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ABSTRACT ARTICLE HISTORY

The selection of varieties or species of plants with higher nutrient uptake Received 6 May 2015
efficiency and nutrient concentration for biofortification of food crops is a Accepted 6 November 2015
key tool to reduce malnutrition. Soybean (Glycine max L. Merr) is one of the
most important food crops, because it is consumed directly or indirectly, in Biofortification: essential
the form of seeds, processed (milk and/or derivatives), or used as a protein elements: Glyc;'ne max
component of animal feed worldwide. In order to select plants with higher nutrient concentration;
nutrients concentration in seeds, 24 soybean varieties for tropical and nutrients-use efficiency;
subtropical conditions and different general features were assessed. There nutrient uptake

was great variability in photosynthesis rate, chlorophyll content, seed yield

(SY), and concentration and uptake of nutrients by seeds between the

varieties. Not genetically modified (NGM) crops showed higher nitrogen

(N), cooper (Cu), and manganese (Mn) concentration and higher N, potas-

sium (K), Cu, iron (Fe), Mn, and zinc (Zn) uptake, while for genetically

modified (GM) crops only calcium (Ca) concentrations were higher.

Varieties BRS 284 and BMX Magna RR showed the highest nutrients con-

centrations in the group with the highest nutrient efficiency. The genetic

variability observed among the varieties regarding uptake and translocation

of nutrients into seeds allows selecting more promising materials to be

used in the biofortification of nutrients in soybean seeds.
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Introduction

Being a very versatile source of protein for food uses and also with high market potential (domestic
and international markets) and economic benefits, soybean is one of the world’s most important
agricultural crops (Silva et al. 2006; USDA 2014). Soybean is characterized by high phenotypic
plasticity, with crops grown in tropical and temperate regions (Smith and Huyser 1987). World
soybean yield in 2013 was 270 million tons of seed: 26.7% of it was processed into meal and 6.5%
into oil (USDA - United State Department of Agriculture 2014).

Soybean is the main source of protein for animal feed (Krishnan et al. 2011). In human nutrition,
soybean is a raw material used in the production of several types of oils, margarine, and vegetable fat. Thus,
the relationship between soybean intake and human and animal health has been widely investigated
(Krishnan et al. 2011; Silva et al. 2006; Siméo et al. 2008). Through the process of purification of refined
oil, lecithin is also obtained, which is used in the production of sausages, mayonnaise, ice creams, chocolate
products, cereal bars, and frozen products (Mounts, Wolf, and Martinez 1987).

Bioavailability is defined as the proportion of a nutrient that is absorbed and adequately utilized
for normal body functions (Fairweather-Tait and Southon 2003). Thus, the consumption of soybean
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and derivatives or its isoflavones has beneficial effects that may act as modulators of metabolic
processes, preventing the onset of degenerative diseases such as postmenopausal bone loss and
osteoporosis (Childs 1995; Simio et al. 2008). Due to these special features, studies on biofortifica-
tion and nutrients interactions with vitamins and minerals are needed to support the selection of
varieties (Levander and Cheng 1980; Ramamurthy et al. 2014; Welch and Graham 2002). On the
other hand, the demand for protein in the form of sausages, meat, and dairy products has increased
exponentially in countries with growing per capita income, and, thus, the pressure on livestock and
vegetable has also increased, raising soybean costs in developing countries.

Identifying and quantifying the genetic characteristics of plants is an important strategy in the
selection for bioavailability of nutrients in seeds, since species and/or varieties may differ significantly
in nutrient uptake efficiency and nutrient levels (Fageria, Baligar, and Clark 2002; Ramamurthy et al.
2014; Welch and Graham 2004). Genotypic differences among varieties are manifested as differences in
several physiological and biochemical characteristics. To improve food quality, the programs of genetic
improvement should conduct studies on the selection of productive plants and/or genetic strategies
aimed to ensure higher nutrient quality and levels without negatively impacting crop yield (Fageria,
Moreira, and Coelho 2012a; Welch and Graham 2002, 2004).

Given the significant phenotypic variability of soybean varieties produced around the world, with
several genetic origins, different nutritional and genotypic features, the present study aimed to assess
the concentration and uptake of the macronutrients nitrogen, phosphorus, potassium, calcium,
magnesium, and sulfur (N, P, K, Ca, Mg, and S) and micronutrient boron, copper, iron, manganese,
and zinc (B, Cu, Fe, Mn, and Zn) by seeds of tropical and subtropical soybean varieties of different
agricultural and genetic characteristics.

Materials and methods

The experiment was conducted in greenhouse conditions at Embrapa Soybean, Londrina, Parana
State, Brazil (23°11'39”S and 51°10'40”W) with 24 soybean varieties with different growth habits
(determinate and indeterminate) transgenic—genetically modified (GM) and non-transgenic—not
genetically modified (NGM) (Table 1) that were grown in clay pots with 3.0 liters capacity contain-
ing a sandy, kaolinitic, Typic Quartzipsamment soil, with the following chemical properties

Table 1. Description of 24 tropical soybean varieties.

Varieties Characteristic Growing habit Group maturation Cycle
BMX Apolo RR Transgenic Indeterminate 5.5 Super-early
BMX Forca RR Transgenic Indeterminate 6.2 Early

BMX Magna RR Transgenic Indeterminate 6.2 Early

BMX Poténcia RR Transgenic Indeterminate 6.7 Semi-early
BMX Turbo RR Transgenic Indeterminate 5.8 Super-early
BRS 133 Conventional Determinate 7.3 Late

BRS 232 Conventional Determinate 6.9 Late

BRS 245RR Transgenic Determinate 7.2 Late

BRS 284 Conventional Indeterminate 6.9 Late

BRS 294RR Transgenic Determinate 6.3 Early

BRS 295RR Transgenic Determinate 6.5 Early

BRS 316RR Transgenic Determinate 6.5 Early

BRS 317 Conventional Determinate 6.6 Semi-early
BRS 359RR Transgenic Indeterminate 6.5 Early

BRS 360RR Transgenic Indeterminate 6.5 Early

FTS Campo Mourao RR Transgenic Determinate 6.5 Early

NA 5909RR Transgenic Indeterminate 6.7 Semi-early
NA 6262RR Transgenic Indeterminate 6.4 Early

NEX 457 IPRO Transgenic Indeterminate 5.8 Super-early
TMG 1066RR Transgenic Determinate 6.6 Semi-early
TMG 1067RR Transgenic Determinate 6.7 Semi-early
TMG 7161RR Transgenic Indeterminate 6.1 Early

TMG 7262RR Transgenic Indeterminate 6.2 Early

Vmax RR Transgenic Indeterminate 6.4 Early
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(Embrapa 1997): pH, calcium chloride (CaCl, 0.1 mol LY = 4.4, soil organic matter (SOM—
Walkley-Black) = 12.3 g kg™", phosphorus—P (Mehlich 1 extractant) = 3.0 mg kg™, potassium—K"*
(Mehlich 1) = 0.1 cmol. kg™', Ca** (potassium chloride (KCI) 1.0 mol L™") = 0.1 cmol. kg™,
magnesium—Mg>* (KCl 1.0 mol L") = 0.3 cmol. kg, aluminum—AI’* (KCl extractant
1.0 mol L™") = 0.3 cmol, kg™', potential acidity—hydrogen (H")+AI’* = 3.1 cmol. kg™, sulfur—S-
SO,~ (CaCl, 0.01 mol L") = 6.0 mg kg™', cation exchange capacity—CEC (XK', Ca**, Mg**,
H'+AI’") = 3.6 cmol. kg', base saturation—V = 6.0%, B (hot water) = 0.18 mg kg™', Cu
(Mehlich 1) = 0.5 mg kg_l, Fe (Mehlich 1) = 73.0 mg kg_l, Mn (Mehlich 1) = 18.4 mg kg_l, Zn
(Mehlich 1) = 0.4 mg kg™", clay = 86 g kg™', and sand = 870 g kg™ .

The experiment followed a completely randomized design with three replicates. Two months
before planting, soil acidity was corrected with the use of dolomite lime (27.78% of calcium oxide
(Ca0), 19.62% of magnesium oxide (MgO), and 85.5% neutralizing power) to increase base satura-
tion [(ZK*, Ca®", Mg*")/(ZK", Ca**, Mg®*, H'+AI’*) x 100] to 60%. Fertilizations with P, K, S, B,
cobalt (Co), Cu, Fe, molybdenum (Mo), Mn, nickel (Ni), and Zn were performed according to
Moreira, Fageria, and Garcia Y Garcia (2011), adapted from Allen, Terman, and Clements (1976) for
experiments conducted in greenhouse conditions: 50 mg kg™' of K (KCl); 150 mg kg™ of P
(monoammonium phosphate (MAP)), 0.5 mg kg_1 of B (boric acid (H;BO3)); 1.5 mg kg_1 of Cu
(copper sulfate heptahydrate (CuSO, x 7H,0)); 0.1 mg kg_1 of Mo (Sodium molybdate x hydrogen
peroxide (Na,Mo, x 2H,0)); 2.5 mg kg™ of Fe (iron sulfate (FeSO,) x 2H,0); 0.01 mg kg™' of Co
(cobalt chloride (CoCl,)); 0,01 mg kg_1 of Ni (nickel sulfate x NiSO, x 6H,0); 5.0 mg kg_l of Mn
(MnSO4 x 3H,0), 5.0 mg kg_1 of Zn (ZnSO, x 6H,0) and 50 mg kg_1 of S (potassium sulfate
(K,S0O,)). Thirty days after planting, topdressing was done with 100 mg kg{1 of K (K,SO,).

The plants were watered daily with deionized water to compensate for the losses by evapotranspiration
and to keep the total porosity of soil at 70% by volume (Cassel and Nielsen 1986). Ten seeds of each variety
were treated with turf containing Bradyrhizobium elkanii [SEMIA 587 and SEMIA 5019 (4.0 x 10° viable
cells g )] and sown in the pots and 10 days later thinning was performed leaving two plants per pot.

At R2 growth stage (Fehr et al. 1971), SPAD values were measured on the leaves (fully expanded 3rd and
4th trifoliate leaves from the apex), with the values converted into chlorophyll content units (mg cm ™) by
the equation y = 16.033 + (7.5774 x SPAD) (Fritschi and Ray 2007) and net photosynthesis rate—A (pmol
carbon dioxide (CO,) m™2 s!) was determined on the same leaves with a portable photosynthesis analyzer
(LI-6400XT; LI-COR?®). Senescent leaves were collected during the entire soybean cycle and at the end of the
cycle they were dried in oven for determination of the shoot dry weight yield (SDWY, Xleaves, pods seeds,
and stems). After harvest and weighing, the seeds were ground for determination of the total N, P, K, Ca,
Mg, S, B, Cu, Fe, Mn, and Zn concentration and analyzed according to the methods described by Malavolta,
Vitti, and Oliveira (1997).

Based on the seed yield for the different varieties and on the nutrients concentration, the
following variables were calculated:

Seed yield

Seed harvest index (SHI) = (Seed yield T SDW yield)’ according to Fageria, Barbosa Filho, and Moreira

- 2
(2008), and nutrient-use efficiency (NUE) = Nottients fgﬁiﬁ;ﬁm oo
Siddiqi, Chyan, and Freiji (1994).

The data were subjected to analysis of variance (ANOVA) and F-test, and Scott-Knott grouping
test at the 5% probability level was used for the means of the 24 varieties for each assessed variable.
Because of the diversity of treatments, orthogonal contrasts (p < 0.05) were used in the comparisons
of means of the different genetic characteristics of the varieties.

equation adapted from

Results and discussion
Yield and physiological components

The number of pods (NP), seed yield (SY), SDWY, and the SHI were significantly affected by the
soybean varieties (Table 2). The NP ranged from 34 in variety BRS 316RR to 101 in BRS 295RR, with
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an average value of 54 pods per plant. Because of the genetic characteristics of each variety, which
had different amounts of seeds per pod, the NP per plant showed positive correlation only with
SDWY (y = 31.624 + 0.717x, r = 0.67, p < 0.05), though not converted into SY (y = 20.8). Conflicting
results were obtained by Fageria et al. (2012b) for common bean (Phaseolus vulgaris), who reported a
significant and positive correlation with SY despite the high variability in the number of pods per
plant. In the present experiment, the highest SY was observed for variety BRS 232 (29 g/pot) and the
lowest SY for BMX For¢a RR (16.1 g/pot), with the average of the varieties being 22.1 g/pot
(Table 2). Regarding the SHI, the range of variation was 0.20-0.45, with an average value of 0.32,
with varieties BRS 284, TMG 1067RR, and BMX Magna RR obtaining the highest values and
varieties BRS 133 and BMX For¢a RR, the lowest values (Table 2).

In the comparison of the varieties, 12.5% had SHI higher than 0.43 (BMX Magma, BRS 284 and
TMG 1067RR), 29% between 0.35 and 0.42 (BRS 232, BRS 317, FTS Campo Mourdo RR, BMX
Turbo RR, NA 6262RR, TMG 7161RR and TMG 7262RR), 50% between 0.24 and 0.34 (BRS 294RR,
BRS 295RR, TMG 1066RR, NEX 457 IPRO, BRS 316RR, BMX Apolo RR, BMX Poténcia RR, BRS
359RR, BRS 360RR, BRS 245RR, VMAX RR, and NA 5909RR. Corroborating Aratjo and Teixeira
(2012), in the process of selection of varieties, the SHI can well reflect the efficiency in the allocation
of plant biomass to the seeds of a given variety and/or species. Sinclair (1998) and Fageria, Barbosa
Filho, and Moreira (2008) also report that this variable can reliably indicate the partitioning of
photosynthates between the seeds and the vegetative part of the plant.

The net photosynthesis rate (A) and the chlorophyll content (Cl) varied significantly between the
soybean varieties, with a significant correlation between these two variables [A = 146.450 + 6.581(Cl),
r=0.80, p < 0.05]. The highest values reported for photosynthesis rate were obtained in the varieties BRS
316RR (25.821 mmol CO, m™2 s71) and BRS 317 (25.889 mmol CO, m™2 s}) and the lowest values in

Table 2. Yield and physiological components of 24 soybean varieties.

Varieties Pods SY SDWY Photosynthesis Chlorophyll SHI
(n) (g/pot) (g/pot) (umol CO, m~2 s7) (mg m~)

BRS 133 75b 24.7¢ 121.6a 22.151b 267.35b 0.20d
BRS 232 58¢ 29.0a 75.5¢ 20.317b 277.94b 0.38b
BRS 317 44c 24.2b 64.9¢ 25.889a 339.01a 0.37b
BRS 284 49¢ 28.1b 64.7¢ 19.405b 258.45¢ 0.43a
BRS 294RR 75b 17.9¢ 75.4¢ 12.707c 247.97c¢ 0.24c
BRS 295RR 101a 20.6¢ 105.7b 11.574c¢ 210.84d 0.27¢
TMG 1066RR 78b 19.9¢ 69.2¢ 15.767¢ 223.84c 0.29¢
BRS 245RR 65b 27.5b 113.7a 14.888¢ 200.50d 0.24¢
TMG 1067RR 47c 24.4b 56.5¢ 15.151c 243.44c 0.43a
BRS 316RR 34c 18.2¢ 57.6b 25.821a 294.77b 0.32c
FTS Campo Mourédo RR 46¢ 24.4b 65.1b 15.730c 257.05¢ 0.37b
BMX Apolo 39c 19.2¢ 57.4b 18.355b 300.88b 0.33c
BMX Forca 53c 16.1¢ 78.2b 15.584c 243.73¢ 0.21d
BMX Poténcia 49c 21.2c 72.7b 16.185¢ 287.49b 0.29c
BMX Turbo 53c 22.9¢ 64.8b 13.216¢ 237.61c 0.35b
BRS 359RR 71b 21.1c 73.6b 14.258¢ 233.13c¢ 0.29¢
BRS 360RR 42c 18.5¢ 66.4b 16.009c 262.87¢ 0.28¢
NA 5909RR 47c 20.1c 70.9b 12.923c 233.82¢ 0.28¢
NA 6262RR 43c 19.1¢ 54.4c 14.154c 259.71c 0.35b
NEX 457 IPRO 69b 19.3c 67.7b 12.291c 219.93d 0.28¢
TMG 7161RR 51c 21.2¢ 59.7b 15.186¢ 251.19¢ 0.36b
TMG 7262RR 42c 20.4¢ 59.0b 21.148b 273.22b 0.35b
VMAX RR 78b 21.0c 73.3b 13.656¢ 216.58d 0.29¢
BMX Magna RR 47c 28.2b 62.4b 19.296b 296.60b 0.45a
Average 56 22.0 72.1 16.736 255.75 0.32

Minimum 34 16.1 54.4 11.574 200.50 0.20

Maximum 101 29.0 121.6 25.889 339.01 0.45

V% 17.18 9.78 12.06 12.98 7.97 14.21

Means followed by different letters in the same column differ by Scott—Knott test at 5% probability. SHI, seed harvest index; SY,
seed yield; SDWY, shoot dry weight yield.
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BRS 295RR (11,574 mmol CO, m™2 s ') and NEX 457 IPRO (12.291 mmol CO, m™2 s7%), respectively
(Table 2). Under ideal or adverse environmental conditions, genetic variation may lead to differences in
the use efficiency of solar radiation by plants and in the partition of photoassimilates, impacting growth
and yield in the comparison with another species or variety (Fageria 1998; Taiz and Zaiger 2010). Bottrill,
Possingham, and Kriedemann (1970) found that nutritional imbalance alters the assimilation of carbon
(C) in the plants, negatively interfering with photosynthesis and chlorophyll content.

Nutrient concentration and uptake in the seeds

The concentrations (nutrient content per unit dry weight) and uptake (nutrient concentration in
seed x seed weight per pot) are shown in Tables 3 and 4. Differences were observed between the
varieties, with BMX Apolo RR showing the highest number of nutrients with the highest concentra-
tions (P, Ca, Mg, B, and Fe), while the lowest values were obtained by BRS 232 (Zn), BRS 284 (P),
BRS 245RR (S), NEX 457 IPRO (P), and BMX For¢a RR (P). Regarding uptake, the highest nutrients
number was observed in BRS 232 and the lowest in BRS 294RR and BMX For¢ca RR. N and K
concentrations ranged from 49.47 to 69.70 g kg ' and from 15.39 to 20.97 g kg ' and the average
concentration was 55.99 and 17.58 g kg, respectively. Among the varieties. BRS 317 and BRS
316RR showed the highest N and K concentrations in the seeds. Regarding biofortification, in the
animal body K acts mainly in the distribution of fluids inside and outside the cell and also
participates in the regulation of acid-base balance, being involved in cell growth, protein synthesis,
among other metabolites (Navarro and Vaquero 2003). As for N, it is part of amino acids (AAs)
composition, and, consequently, of proteins that have several functions such as deoxyribonucleic
acid (DNA) replication, component of the plasma membrane, and formation of cytoskeleton and
chromosomes (Caballero, Trugo, and Finglas 2003).

The varieties also differed significantly in the P, Ca, Mg, and S concentration (Table 3), with
variation of 63.1% in P (BRS 284 and BRS 359RR), 190.8% in Ca (BRS 133 and BMX Apolo RR),
50.5% in Mg (BMX Magna RR and BMX Apolo RR), and 71.3% in S (BMX Magna RR and TMG
7262RR). Similarly, uptake was also influenced by the varieties (p < 0.05). P ranged from 0.09 to
0.15 mg/pot, Ca ranged from 0.03 to 0.09 mg/pot, Mg from 0.04 to 0.07 mg/pot, and S from 0.04 to
0.08 mg/pot (Table 4). On average, the concentration and uptake of macronutrients in soybean seeds
was N > K> P > Ca ~ S > Mg, a sequence different from the one obtained by Fageria et al. (2013) in
a Xanthic Ferralsol with 403 g kg™' of clay. Inside the body, P acts in the formation of bones and
teeth, as a component for molecule regulation and in the composition of ATP (adenosine tripho-
sphate), especially in the mitochondria, among other functions (Anderson 2003). The Ca element is
mainly present in the structural part, such as bones and teeth, and prolonged deficiency of the
nutrient leads to the development of diseases such as osteoporosis (L’Abbé 2003). It should be
stressed that the selection of varieties with high Ca concentrations in soybean water soluble extract
(WSE) can be a good alternative to bovine milk, since 75% of the population have different degrees
of lactose intolerance (Casé et al. 2005). Regarding Mg, this nutrient performs several physiological
and biochemical functions in humans and animals, and its higher concentration inside the cell is in
the mitochondria, and is essential cofactor for carboxylase and coenzyme Q (Griffin 2003), while the
S in the body is part of the structures of some essential AAs (cysteine, methionine, and taurine),
forming the disulfide bridge between polypeptides, a very important bond for the formation of the
spatial structures of proteins. (Taiz and Zeiger 2010).

The concentration and uptake of B, Cu, Fe, Mn, and Zn in the seeds were also significantly influenced
by soybean varieties (Tables 3 and 4). The varieties BMX Apolo RR and TMG 7262RR showed the
highest concentrations of B (34.38 and 36.23 mg kg™') and BMX Magna RR (10.06 mg kg™"), being
118.3%, 130.0%, and 438.0% higher than those of FTS Campo Mourdo RR (B) and BMX For¢a RR (Cu),
respectively. In the B and Cu uptake by the seeds (Table 4), the highest amount of B was reported in
TMG 7262RR (0.74 pg/pot) and Cu in BMX Magna RR (0.28 pg/pot) and the lowest amounts in BMX
Forga RR (0.32 and 0.03 pg/pot). According to Hunt (2003), in the human body, B modifies and possibly
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Table 4. Nutrient uptake (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn) in seeds of the 24 soybean varieties.

N P K Ca Mg S B Cu Fe Mn Zn

(mg/ (mg/ (mg/ (mg/ (mg/ (mg/  (ug/  (wg/  (ug/  (ug/  (ug/

Varieties pot) pot) pot) pot) pot) pot) pot) pot) pot) pot) pot)
BRS 133 1.50b 0.11b  0.46b 0.04c 0.07a 0.08a 0.517a 0.14c 1.22¢ 1.11d  1.14b
BRS 232 1.81a 0.15a  0.49a 0.05¢ 0.06b 0.07a 066a 021b 1.93a 594a 1.72a
BRS 317 1.60a 0.09b 0.51a 0.05¢ 0.05¢ 0.08a 0.53a 0.14c 1.34c 1.06d  1.06b
BRS 284 1.57a 0.15a  0.49a 0.05¢ 0.06b 0.07a 063a 0.22b 1.93a 3.68c 1.39
BRS 294RR 1.00c 0.10b  0.30c 0.06b 0.04d 0.04b  0.36b  0.07c 1.52b 0.70d 1.05b
BRS 295RR 1.12c 0.12b  0.33c 0.08a 0.05¢ 0.05b  0.57a  0.07¢ 1.71b  0.90d 0.99b
TMG 1066RR 1.05¢ 0.11b  0.34c 0.06b 0.05¢ 0.05b  0.62a  0.05c 1.31c 1.00d  1.08b
BRS 245RR 1.68a 0.13a  0.50a 0.04c 0.07a 0.08a 069a 021b 135¢c 097d 131a
TMG 1067RR 138b  0.12b  0.40c 0.04c  0.05c 0.07a 042b 0.15c 141c 6.10a 1.52a
BRS 316RR 1.27¢ 0.10b  0.37c 0.03c 0.05¢ 0.06a 043b 0.12c 0.88d 0.72d 0.87b
FTS Campo Mourao RR 1.39b 0.14a  0.44b 0.05¢ 0.05¢ 0.06a 038b 0.20b 1.57b 6.52a 1.40a
BMX Apolo RR 1.06¢ 0.11b  0.35c 0.09a 0.05¢ 0.06a 0.66a  0.06c 1.60b 1.09d 0.88b
BMX Forca RR 0.90c  0.09b  0.26¢ 0.05c  0.04d 0.04b 032b 0.03c 1.04d 062d 0.74b
BMX Poténcia RR 1.14c 0.12b  0.37c 0.07b 0.05¢ 0.05b  0.55a  0.04c 1.82a 091d 1.04b
BMX Turbo RR 1.21c 0.13a  0.42b 0.06b 0.05¢ 0.07a 0.60a  0.05c 1.80a 097d 1.01b
BRS 359RR 1.20c 0.14a 0.37c 0.06b 0.05¢ 0.06a 0.44b  0.04c 152b 0.76d 0.94b
BRS 360RR 1.00c  0.11b  0.33c 0.06b  0.05c  0.05b 053a 005c 140c 080d 1.05b
NA 5909RR 1.06¢ 0.12b  0.32c 0.08a 0.06b 0.06a 0.55a  0.04c 1.38c 0.90d 0.98b
NA 6262RR 1.02c 0.12b  0.34c 0.07b 0.05¢ 0.06a 0.58a  0.04c 1.11d  1.04d 0.77b
NEX 457 IPRO 0.98c 0.11b  0.33c 0.08a 0.05¢ 0.05b  0.40b  0.06¢ 1.33c 1.00d  0.86b
TMG 7161RR 1.05c  0.12b  0.38c 0.06b  0.05c 0.07a 062a 005c 1.17d 097d 091b
TMG 7262RR 1.01c 0.12b  0.36¢ 0.06b 0.05¢ 0.07a 0.74a  0.05c 146c 090d 0.83b
VMAX RR 117¢  012b  032c 0.08a  0.05c 0.06a 059 0.04c 130c 090d 1.04b
BMX Magna RR 1.45¢ 0.14a  0.50a 0.06b 0.05¢ 0.06a 0.65a 0.28a 1.84a 525b 1.35a

Average 1.23 0.12 0.39 0.06 0.05 0.06 0.54 0.10 1.45 1.87 1.08
Minimum 0.90 0.09 0.26 0.03 0.04 0.04 0.32 0.03 0.88 0.62 0.74

Maximum 1.81 0.15 0.51 0.09 0.07 0.08 0.74 0.28 1.93 6.52 1.72

V% 10.89 11.29 9.72 12.31 10.29 17.16 1594 2340 1395 2270 16.92

Means followed by different letters in the same column differ by Scott-Knott test at 5% probability.

regulates the energy substrates and mineral metabolism, and acts in immune functions, while the
metabolism and functions of Cu are related to the heart, blood vessels, nervous system, immune
functions, hemoglobin formation, and bone health (Johnson 2003; Klevay 1980).

Among the 24 varieties (Tables 3 and 4), Fe concentration and uptake in the seeds increased by 76.6%
from 48.60 (BRS 316RR) to 85.82 mg kg_l (BMX Poténcia RR) and by 119.3% from 0.88 (BRS 316RR) to
1.93 ug/pot (BRS 284); Mn by 658.1% from 35.27 (BRS 245RR) to 267.40 (FT'S Campo Mourio RR) and by
951.6% from 0.62 (BMX For¢a RR) to 6.52 pg/pot (FTS Campo Mourdo RR); and Zn by 54.8% from 40.26
(NA 6262RR) to 62.32 mg kg' (TMG 1067RR) and by 132.4% from 0.74 (BMX Forga RR) to 1.72 pg/pot
(BRS 232). The mineral elements most commonly lacking in human diets are Fe and Zn, which rank fifth
and sixth, respectively, among the top 10 risk factors contributing to diseases, especially in developing
countries. (Fageria et al. 2012b). The deficiency of Mn in humans causes, among other consequences,
impact on growth and reproduction (Keen and Zidenberg-Cherr 2003). Fe plays a key role in the metabolic
processes for transport and storage of oxygen (O,), as well as in oxidative metabolism and cell growth
(Lynch 2003), and the main symptom of deficiency of this mineral is iron deficiency anemia (Rios et al.
2009). Zn participates in the replication of all cells, transcription and DNA synthesis, messenger ribonucleic
acid translation into proteins and stability of RNA structures. Zn deficiency causes delayed growth and
immunological problems, neuropsychological manifestation, and increased morbidity (Ruz 2003).

The genetic differences detected in the varieties are important to define which types of soybean should
be grown to obtain the highest concentration and uptake of a given nutrient by seeds (Table 5). The results
indicated significant differences in the N, Cu, Mn, and Zn concentrations in NGM varieties and in the
concentrations of Ca in the GM variety, while regarding uptake, the introduction of the gene that confers
glyphosate resistance affected N, K, Cu, Fe, Mn, and Zn uptake. Regarding soybean growth habit in NGM
varieties, effects on nutrient concentrations in the seeds were observed only for S, Fe, and Mn
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concentrations; in the GM varieties for Ca, Cu, Mn, and Zn concentrations; and on the average of NGM
and GM varieties, for Ca, Cu, Mn, and Zn concentrations. Regarding uptake, these effects were significant
in Cu, Fe, and Mn concentrations in NGM; in N, Cu, Mn, and Zn concentrations in GM; and in N, Cu, Mn,
and Zn concentrations on the average of NGM and GM varieties (Table 5). Fageria, Barbosa Filho, and
Moreira (2008), Fageria, Moreira, and Coelho (2012a), and Rios et al. (2009) also reported the presence of
genetic factors on the efficiency of nutrient uptake by seeds.

Classification of varieties for nutrient-use efficiency

Using the nutrient-use efficiency (NUE) in soybean seeds in the classification of varieties, significant
differences were observed between these varieties, with BRS 284 (N, P, K, CA, Mg, and Zn), BRS 245RR (P,
K, Ca, Fe, Mn, and Zn), and BMX Magna RR (N, P, K, Mg, S, and Zn) showing the highest NUE values,
with six nutrients in the group with highest efficiency. The opposite was observed for BRS 294RR, BRS
316RR, BMX Apolo RR, BMX Forga RR, BMX Poténcia RR, BRS 360RR, and NEX 457 IPRO, that had no
nutrient in the group of highest efficiency and were classified, according to analysis by Scott-Knott (Scott
and Knott 1974) in the groups of intermediate or low NUE (Table 6). Corroborating Welch and Graham
(2002, 2004), Rios et al. (2009) and Fageria et al. (2012b), the identification of genetic differences between
soybean varieties can be an important strategy for the biofortification of seeds of food crops (fresh or
processed,) or indirectly as ingredients for animal feeds or similar products.

Table 5. Significance of F—contrast tests between the characteristics of cultivars and the means for the concentrations and uptake
of nutrients in soybean seeds.

Contrasts N P K Ca Mg S B Cu Fe Mn Zn

Concentration, g kg™ Concentration, mg kg™
Conventional (determinate + indeterminate)—a 61.13 4.76 18.53 1.74 236 2.86 2190 6.60 60.00 106.03 49.57
Transgenic (determinate + indeterminate)—b ~ 54.96 5.62 1739 3.00 241 276 2555 379 68.15 7275 4886
avs.b * ns ns * Ns ns ns * ns * ns
Determinate (transgenic + conventional)—c 59.64 5.12 1793 228 236 278 2254 569 6249 101.81 5253
Indeterminate (transgenic + conventional)—d 5338 5.74 1733 3.16 244 277 2665 324 69.87 6151 4644
* * * *

cvs.d ns ns ns ns ns ns ns

Conventional determinate—e 6295 4.53 1885 178 243 3.03 21.67 6.25 57.06 97.78 49.66
Transgenic determinate—f 5821 537 1754 250 233 268 2292 545 6481 103.53 53.76
evs. f ns ns ns * Ns * ns Ns ns ns *
Conventional indeterminate—g 6295 453 1885 1.78 243 3.03 21.67 6.25 57.06 97.78 49.66
Conventional determinate—e 5565 546 1758 1.62 214 235 2258 7.66 68.80 130.80 49.32
gvs.e ns ns ns ns ns * ns ns * * ns
Determinate transgenic—f 5821 537 1754 250 233 268 2292 545 64.81 103.53 53.76
Indeterminate transgenic—g 5321 576 1731 328 246 280 2696 290 69.95 56.18 46.22
fvs.g ns ns ns * ns ns ns * ns * *

Uptake, mg/pot Uptake, pg/pot

Conventional (determinate + indeterminate)—a 1.61 0.13 049 0.05 0.06 0.07 0.58 0.18 1.61 294 132
Transgenic (determinate +indeterminate)—b 1.16 0.12 037 0.06 0.05 0.06 053 0.08 142 1.65 1.03
* *

avs.b ns * ns ns ns ns * * *
Determinate (transgenic + conventional)—c 137 012 041 0.05 005 0.06 052 0.13 142 237  1.20
Indeterminate (transgenic + conventional)—d 1.13 0.12 037 0.06 0.05 0.06 056 0.07 147 141  0.99
cvs. d * ns ns ns ns ns ns * ns * *
Conventional determinate—e 163 0.12 049 005 0.06 0.08 056 0.16 1.50 270 130
Transgenic determinate—f 125 0.1 038 0.05 005 0.06 050 0.12 138 222 1.6
evs. f * ns * ns ns ns ns * ns ns *
Conventional indeterminate—g 163 0.12 049 0.05 006 0.08 056 0.16 150 270 130
Conventional determinate—e 157 0.15 049 005 0.06 0.07 064 021 193 364 139
gvs.e ns ns ns ns ns ns ns * * * ns
Determinate transgenic—f 125 011 038 0.05 005 006 0.50 0.12 138 222 1.16
Indeterminate transgenic—g 110 0.12 036 0.07 0.05 0.06 055 006 1.44 124 095
hvs. g * ns ns ns ns ns ns * ns * *

*Significant; "Non significant at 5% probability.
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Conclusions

The selection of varieties and/or species of different agricultural characteristics, with higher concentration
and greater nutrient uptake efficiency, can be an important alternative in the process of biofortification of
food. Soybean is one of the most widely cultivated leguminous crops, being an important direct and
indirect source of nutrients, including proteins and minerals. Great variability was observed in photo-
synthesis rate, chlorophyll content, seed yield (SY), and concentration and uptake of nutrients among the
varieties. The NGM varieties had the highest N, Cu, and Mn concentrations and uptake (nutrient
concentration in seed x seed weight per pot) of N, K, Cu, Fe, Mn, and Zn in the seeds, while GM
varieties had the highest Ca concentrations. Varieties BRS 284 and BMX Magna RR had the highest
nutrients concentration in the group with the highest NUE; the opposite was observed for BRS 294RR,
BMX Apolo RR, BMX For¢a RR, BMX Poténcia, BRS 360RR, and NEX 457 IPRO, demonstrating that the
use of NUE can be an appropriate strategy in the selection of varieties with different nutrients concentra-
tions in the seeds for use as biofortification of foods.
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