+

A+ = − (
U−1

)
∂+

(
1 + a2�

) (
∂− A− + ∂ i Ai

)
, (19)

where U ≡ (1 + a2�)∇2 and ∇2 ≡ ∂ i∂ i. The remaining equations of motion can be written,
eliminating the A+ variable, by(

1 + a2�
)
�A− = 0,

(
1 + a2�

)
�Ai = 0,

with

A− ≡ A− + ∂−
(
U−1) (

1 + a2�
) (

∂− A− + ∂ i Ai
)
,

Ai ≡ Ai + ∂i
(
U−1) (

1 + a2�
) (

∂− A− + ∂ j A j
)
.

Therefore, we can achieve the variables A through a gauge transformation such that the gauge
function is

� = (
U−1

) (
1 + a2�

) (
∂− A− + ∂ i Ai

)
.

In addition, these fields satisfy the condition(
1 + a2�

) (
∂−A− + ∂ i Ai

) = 0, (20)

which is the generalized Coulomb condition on the null-plane.
For that reason, the most natural gauge choice that is compatible with the field equations is

given by (
1 + a2�

) (
Ā− + ∂ i Ai

) ≈ 0. (21)

Back to (19), we see that the time preservation of this relation is guaranteed if we set A+ ≈ 0.
Whereas consistency requires Ā+ ≈ 0 as well.

In this gauge, the field equations are written by(
1 + a2�

)
�AB = 0,

which is a generalized wave equation on the null-plane for the variables AB ≡ (A− , Ai).
Back to the Hamiltonian framework, this analysis leads to the gauge conditions

�1 ≡ Ā+ ≈ 0, (22a)

�2 ≡ A+ ≈ 0, (22b)

�3 ≡ (
1 + a2�

) (
Ā− + ∂ i Ai

) ≈ 0, (22c)

which is the generalized radiation gauge on the null-plane. The next step is to calculate the DB for
the set of ten constraints of the theory, but due to the present of the second-class constraints (13), it
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is more convenient to evaluate the reduced dynamics for these constraints first. Taking the matrix of
the Poisson Brackets of the second-class constraints, we have

Mi j ≡ 2ηi j∂ x
−

(
0 −2a2∂ x

−
2a2∂ x

− 1 − 2a2∇2
x

)
δ3(x − y) . (23)

The explicit evaluation of the inverse involves the knowledge of the inverse of the operators
(
∂ x
−
)−1

,(
∂ x
−
)−2

, and
(
∂ x
−
)−3

, which are Green’s functions of the operators ∂ x
−,

(
∂ x
−
)2

, and
(
∂ x
−
)3

. To achieve a
unique solution, it is necessary and sufficient to impose ∂ x

− Aμ = 0, ∂ x
−∂ x

− Aμ = 0, and ∂ x
−∂ x

−∂ x
− Aμ = 0

on x− → − ∞ as the appropriate initial conditions of the theory. This choice is also consistent
with the definition of momenta (8), since their definitions are also dependent on initial-boundary
conditions. Therefore, we write the unique inverse

Ni j ≡ 1

2
ηi j

(
α (x, y) β (x, y)

γ (x, y) 0

)
, (24)

with the coefficients

α = 1

4a4

(
x− − y−)2

ε
(
x− − y−) (

1 − 2a2∇2
x

)
δ2(x − y), (25)

β = −γ = 1

a2

∣∣x− − y−∣∣ δ2(x − y). (26)

With this inverse, we are able to define the first DB for two observables A(x) and B(y),

{A(x), B(y)}∗ = {A(x), B(y)}
−

�
d3zd3w

{
A(x),�i

I (z)
}

N I J
i j (z, w)

{
�

j
J (w), B(y)

}
, (27)

where {I, J} = {1, 2}. This definition implies the elimination of the second-class constrains and
the definition of an extended Hamiltonian where �I are strongly zero. Thus, we are left with the
first-class constraints 
 and the gauge conditions �. To proceed with the evaluation of the complete
DB, we should calculate the matrix of the first DB of these constraints. It is given by

C(x, y) ≡ {χA(x), χB(y)}∗ =
(

0 O(x, y)

−OT (x, y) 0

)
,

with χA ≡ (
a, �a). If we write Dx ≡ (
1 − a2∇2

x

)
, the matrix O follows:

O(x, y) =

⎛
⎜⎝

−1 0 0

0 −1 Dx∂
x
−

0 0 −Dx∇2
x

⎞
⎟⎠ δ3(x − y).

The inverse is given by

C−1(x, y) =
(

0 − (
O−1

)T
(x, y)

O−1(x, y) 0

)
, (28)

in which

O−1(x, y) =

⎛
⎜⎝

−δ3(x − y) 0 0

0 −δ3(x − y) γ (x, y)

0 0 ρ (x, y)

⎞
⎟⎠ . (29)

Under the considered boundary conditions, the coefficients are given by

γ (x, y) = −∂ x
−

(∇2
x

)−1
δ3(x − y), (30)
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ρ (x, y) = −D−1
x

(∇2
x

)−1
δ3(x − y), (31)

where (∇2
x

)−1
δ3(x − y) = 1

4π
ln (x − y)2 .

Then, we are able to define the complete Dirac Brackets of the generalized radiation gauge:

{A(x), B(y)}∗∗ ≡ {A(x), B(y)}∗

+
∫

d3zd3w {A(x), 
a(z)}∗
[(
O−1

)T
]ab

(z, w) {�b(w), B(y)}∗

−
∫

d3zd3w {A(x),�a(z)}∗ [
O−1

]ab
(z, w) {
b(w), B(y)}∗ . (32)

With these brackets, we can deduce the fundamental ones that will lead, through the correspondence
principle, to a consistent quantization of the field:{

Aμ, Āν

}∗∗ = − 1

8a2
δi
μδ j

ν ηi j

∣∣x− − y−∣∣ δ2(x − y),

{
Aμ, pν

}∗∗ =
[
δν
μ − δ+

μ δν
+ + (

δ−
μ ∂− + δi

μ∂i
) (

δν
+∂− + δν

j ∂
j
) 1

∇2

]
δ3(x − y),

{
Aμ, πν

}∗∗ = δν
−

[
δ−
μ ∂− + δi

μ∂i
] 1

∇2
δ3(x − y),{

Āμ, Āν

}∗∗ = 1

64a4
δi
μδ j

ν ηi j
(
x− − y−)2

ε
(
x− − y−) [

1 − 2a2∇2
]
δ2(x − y)

− 1

8a2
ηi j

∣∣x− − y−∣∣ [δi
μδ−

ν + δ−
μ δi

ν

]
∂ jδ

2(x − y),

{
Āμ, pν

}∗∗ = 1

8a2
δi
μδν

−
∣∣x− − y−∣∣ ∂iδ

2(x − y)

−1

4
δi
με

(
x− − y−) [

δν
k ∂k∂i + 1

2a2
δν

i

(
1 − 2a2∇2

)]
δ2(x − y)

−δν
+

[[
δ−
μ ∂− + δi

μ∂i
] − 1

2
δi
μ∂i

]
δ3(x − y),

{
Āμ, πν

}∗∗ = [
δν
μ − δ+

μ δν
+ + ημjδ

ν
j

]
δ3(x − y) − 1

4
ημjδ

ν
−ε

(
x− − y−)

∂ jδ
2(x − y).

The physical degrees of freedom can be found with the analysis of the constraints as strong
relations. Of course, the fields A+ , Ā+, π + , and π i are not independent since they are strongly zero
in the formalism. Thus, pi, p+ , and p− can be written in function of π − and other variables. The
gauge condition (22c) also eliminates Ā−. Therefore, the only independent variables are actually
given by A−, Ai , Āi , pi , and π − . They are eight independent fields, less than the dynamics in
instant-form,13 which can be seen as a good feature, but the structure of the phase space comes out
to be quite more complicate.

Considering, for example, the brackets{
A−(x), pi (y)

}∗∗ = ∂−∂ i

∇2
δ3(x − y), (33)

we can see that the longitudinal field acquires a non-local character. This is expected for every system
analyzed on the null-plane, since this component lies on the light-cone and no criterium of causality
can be employed for this field. The non-locality is due to the second-class constraints, which does
not appear in instant-form dynamics of the system.

For the transverse fields, the brackets{
Ai (x), p j (y)

}∗∗ =
[
δ

j
i − ∂i∂ j

∇2

]
δ3(x − y) (34)
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indicate that a Coulomb-type interaction is present, this case in two dimensions, what justifies to
call the gauge condition (21) the generalized Coulomb condition. This is also expected, since these
brackets depend exclusively on the first-class constraints plus gauge conditions, just like in the
instant-form.

VI. FINAL REMARKS

We have analyzed the canonical structure of Podolsky’s electrodynamics on the null-plane. The
theory has high-order derivatives in the Lagrangian function, so we followed the procedure outlined
in Ref. 13 for the definition of the Hamiltonian density (5) and the canonical momenta (8) associated
with the fields Aμ and Āμ, which result from the definition of the conserved energy-momentum
tensor.

We have observed in the study of the initial-boundary problem of Podolsky’s equation that,
because it is a second-order equation, the uniqueness of the solution is obtained when the field Aμ is
specified on the null-plane x+ = cte and three boundary conditions are imposed on x− = cte. These
conditions were chosen to be ∂ − Aμ = 0, (∂ − )2Aμ = 0, and (∂ − )3Aμ = 0 on x− → − ∞. Then, we
have specified a single initial condition along with three boundary data situation that differs from the
instant-form dynamics, where it is necessary to specify four initial conditions on an initial surface
x0 = cte to uniquely determine a solution for the field equations.

In the canonical analysis of the Podolsky’s theory, we found a set of three first-class constraints
(12) and a set of four second-class ones (13). The first-class constraints are responsible for the U(1)
invariance of the action, which is expected since the gauge character of the field should not be
destroyed by the choice of parameterization. The number of first-class constraints is the same of the
found in instant-form,13 even though their functional forms are distinct.

The new feature on the null-plane is the second-class constraints, which are not present in the
conventional instant-form dynamics.13 The appearance of second-class constraints is a common
effect of the null-plane dynamics,17, 24, 26 and they are responsible to the fact that the analysis on the
null-plane requires a lesser number of degrees of freedom. Because of the second-class constraints,
the longitudinal components of the fields turned out to be non-local.

To evaluate the physical degrees of freedom, it was necessary to choose proper gauge conditions
for the theory, which was a subject that needed closer inspection. Gauge conditions must obey a set
of requirements to be consistent with the formalism: they must fix completely the gauge, they must
be consistent with the field equations, they must not affect Lorentz covariance, and last but not least,
they must be attainable. We found that the generalized radiation gauge (22) on the null-plane fulfills
all these requirements. Of course, this gauge choice is not the only consistent possible choice. There
is, for example, the so-called null-plane gauge, which will be studied in a future work concerning
the Podolsky’s field coupled with scalar and spinor fields.

Since the first- and second-class constraints, together with the gauge conditions, were known,
we calculated the Dirac brackets that had clarified the physical fields of the system. However,
these brackets are not unique unless we specify all the information about the initial-boundary value
problem of the theory. By imposing the value of the field on the null-plane x+ = cte, and the
considered boundary conditions on x− = cte , we have fixed the hidden subset of the first-class
constraints24, 25 and got a unique inverse for the second-class constraints matrix when the ambiguity
on the operators

(
∂ x
−
)−1

,
(
∂ x
−
)−2

, and
(
∂ x
−
)−3

was eliminated.
Finally, an analysis of the physical fields results in the true degrees of freedom, which are given

by A−, Ai , Āi , pi , and π − . The complete Dirac brackets of these fields implicated the non-locality
of the longitudinal component A− and a Coulomb-type interaction in the electrostatic case, in two
dimensions.
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