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ABSTRACT 

The objective of this doctoral dissertation is to propose a new methodology to identify eight 

emergent tree species (i.e., that stood out from the canopy) belonging to highly diverse 

Brazilian Atlantic forest and with different ages and development stages. To achieve the 

objective, hyperspectral images were acquired in July/2017, June/208, and July/2019 in a 

transect area located in the western part of São Paulo State. The area is in Ponte Branca 

ecological station, where the forest is classified as submontane semideciduous seasonal with 

different stages of succession. Images with a spatial resolution of 10 cm were acquired with a 

hyperspectral camera (500–900 nm) onboard unmanned aerial vehicle (UAV) and 

geometrically and radiometrically post-processed. In sequence, the individual tree crowns 

(ITCs) were manually delineated in each dataset to be used as reference in the experiments. 

From the performed experiments, it is highlighted the use of mean normalized spectra to 

reduce the within-species spectral variability, the use of region-based classification with the 

Random Forest algorithm, and the use of superpixels to automatically delineate the ITCs in 

each dataset. Additionally, the multitemporal superpixels with different multitemporal 

features (normalized spectra, texture and vegetation indexes) and structural features derived 

from the canopy height model, combined or not, were assessed to the tree species 

classification. The best result was achieved merging normalized spectra and vegetation 

indexes, where the value of area under the receiver operating characteristics curve 

(AUCROC) achieved values up to 0.964. From the obtained results it is pointed out the 

challenge when working with this type of forest due to the lack of emergent trees, which 

restrict the number of samples recognized in the field, and the existence of different ages and 

stages of development to the same tree species. Besides, the use of structural and textural 

features did not improve the tree species identification. Besides, the high spatial resolution of 

the images showed the slight differences in the spatial position of the tree crowns between the 

datasets. Finally, despite the challenges the results are promising and showed the feasibility to 

identify the tree species using multitemporal information. 

 

Keywords: Tree species identification; Atlantic forest; multitemporal spectral information; 

superpixels, UAV. 

 



 
 

 

RESUMO 

O objetivo desse doutorado é propor uma nova metodologia para identificar oito espécies 

arbóreas emergentes (i.e., que se sobressaem do dossel florestal), em diferentes idades e 

estágios de desenvolvimento e pertencentes à Mata Atlântica brasileira. Para tal, imagens 

hiperespectrais foram adquiridas em Julho/2017, em Junho/2018, e em Julho/2019 em um 

transecto localizado no fragmento florestal Ponte Branca, localizado a Oeste do Estado de São 

Paulo, onde a floresta é considerada estacional semidecidual e submontana. As imagens com 

resolução espacial de 10 cm foram adquiridas com câmara hiperespectral (500–900 nm) 

acoplada em veículo aéreo não tripulado (VANT ou UAV, do inglês Unmanned aerial 

vehicle) e, posteriormente corrigidas geometricamente e radiometricamente. Em seguida, as 

copas arbóreas individuais (ITCs, do inglês Individual tree crows) foram delineadas 

manualmente em cada conjunto de dados para serem utilizadas como referência para os 

experimentos. Dentre os experimentos realizados, destaca-se o uso do espectro normalizado 

para redução da variabilidade espectral intra-espécies, o uso da classificação baseada em 

regiões utilizando o algoritmo Random Forest e o uso de superpixexls para delineamento 

automático das ITCs em cada conjunto de imagens. Além disso, avaliou-se o uso dos 

superpixels multitemporais com diferentes atributos multitemporais (espectro normalizado, 

textura e índices de vegetação) e estruturais (derivados do modelo de altura das copas), 

sozinhos ou combinados, para identificação das espécies arbóreas. O melhor resultado foi 

obtido a partir do uso combinado do espectro normalizado com os índices de vegetação, onde 

o valor da área sobre a curva característica de operação do receptor (AUCROC, do inglês 

Area under the receiver operating characteristics curve) atingiu valores de até 0.964. A partir 

dos resultados obtidos destaca-se o desafio ao trabalhar com esse tipo de floresta, devido à 

falta de árvores emergentes (que se sobressaem do dossel florestal), e a existência de árvores 

com diferentes idades e estágios de desenvolvimento, resultando em alta variabilidade 

espectral e estrutural para uma mesma espécie. Adicionalmente, foi verificado que o uso dos 

atributos estruturais e texturais não auxiliaram a tarefa de identificação de espécies e, que a 

alta resolução espacial das imagens mostrou as sutis diferenças de posição espacial das copas 

nas imagens dos diferentes anos. Por fim, apesar dos desafios, tem-se que os resultados são 

promissores e mostraram ser possível identificar espécies de árvores utilizando a informação 

multitemporal. 

 
Palavras-chave: Identificação de espécies arbóreas; Mata Atlântica, informação espectral 

multitemporal, superpixels, VANT.  
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1 INTRODUCTION 

Forests play an important role in biodiversity, carbon stocks, the water cycle, and 

feedstock, but they are rapidly being deforested. In Brazil, they are targets of illegal loggers or 

even converted to crops, pasture, and urbanization. Knowledge about the tree species of a 

forest is a fundamental information. Tree species recognition can be performed through 

fieldwork campaigns, but generally, this practice has limitations, since it is expensive and 

laborious because of the forest density and forest access, which can be far from roads and 

thus, it is a time-consuming task. Remote sensing, together with automatic analysis 

techniques, has become a prominent tool for tree species mapping. Since the ’80s, research 

papers related to “forest” and “Remote Sensing” exponentially increased (WEB-OF-

SCIENCE, [s.d.]) showing that forest researches are a trending topic. 

Most of the previous studies related to tree species identification using Remote 

Sensing have been performed in forests in the North hemisphere (FASSNACHT et al., 2016). 

There is a lack of studies in forests such as the Brazilian Atlantic forest, which encompasses 

different ecosystems, such as mixed ombrophilous, dense ombrophilous, open ombrophilous, 

semideciduous seasonal, and deciduous seasonal forests (BRASIL, 2006). Sothe et al. (2019) 

studied a mixed ombrophilous forest whose floristic compositions and forest structure 

characteristics differ from those of other types of Brazilian Atlantic forest, especially the 

semideciduous and deciduous seasonal forests (BRASIL, 2006), which highlights the 

importance of studying them separately. 

In addition, most studies have investigated well-developed forests or forests in 

which trees with different heights are spatially distinguished such as coniferous forests. Plots 

containing tree species in different successional stages and ages can present similar heights, 

and thereby, cause spectral mixing due to leaf mixture and the effect of neighborhood spectra 

because the number of emergent trees, i.e., trees that stood out from the canopy, is lower than 

the number of smaller trees. Notwithstanding the importance of monitoring mature forests, 

monitoring fragments that are in the initial or intermediary regeneration process is considered 

a key element in the connection of forest patches, and contributes to the maintenance of 

biodiversity (LIRA et al., 2012; RIBEIRO et al., 2009). Emergent trees are equally important 

when it comes to tropical forests. From its importance it is highlighted their use for the 

movement of primates, who also use the emergent trees to sleep (ALEXANDER et al., 2018) 

and because of its transpiration rate when considering the water cycle (KUNERT et al., 2017). 
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Bearing the Remote Sensing concept, Jensen (2007) defines Remote Sensing as 

the art and science of acquiring information without the physical contact with the objects. The 

information is extracted by the acquisition and interpretation of the reflected energy from the 

objects (JENSEN, 2007). Considering the vegetation as a target, the amount of reflected light 

depends on the leaves' content, such as pigments and structure (PONZONI; KUPLICH; 

SHIMABUKURO, 2012). The reflected light can be registered by different sensors, which 

can be classified according to its platform as orbital, aerial or terrestrial sensors. Satellite 

sensors and airborne passive and/or active sensors, combined with the use of field 

spectroscopy, provide valuable information for the identification of tree species (COLGAN et 

al., 2012; HEINZEL; KOCH, 2012; IMMITZER; ATZBERGER; KOUKAL, 2012; 

WAGNER et al., 2018; ZHANG et al., 2012). Besides, the use of unmanned aerial vehicles 

(UAVs) has become a powerful tool to acquire forest information (NEVALAINEN et al., 

2017; OTERO et al., 2018; SOTHE et al., 2020). 

UAVs enable fast information acquisition, and despite their constraints regarding 

the trade-off between resolution and coverage, they are low-cost alternatives for capturing 

information in areas that are endangered or need constant monitoring, such as mines or crops 

(COLOMINA; MOLINA, 2014; KANG et al., 2019; POPESCU et al., 2020; SHAKHATREH 

et al., 2019). UAVs can fly over many areas that are challenging for field data acquisition, 

such as water surfaces or dense forest areas. UAV missions can be quickly configured 

according to the user´s needs. Furthermore, in the past few years, UAVs have been rapidly 

developed to fly for several hours; an example of such a platform is the fixed-wing Batmap II 

UAV, which can fly for more than 2 hours (NUVEM UAV, [s.d.]). UAVs can capture very 

high or ultrahigh spatial resolution data with ground sampling distances (GSD) ranging from 

centimeters to decimeters (AASEN et al., 2018; COLOMINA; MOLINA, 2014; PANEQUE-

GÁLVEZ et al., 2014; SANCHEZ-AZOFEIFA et al., 2017) using small-format multispectral 

or hyperspectral cameras, such as MicaSense RedEdge-MX (MICASENSE, [s.d.]), Rikola 

hyperspectral imager (SENOP, [s.d.]), and Cubert FireflEYE (CUBERT, [s.d.]). Beyond that, 

UAVs can acquire information of surface targets, such as trees, with high temporal frequency, 

which is a promising option in forest monitoring, since it can measure dynamic phenological 

behavior according to seasons and tree characteristics. 

Besides the different platforms to acquire remotely sensed data, it is important to 

consider the need to interpret and label the registered information. This process is called as 

classification (RICHARDS; JIA, 2006). There are many methods to classify the data, where it 
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is highlighted the machine learning algorithms, which is a potential alternative to the 

traditional classification approaches (LARY et al., 2016). Santos et al. (2010) showed that 

genetic programming, a subset of the machine learning, presented better results to recognize 

coffee crops than using the maximum likelihood approach. Support vector machine (SVM) 

(MELGANI; BRUZZONE, 2004) and random forest (RF) (BREIMAN, 2001) are examples 

of machine learning algorithms that have been successfully applied to identify tree species in 

urban environments (LI et al., 2015), savannas (COLGAN et al., 2012), and different types of 

forests, including northern, boreal, temperate, and tropical forests (FERET; ASNER, 2013; 

FERREIRA et al., 2016; IMMITZER; ATZBERGER; KOUKAL, 2012; MASCHLER; 

ATZBERGER; IMMITZER, 2018; MATSUKI; YOKOYA; IWASAKI, 2015; WAGNER et 

al., 2018).  

Moreover, efforts concerning the best features extracted to tree species 

classification is also highlighted. Spectral features comprised from the visible (VIS) to short-

wave infrared (SWIR) region, texture, vegetation indexes, and structural features are among 

the most useful features to the tree species classification (BALDECK et al., 2015; 

DALPONTE et al., 2014; HEINZEL; KOCH, 2012; TUOMINEN et al., 2018). Textural and 

vegetation indexes can be extracted from the imagery information whereas structural features 

can be calculated from point clouds derived from aerial laser scanning (ALS), which can be 

used to obtain the canopy height model (CHM) of a forest (NEVALAINEN et al., 2017; 

SILVA et al., 2016). Besides, considering the vegetation context, relevant parameters can be 

extracted from multitemporal information. The differences in trees blossoming and defoliation 

depend on the season, weather conditions, and soil moisture. Consequently, the spectral 

response of crowns belonging to different tree species changes with the time. Although most 

of the previous studies conducted with seasonal/temporal information have not employed 

UAVs, they have shown spectral differences within tree species and reported whether the tree 

species classification was improved (CASTRO-ESAU et al., 2006; DEVENTER; CHO; 

MUTANGA, 2017; FERREIRA et al., 2019; HILL et al., 2010; IMMITZER et al., 2019; 

KARASIAK et al., 2019; KEY et al., 2001; LI et al., 2015; SOMERS; ASNER, 2014).  

In this regard, considering that UAVs can fly over many areas acquiring fast 

information with high spatial resolution and temporally, the joint use of this information could 

be helpful to identify the tree species. However, at the same time, it would be challenging 

because all the variations within a tree crown would be recorded in the high spatial resolution 

of images. Differences in tree growth from one year/season to the next one can appear even 
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coregistering the images. Thus, methods to handle with such small variations would be 

needed, not to mention the bidirectional reflectance distribution function (BRDF) effects 

because of the sunlit variations and different crown geometries. 

 

1.1 HYPOTHESIS AND OBJECTIVE 

The hypothesis of this doctoral dissertation is based on the knowledge that tree 

species have different characteristics depending on the weather conditions, and the recent 

availability of  UAVs, which can quickly acquire information and has been successfully 

applied in Northern forests to identify tree species. In this sense, the hypothesis is that tree 

species identification of a fragment from the Brazilian Atlantic forest can be improved by 

using temporal information acquired with sensors onboard UAV, integrated with structural 

data derived from ALS. Bearing the hypothesis, this doctoral dissertation aims to propose a 

new methodology to identify selected tree species belonging to the Brazilian Atlantic forest 

using temporal information acquired with sensor onboard UAV. Further objectives are to: 

 Evaluate the spectral differences among the tree species; 

 Evaluate the pixel-based and region-based classification approaches; 

 Delineate the individual tree crowns (ITCs); and 

 Identify the tree species. 

 

1.2 INTERNATIONAL COOPERATION 

This doctoral dissertation was developed under the framework of the international 

joint project called “Unmanned Airborne Vehicle - Based 4D Remote Sensing for Mapping 

Rain Forest Biodiversity and its Change in Brazil (UAV_4D_Bio)”. This Project is a 

partnership between researchers from São Paulo State University (UNESP), and Finnish 

Geospatial Research, part of the National Land Survey of Finland. UAV_4D_Bio project was 

supported in part by The São Paulo Research Foundation (FAPESP) (grant number 

2013/50426-4) and in part by the Academy of Finland (AKA) (grant number 273806). The 

project aimed to develop technologies to map and detect biodiversity changes in Brazilian 

Atlantic forests. 
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1.3 CONTENT 

Section 1 introduced the objectives of the doctoral dissertation. Section 2 shows 

the study area, which is used in all experiments. Section 3 presents the Remote Sensing data 

used, i.e., the ALS and the hyperspectral imagery data, how they were acquired and 

processed. In Section 4 the developed methodology is described. Section 5 shows the results 

and discussion from the performed experiments. The first experiment (Section 5.1) is based 

on the papers of Miyoshi et al. ([s.d.], 2020) which show and evaluate the spectral differences 

between and within-species of trees belonging to the Brazilian Atlantic forest. The second 

experiment (Section 5.2) is an improvement of the work from Miyoshi et al. (2019), where the 

comparison of the pixel-based and region-based classification approaches when using the 

mean spectra and the mean normalized spectra as features are performed. Section 5.3 shows 

the third experiment, which is based on Miyoshi et al. (2020). This experiment evaluates the 

usefulness of multitemporal spectral information to identify tree species. Section 5.4 

compares the superpixels and watershed methods to automatically delineate the ITCs in each 

imagery data. The last result is presented and discussed in Section 5.5. In this section, tree 

species identification using the findings from previous sections (5.1 to 5.4) and using 

additionals set of features (vegetation indexes, texture, and structural features) is carried out. 

Finally, Section 6 shows the conclusion, contribution and recommendations of this doctoral 

dissertation. 
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2 STUDY SITE 

The transect forest sample used in this study is centered at 22°23'55.21" S, 

52°31'18.31" W, in the municipality of Euclides da Cunha Paulista, western part of São Paulo 

State, Brazil (Figure 1). This area has an approximate length and width of 500 m × 130 m and 

is established inside the Ponte Branca forest fragment, a protected area belonging to the Black 

Lion Tamarin Ecological Station. This area was chosen because it has the highest number of 

samples recognized in the field, as well as the highest number of images from different years 

available when compared with other datasets from the UAV_4D_Bio project. 

Figure 1 - Study area and tree species recognized in the field in the 2017 dataset. The red rectangle 
represents the imaged area, and the yellow rectangle is a zoom of the study area. Images acquired with 

RGB camera onboard aircraft (left image) and onboard UAV (right images). 

 
Source: Miyoshi et al. (2020). 

Until the end of the ’70s Ponte Branca area suffered illegal logging, being later 

protected by governmental laws (BERVEGLIERI et al., 2018; BRASIL, 2006). As a result, it 

presents an initial to more advanced successional stages. According to Berveglieri et al. 

(2018), the Ponte Branca area has primary regeneration areas, where the dominant species 

present a uniform height, as well as more mature areas, where there are a larger number of 

tree species with a complex structure (Figure 2). Figure 3 shows pictures acquired over, inside 

and outside the study area, where it is possible to see its heterogeneity, with lianas covering 

trees from the overstory, taller and smaller trees. 

 



24 
 

 

Figure 2 - Successional stages of Ponte Branca in the year of 2016. Letters followed by numbers 
represent the data used to validate this classification. 

 

Source: Adapted from Berveglieri et al. (2018). 

Figure 3 - Pictures acquired over (a), inside (b) and outside (c) the study area. 

 

According to the Brazilian Institute for Geography and Statistics (IBGE), the 

vegetation of the study area is classified as a submontane semideciduous seasonal forest 

(IBGE, 2012). The regional climate is considered a tropical zone with dry winters (Aw) 

according to the Köppen classification (ALVARES et al., 2013). The mean temperature 

during the dry season is 21 °C, with less than 60 mm of total precipitation (INMET - 

INSTITUTO NACIONAL DE METEOROLOGIA, 2019). 

The study area comprises a variety of tree species in different development stages. 

More than 25 different tree species were recognized during fieldworks (BERVEGLIERI et al., 

2016), and they can be divided into pioneer species such as Eugenia piriformis and 

Dilodendon bipinnatum, and in secondary species like Hymenaea courbaril and Apuleia 

leiocarpa, those last two can achieve height up to 20 m and 35 m, respectively (LORENZI, 

1992a). Regarding the weather between the years 2017, 2018, and 2019 and between its flight 

campaigns (Figure 4 and Section 3.2), it is noticed different weather patterns. The season was 

wetter in 2017, with precipitation of 69 mm before the flight campaign, whereas the 
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precipitation was 18.6 mm before the flight campaign of 2018 and 51 mm before the flight 

campaign of 2019; however, the rain did not occur for at least eight days before image 

acquisition (INMET - INSTITUTO NACIONAL DE METEOROLOGIA, 2019). 

Figure 4 - Climograph of Paranapoema station from the National Institute of Meteorology. Bars 
represent the accumulated rainfall per month (mm), and dashed lines represent the mean monthly 

temperature (°C). 

 
Source: Miyoshi et al. (2020). 

 

2.1 REFERENCE DATA 

More than 25 tree species with a diameter at breast height (DBH) greater than 

3.8 cm were identified during fieldwork (BERVEGLIERI et al., 2016). Tree species were in 

different development stages and ages, with the northernmost part of the study area containing 

trees in the initial stage of succession and the southernmost in a more advanced stage 

(BERVEGLIERI et al., 2018).  

We located 101 trees of 11 species that emerged from the canopy (Table 1 and 

Table 2). The 101 tree samples were recognized during fieldworks carried out between 2015 

and 2019 with the auxiliary of a guide who works in an arboretum near the study area. ITCs 

from the samples were manually delineated through visual interpretation of RGB image 

composites of each dataset (R: 628.73 nm; G: 550.39 nm; B: 506.22 nm, from Rikola camera 

data presented in Section 3.2), as were considered as the ground reference. A CHM of the area 

was also applied to improve the polygons delineation because they could provide a 3D view 

of the area. ITCs were delineated to each dataset described in Section 3.2, because of slightly 

different spatial position among the tree crowns. These differences are mainly caused by tree 

growth, changes in leaves with changing seasons, and weather conditions or projection 
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differences due to the characteristics of the surface used. Figure 5 shows the slight difference 

in the spatial distribution of the leaves of Syagrus romanzoffiana trees, a pioneer species 

which can be related with animals dispersion (SILVA et al., 2011). 

Figure 5 - The spatial difference in the leaves of one sample of Syagrus romanzoffiana tree in each 
dataset (R: 690.28 nm; G: 565.10 nm; B: 519.94 nm; automatic contrast from QGIS software, version 

3.0.0): (a) 2017, (b) 2018, and (c) 2019. 

 
Source: Miyoshi et al. (2020). 

Figure 1 shows examples of delineated ITC polygons in the 2017 dataset, and 

Figure 6 shows canopy examples of each tree species in the mosaic of images acquired during 

the 2017 flight campaign. These tree species were chosen because they not only emerge from 

the canopy strata, but also because they are important for characterizing the successional stage 

of the forest, e.g., Syagrus romanzoffiana, which can be associated with the floristic 

composition (SILVA et al., 2011). It is important to note that smaller trees were excluded 

from analysis because lianas covering these trees and the overlap among individuals 

negatively affect the classification accuracy. From now on, tree species will be called by their 

abbreviations from Table 1 and Table 2. 
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Figure 6 - Canopy examples of each tree species identified in the field and delineated in the images 
acquired in 2017 (R: 780.49 nm; G: 565.10 nm; B: 506.22 nm; automatic contrast from QGIS 

software, version 3.0.0). (a) Astronium graveolens (AG), (b) Apuleia leiocarpa (AL), (c) 
Aspidosperma polyneuron (AP), (d) Aspidosperma subincanum (AS), (e) Copaifera langsdorffii (CL), 
(f) Endlicheria paniculata (EP), (g) Helietta apiculata (HA), (h) Hymenaea courbaril (HC), (i) Inga 

vera (IV), (j) Pterodon pubescens (PP), (k) Syagrus romanzoffiana (SR). 

 
Source: Adapted from  Miyoshi et al. (2020).
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Table 1 - Tree species identified in the field and their characteristics. 

Abbreviation Species Family 
Height (m)/Trunk 

Diameter (cm) 
Characteristics1 MeanH2 (m) 

AG Astronium graveolens Anacardiaceae 15–25/40–60 
Deciduous and heliophyte. It starts to bloom during the dry 

season, usually in July–October. 
14.32 

AL Apuleia leiocarpa 
Fabaceae: 

Caesalpinioideae 
25–35/60–90 

Deciduous and heliophyte. Blooms with the tree completely 
without leaves, usually in August–September 

12.45 

AP Aspidosperma polyneuron Apocynaceae 20–30/60–90 
Evergreen and sciophyte. Blooms in September–November, 

fruits ripen in April–October. 
15.37 

AS 
Aspidosperma 
subincanum 

Apocynaceae 5–20/40–50 
Deciduous, heliophyte, xerophyte selective. Blooms between 

September and November with fruits ripening in June to August. 
11.4 

CL Copaifera langsdorffii 
Fabaceae: 

Caesalpinioideae 
10–15/50–80 

Semideciduous, heliophyte, xerophyte selective. Blooms between 
December to March, fruits ripen in August–September with the 

tree almost without leaves 
10.45 

EP Endlicheria paniculata Lauraceae 5–10/30–50 
Evergreen, cyophyte, and hygrophyte selective. Blooms during 

the summer, January–March, and fruits ripen in May–July 
depending on the season 

9.88 

HA Helietta apiculata Rutaceae 10–18/30–50 
Evergreen, heliophyte, and hygrophytic selective. Blooms 

between November–December, and fruits ripen in March to May, 
outside the dry season 

11.69 

HC Hymenaea courbaril 
Fabaceae: 

Caesalpinioideae 
15–20/up to 100 

Semideciduous, heliophyte, xerophyte selective. Blooms in 
October–December, and fruits ripen from July 

12.46 

IV Inga vera Fabaceae: Mimosoideae 5–10/20–30 
Semideciduous, heliophyte, pioneer, and hygrophyte selective. 

Blooms in August–November, and fruits ripen during the 
summer, December to February 

9.84 

PP Pterodon pubescens Fabaceae: Faboideae 8–16/30–40 
Deciduous, heliophyte, xerophyte selective. Blooms between 
September to October and the fruits ripen with the tree almost 

without leaves 
12.31 

SR Syagrus romanzoffiana Arecaceae 10–20/30–40 
Evergreen, heliophyte, and hygrophyte selective. Blooms almost 

during the entire year and fruits ripen mainly in February to 
August 

10.16 

1Information extracted from Lorenzi (1992a, 1992b, 1992c) . 2Mean height from the samples recognized in the field. Source: Adapted from  Miyoshi et al. (2020).
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Table 2 - The number of samples recognized in the field, their average number of pixels per crown, 
and its sum for each tree species. Pixels with 10 cm of spatial resolution. 

Abbreviation Specie ITCs Average Pixels/Crown Sum of Pixels 

AG Astronium graveolens 4 2,965 11,861 
AL Apuleia leiocarpa 10 2,328 23,278 
AP Aspidosperma polyneuron 3 3,098 9,293 
AS Aspidosperma subincanum 4 2,533 10,132 
CL Copaifera langsdorffii 17 2,148 36,520 
EP Endlicheria paniculata 7 1,254 8,776 
HA Helietta apiculata 10 1,669 16,689 
HC Hymenaea courbaril 11 2,800 30,799 
IV Inga vera 8 1,288 10,302 
PP Pterodon pubescens 7 2,715 19,007 
SR Syagrus romanzoffiana 20 1,315 26,293 

Source: Adapted from Miyoshi et al. (2020). 

There was a low number of samples for some species because of challenges when 

acquiring reference data. First, our study area comprised different successional stages; thus, 

the species composition varied over the area. Second, we used tree samples that emerged from 

the canopy. Most of the area has trees in the initial to intermediate secondary stage of 

succession, which hindered the identification of trees that stood out from the canopy. 

Additionally, considering the trees of the secondary stage of succession, such as AP (which 

had 3 samples recognized in the field), it can be noticed the effect called “inverted J shape”, 

which shows that the number of trees per hectare decreases substantially as the DBH values of 

trees increase (D’OLIVEIRA et al., 2011; LIMA et al., 2017). 
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3 REMOTE SENSING DATA 

3.1 ALS POINT CLOUD 

One ALS point cloud was used to extract a CHM of the study area. The ALS data 

were acquired and provided by the company Fototerra (http://www.fototerra.com.br/ingles/). 

ALS data were acquired on 11 November 2017 using a Riegl LMS-Q680i laser scanner 

(RIEGL, Horn, Austria) onboard a manned aircraft at a flight height of 400 m, which resulted 

in an average density of 8.4 points⋅m-2. 

ALS point clouds contain XYZ coordinates related to the 3D-structure of a target 

(HYYPPÄ et al., 2001). Based on this knowledge and using the LAStools software (Martin 

Isenburg, LAStools - efficient tools for LiDAR processing) (ISENBURG, 2014), the CHM 

was obtained by extracting the digital terrain model (DTM) from the digital surface model 

(DSM). The steps to obtain the CHM can be summarized in the following steps: (i) Clip data 

to the study area; (ii) Classify the points into ground and non-ground; (iii) Remove noisy 

points; (iv) Calculate the height above the ground (i.e., normalize the height values); (v) 

Create a uniform grid with points representing the CHM. 

First, the ALS data were clipped to the interest study area covered by the 

hyperspectral camera. This was carried out using the lasclip tool using as input the boundaries 

of the imaged area. Next, the point cloud was classified as ground and non-ground (Figure 7) 

using the lasground tool, which considers only the last return of the laser pulse and it is based 

on the Axelsson (2000) algorithm. In sequence, 3 noisy points were automatically removed 

with the lasnoise tool. This tool was applied using its default parameters and aims to remove 

isolated points (ISENBURG, [s.d.]). Following, the height above the ground was calculated 

through the difference between the points classified as non-ground and the one previously 

classified as ground (step (ii) from the previous paragraph) using the lasheight tool. Finally, 

with the lasthin tool, the highest points from the ALS data were selected and used to create a 

uniform grid, of size 10 cm by 10 cm, to compose the final CHM. These points were assumed 

to represent the canopy heights. Figure 8 represents the CHM of the area, where it is possible 

to identify emergent trees from the canopy strata. 
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Figure 7 - Profile of ALS data classified as ground and non-ground where the pink-colored points 
represent the ground and the one colored in yellow represents the surface objects (trees). Data acquired 

in November 2017 with a Riegl LMS-Q680i laser scanner. 

 

Figure 8 - Canopy height model of the study area obtained from the ALS data. Colors values represent 
the tree heights. 

 

Figure 9 shows the mean height of each tree sample recognized in the field. Most 

of the observed samples fell within a similar height range. Additionally, taller trees were 

found in the more developed successional stage of the area. Trees of the same species varied 

in age and were found in regions of different successional stages. For example, PP trees had 
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crown areas of around 25 m2 and mean heights of 10–20 m. Similarly, HC samples had a 

mean height of almost 14 m, with tree crown areas ranging from 16 to 90 m2. In Figure 9 is 

also noted that the tree crown area was extracted from the 2017 imagery dataset because it is 

the imagery data closest to the ALS data. 

Figure 9 - Mean tree height versus the tree crown area for all samples identified in the field. Data are 
from the 2017 dataset. 

 
Source: Adapted from Miyoshi et al. (2020). 

 

3.2 MOSAICS OF HYPERSPECTRAL IMAGES 

Hyperspectral images were acquired with a 2D-format hyperspectral camera based 

on the tunable Fabry–Pérot Interferometer (FPI) from Senop Ltd, model DT-0011 and known 

as Rikola camera (MIYOSHI et al., 2019, 2018; OLIVEIRA; TOMMASELLI; 

HONKAVAARA, 2016) (Figure 10a). The camera has two sensors, both of which have 1017 

pixels × 648 pixels with a pixel size of 5.5 µm both sides. The total weight of the camera is 

around 700 g with its accessories, which include an irradiance sensor and a Global 

Positioning System (GPS) receiver. Spectral bands can be selected from the VIS to near-

infrared (NIR) region (500–900 nm). Table 3 summarizes the Rikola camera characteristics. It 

is important noting that the spectral range of the first and second sensors of the camera are 

647–900 nm and 500–635 nm, respectively. Additionally, the spectral bands are acquired 

sequentially, i.e., the air gap of the FPI moves to acquire the different spectral bands of the 

same image, being necessary to perform their registration after the image acquisition (AASEN 

et al., 2018, p. 20; HONKAVAARA et al., 2017; OLIVEIRA; TOMMASELLI; 

HONKAVAARA, 2016).  
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Figure 10 - (a) Rikola hyperspectral camera, model DT-0011, with its irradiance and GPS sensors; (b) 
UX4 UAV attached with Rikola camera. 

 

Table 3 - Rikola camera, model DT-0011, specifications. 

Parameter DT-0011 

Horizontal/vertical FOV1 36.5°/36.5° 

Spectral range 500 nm to 900 nm 

Minimum bandwidth2 10 nm 

F-stop ~2.8 

Sensors CMV400 CMOS 

Image size 1017 pixels × 648 pixels 

Pixel size 5.5 μm × 5.5 μm 

Approximated focal length 9 mm 

Weight with accessories ~700 g 

Camera size 77 mm × 89.5 mm × 152 mm 

Camera size with memory card 77 mm × 89.5 mm × 172.7 mm 
1FOV: field of view 

2Bandwidth based on fullwidth at half maximum 

A total of 25 spectral bands were chosen, with the full-width at half maximum 

(FWHM) varying from 12.44 to 20.45 nm (Table 4 and Figure 11). For this spectral setting, 

each image cube needs 0.779 s to be acquired. Additionally, the exposure time was set to 

5 ms, and the image blocks were divided into two flight strips, ensuring more than 70% and 

50% forward and side overlaps, respectively. 

Table 4 - Spectral setting of Rikola camera, model DT-0011, with respective bandwidth in full width 
at half maximum (FWHM). 

Band λ (nm) FWHM (nm) Band λ (nm) FWHM (nm) Band λ (nm) FWHM (nm) 

1 506.22 12.44 10 628.73 15.30 18 720.17 19.31 

2 519.94 17.38 11 650.96 14.44 19 729.57 19.01 

3 535.09 16.84 12 659.72 16.83 20 740.42 17.98 

4 550.39 16.53 13 669.75 19.80 21 750.16 17.97 

5 565.10 17.26 14 679.84 20.45 22 769.89 18.72 

6 580.16 15.95 15 690.28 18.87 23 780.49 17.36 

7 591.90 16.61 16 700.28 18.94 24 790.30 17.39 

8 609.00 15.08 17 710.06 19.70 25 819.66 17.84 

9 620.22 16.26       

Source: Miyoshi et al. (2020). 
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Figure 11 - Simulated normalized sensitivities of each spectral band set in the Rikola camera. 
Responses calculated from the central wavelength and its respective bandwidth. 

 
Source: Miyoshi et al. (2020). 

The Rikola camera was mounted onboard the UX4 UAV (Figure 10b), which is a 

rotary-wing quadcopter developed by the company Nuvem UAV 

(https://www.nuvemuav.com/). The UX4 UAV is almost 90 cm in diameter and 30 cm in 

height without counting the GPS antenna, which is approximately 15 cm. It is controlled by a 

PixHawk autopilot. The energy source for the UAV system and its sensors is one six-cell 

battery of 22 volts and one smaller three-cell battery of 11 volts, which allow the UAV to fly 

for up to 30 minutes, depending on payload, battery, and weather conditions. A flight speed of 

4 m⋅s-1 was used to limit the maximum gap between the first and last band of the 

hyperspectral imager to 3.1 m in a single cube. 

During the field campaigns, three radiometric reference targets were placed in the 

area to enable reflectance calibration. Flight campaigns were performed over the study area 

(Figure 1) on 1 July 2017, 16 June 2018, and 13 July 2019, with an above-ground flight 

height of approximately 160 m. Flights were performed during the winter because it had the 

most suitable weather conditions to fly, i.e., with a lower velocity of winds when compared 

with summer or spring. The flight height was selected so that a GSD of 10 cm was obtained. 

This ensured a good representation of tree crowns that were predominantly over 3 m in 

diameter. Table 5 provides more details about the flight time of each campaign and the mean 

zenith and azimuth angles of the Sun during the image acquisitions. Observing Table 5 it is 

possible to notice that the images were acquired in the same season, however, as shown in 

Figure 4, there were differences in the level of rain in each year as well as before each flight 

campaign. 
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Table 5 - Details of the image acquisition in each flight campaign. 

Flight Campaign Time (UTC-3) Sun Zenith1 Sun Azimuth1 
1 July 2017 10:14–10:24 56.35° 38.46° 

16 June 2018 11:47–11:54 46.75° 12.55° 
13 July 2019 14:27–14:34 52.32° 325.61° 

1Data from <https://www.esrl.noaa.gov/gmd/grad/solcalc/> 

Images were geometrically and radiometrically processed to obtain hyperspectral 

image orthomosaics. First, the images were radiometrically corrected from the dark current 

and nonuniformity of sensors using a dark image acquired before each flight and laboratory 

parameters (HONKAVAARA et al., 2013; MIYOSHI et al., 2018). 

The geometric processing was performed using the Agisoft PhotoScan software 

(version 1.3) (Agisoft LLC, St. Petersburg, Russia). In the orientation process, for each year, 

the exterior orientation parameters (EOPs) of four reference bands (band 3: 550.39 nm; 

band 8: 609.00 nm; band 14: 679.84 nm; and band 22: 769.89 nm) were estimated in the same 

Agisoft PhotoScan project to reduce misregistration between the datasets. The EOPs of the 

other bands were calculated using the method developed in Honkavaara et al. (2013, 2017). 

Positions from the camera GPS were used as initial values and refined using a bundle block 

adjustment (BBA) and ground control points (GCPs). The number of GCPs varied between 

datasets, with 3, 3, and 4 used in 2017, 2018, and 2019, respectively. GCPs were placed 

outside the forest since it was not possible to see the ground from imagery acquired over the 

forested area. A base station was defined near the study area, and the global navigation 

satellite system (GNSS) observations from GCPs were collected and processed in differential 

mode. 

A self-calibrating bundle adjustment was used to estimate the interior orientation 

parameters (IOPs) of each sensor and for each year of the dataset. After initial image 

alignment, parameters estimation was optimized with automatic outlier removal using a 

gradual selection of tie points based on reconstruction uncertainty and reprojection error, 

together with the manual removal of points. The final products of this step were the calibrated 

IOPs, EOPs, sparse and dense point clouds, and DSM of the area with a GSD of 10 cm. These 

were used in the following radiometric block adjustment and mosaic generation. 

Radiometric adjustment processing aims to correct the digital number (DN) of 

pixels of images from the BRDF effects and differences caused by the different geometries of 

acquisition due to the UAV and Sun movements. Thus, nonuniformities among images were 

compensated by the radBA software, developed at the Finnish Geospatial Research Institute 
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(FGI) (HONKAVAARA et al., 2013; HONKAVAARA; KHORAMSHAHI, 2018). 

Equation (1) shows the model used in the software to extract the reflectance value from the 

DN of each pixel. 

���� = ���������� ∙ ���(��, ��, �) + �����, (1) 

where ���� is the digital number of pixel � in image �; ���(��, ��, �) is the corresponding 

reflectance factor with respect to the zenithal angle � of the incident and reflected light, � and 

�, respectively, and with the relative azimuthal angle � (�� −  ��), where �� refers to the 

reflected azimuthal angle, and �� denotes the incident azimuthal angle; ����� is the relative 

correction factor of illumination differences for the reference image; and ���� and ���� are 

the empirical line parameters for the linear transformation between reflectance and DNs. 

According to a previous study of Miyoshi et al. (2018), for the study area, the best 

initial relative correction factor (�����) is the one (1) value, with a standard deviation of 0.05. 

Miyoshi et al. (2018) evaluated whether the radiometric block adjustment provides better 

results, comparable with the reflectance factor of reference targets. They showed that the lack 

of radiometric adjustment or the use of irradiance values from the camera sensor, or from 

spectroradiometer in the field, provide the poorest results, being recommended the use of one 

(1) as the initial value of �����. It is worth noting that an exception was necessary for the 

dataset from 2018 because of higher density differences in cloud covering. The 2017 and 

2019 flights were carried out in almost blue-sky conditions, with slight differences 

compensated by the radiometric block adjustment. The radiometric block adjustment was 

performed in two steps for the 2018 dataset. First, an initial radiometric block adjustment was 

performed using initial values of ����� of 1 (one). In sequence, the final values of �����  were 

used as the initial values for the second radiometric block adjustment. Figure 12 shows the 

mosaic of band 21 (λ = 750.16 nm) before and after the radiometric processing, where it is 

possible to see that the illumination differences were minimized. 
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Figure 12 - 2018 mosaic of hyperspectral images before (a) and after the radiometric block adjustment 
(b) of the spectral band centered at 750.16 nm. Automatic contrast from QGIS software (version 3.0.0) 

in both images. 

 

The reflectance factor values were estimated using the empirical line method 

(SMITH; MILTON, 1999). The empirical line parameters (���� and ����) were estimated 

from the linear relationship between the DN values of three radiometric reference targets and 

its reflectance factor. The radiometric reference targets had at least 90 cm × 90 cm and were 

composed of synthetic material. Colors of the radiometric reference targets were light-grey, 

grey, and black with average reflectance factor of, respectively, 37%, 11% and 4%. Thus, the 

mosaics of hyperspectral images for each dataset representing the reflectance factor values 

were obtained. 
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4 METHODOLOGY 

After the data acquisition and processing, five different experiments were 

performed to achieve the main goal of this research, they are summarized in Figure 13. 

Figure 13 - Flowchart of the experiments1. 

 
1Results from Experiment 1 were published in Miyoshi et al. ([s.d.], 2020), results from Experiment 2 is an 

improvement of the work from Miyoshi et al. (2019), and results from Experiment 3 are in Miyoshi et al. (2020). 
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The experiments were divided into: i) Spectral differences of tree species; ii) 

Pixel-based × region-based classification approaches; iii) Use of temporal spectral 

information; iv) Multitemporal ITC delineation; v) Tree species identification using temporal 

data and ITCs. They considered the importance of defining the best spectral feature to identify 

the tree species because of the BRDF and geometry of view effect when recording the images, 

the best approach to classify the tree species, the ITC delineation and the use of multitemporal 

information. and it is important to note that they were performed sequentially, being the 

results of the next experiment based on the results of the previous experiments. 

Initially, the knowledge of the geometry effects of the Sun and sensor positions in 

vegetation targets were considered. Depending on the geometry of view, vegetation targets 

can register different amounts of shadowed and sunlit pixels as illustrated in Figure 14 

(DALPONTE; FRIZZERA; GIANELLE, 2019; NEVALAINEN et al., 2017; OLIVEIRA; 

GALVÃO; PONZONI, 2019). In Figure 14, the first sensor position (1) would register higher 

proportions of sunlight whereas, in position (3), the sensor would record higher proportions of 

shadows, and the sensor in position (2) would register similar proportions of shadow and 

sunlight. Additionally, there is the influence of the vegetation structure because depending on 

the distribution of the crown and its foliage, the density of solar irradiance reaching the 

canopy varies (WANG; NI-MEISTER, 2019).  

Figure 14 - Differences in the proportions of sunlit and shadowed regions recorded by sensors 
depending on the geometry of view. The sensors' positions are represented by the number in 

parenthesis; the arrows represent the directions of the incident light (colored in orange) and of the 
reflected light (colored in green). 

 
Source: Adapted from Liesenberg (2005). 
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Besides, the different tree species with different structures and ages, not counting 

the forest density also affect the amount of incident and reflected light. In Figure 15 the 

arrows present the direction of the incident light over a forest and the darker green color 

represent how the shadows can be different in each ITC. The alternative to reduce these 

differences in the images acquired over the canopy is to apply the pixel normalization 

procedure. The normalization process reduces the differences between the sunlit and 

shadowed pixels, assuming a uniform distribution across the crown (DALPONTE; 

FRIZZERA; GIANELLE, 2019; NEVALAINEN et al., 2017). The normalized pixel value is 

achieved by dividing the pixel value of a band by the sum of values of this pixel in all bands 

(Equation (2)) (DALPONTE; FRIZZERA; GIANELLE, 2019). Hereof the use of the mean 

values of the non-normalized pixels will be referred to as Mean whereas the mean value of the 

normalized pixels will be referred to as MeanNorm. 

Figure 15 - Incident light in a forest resulting in different shadows density in each tree crown. 

 

������ =
�����

∑ �����
�
���

 , (2) 

where, Npixij is the i normalized pixel value in spectral band j; pixij is the i pixel value in 

spectral band j; n is the number of spectral bands. 

From the normalized and non-normalized pixels, it was possible to calculate the 

spectral distances between-species (inter-classes) and within-species (intra-classes). The 

method adopted to calculate the spectral differences were based on the distance from Price 

(1994) (Equation (3)). This difference is given by the root mean square difference between 

two spectra and averaged through the number of spectral bands since they are uniformly 

distributed for all tested spectra (PRICE, 1994). Price (1994), who evaluated this metric for 

distinguished targets, found out that D can have values up to 7.56% within-corn samples, 
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which could be a potential problem to distinguish this target to other vegetation types, such as 

sunflower and alfalfa. Castro-Esau et al. (2006) calculated D using different pairwise 

combinations including different sites and seasons. They observed that leaves from the same 

tree species may have different spectral characteristics due to its content. 

D = �
1

� − 1
� [��(��)  − ��(��)]�

�

���
, (3) 

where, D is the spectral distance between spectra S1 and S2; N is the number of spectral bands 

and λi represents each spectral band where the difference will be calculated. 

The between-species spectral distance was calculated for each pairwise 

combination of tree species, e.g. AG with AP, AG with PP, AG with PP, AP with PP and so 

on. Similarly, the within-species spectral distance was calculated for each pairwise 

combination of samples belonging to the same tree species. 

Following, the two-tailed Wilcoxon‐Mann‐Whitney test (MANN; WHITNEY, 

1947; WILCOXON, 1945) was applied to verify whether the between-species spectra were 

statistically different. Wilcoxon‐Mann‐Whitney test is applied when there are not enough 

samples to affirm that the data follow a normal distribution or when they do not follow the 

normal distribution (MANN; WHITNEY, 1947; NACHAR, 2008). Wilcoxon‐Mann‐Whitney 

test is a non-parametric test which verifies if two groups belong to the same population or not. 

The null hypothesis states that the two groups belong to the same population whereas the 

alternative hypothesis states that the groups belong to distinct populations. The hypothesis can 

be calculated by the medians of each group (NACHAR, 2008): 

H0: θsp1 = θsp2, 

H1: θsp1 ≠ θsp2, 

where, θ is the median of each tree species to be compared sp1 and sp2 to each spectral band. 

The test was applied with 95% of confidence level (α = 5%), indicating that when 

the p-value is lower than 0.05 the null hypothesis is rejected, i.e., there is no spectral 

difference between the tested pairwise combination. 

In sequence, to assess if the findings about the use of normalized or non-

normalized pixel values improve the tree species classification, two classification approaches 

were evaluated because the classification method is inherently important when working with 

tree species identification. Pixel-based and region-based classification approaches are widely 

applied (FERREIRA et al., 2016; HEINZEL; KOCH, 2012; WAGNER et al., 2018; ZHANG 
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et al., 2006). Results from the pixel-based method can be evaluated using the pixel values or 

using a majority-vote rule, in which the class of a sample is defined by the most popular class 

of a set of pixels. When working with the region-based method, the ITC delineation method is 

of high importance. Both image and ALS data-based methods have been proposed for 

automatic ITC delineation (DAI et al., 2018; EYSN et al., 2015; HYYPPÄ et al., 2001; 

KAARTINEN et al., 2012; LI et al., 2012) 

The first evaluated approach considered the use of a pixel-based approach and the 

second one considered the use of a region-based approach. Previous studies showed that the 

use of pixel and region-based approaches can provide acceptable results with accuracies 

higher than 70%. Ferreira et al. (2016) and Wagner et al. (2018) used the majority vote rule of 

pixels belonging to segments to identify tree-species of well-developed Brazilian Atlantic 

Forest. Tuominen et al. (2018) and Nevalainen et al. (2017) performed the tree species 

classification using the region-based approach in Finnish forests. Immitzer, Atzberger and 

Koukal (2012) compared pixel-based and object-based approaches of four tree species 

classification in a temperate forest in Austria. 

Despite the accuracies achieved by different researches, it is known that when 

using the pixel-based approach there is no need to image segmentation. However, the pixel-

based approach can result in noisy classifications (ZHANG et al., 2006). The existence of 

shadowed and sunlit pixels may confuse the classifier because of the differences in the density 

of shadowed and sunlit pixels in each ITC. Overexposed and shadowed pixels tend to have a 

similar spectral response among tree species hindering the performance of the classifier 

model. Previous studies from Miyoshi et al. (2019) applied the pixel-based and region-based 

approaches to verify which one is more suitable for the study area used in this research. The 

authors used the mean reflectance factor and applied the identification of only four tree 

species belonging to the Brazilian Atlantic forest. 

The classifier method chosen was the RF from Breiman (2001) which is based on 

multiple decision trees, where the class is determined by the most popular vote. Decision trees 

are composed of different features, which are drawn with replacement, i.e., one feature can 

belong to more than one tree (BELGIU; DRĂGUŢ, 2016). Figure 16 exemplifies the 

principle of RF where multiple decision trees are created using different sets of features 

samples. In the example, there are three classes divided in s samples with f features. The first 

step of the classifier is the construction of multiple decision trees (Figure 16a). They are built 

using different features and can have different depths, nodes and leaves. After the decision 
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trees are created, it is the classification phase (Figure 16b). New data is used as input and 

classified in each decision tree. Then, the most popular class of the decision trees, i.e., the 

most frequent class, is assigned as the class for the input data. Figure 16b shows this 

principle, where the most popular class of the new data is classified as class “3”, which was 

the most popular class among the decision trees. 

Figure 16 - (a) Random Forest principle, in which multiple decision trees are used to train the 
classifier. (b) After the classification model is built, the new data are classified in all decision trees and 

its class belongs to the most popular class among all decision trees. 

 

According to Belgiu and Drăguţ (2016) RF does not overfit when increasing the 

number of decision trees. RF performs an indirect feature selection through a criteria, usually 

the entropy or the Gini impurity, and thus, providing the features’ importance and increasing 

the RF performance (MENZE et al., 2009). However, RF can be sensitive to the unbalanced 

distribution of samples per class (CHEN et al., 2004). To reduce this issue, it is possible to 

under-sample the data or to attribute different weights to the classes based on the number of 

samples (FARQUAD; BOSE, 2012). Additionally, RF was chosen because it showed good 

performance to classify targets using hyperspectral data (IMMITZER; ATZBERGER; 

KOUKAL, 2012; NEVALAINEN et al., 2017; TUOMINEN et al., 2018). 

In our work, the RF was applied in the Weka software version 3.8.3 (The 

University of Waikato, Hamilton, New Zealand) (HALL et al., 2009). Similar to Nevalainen 
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et al. (2017), the default parameters were used for the classification step. To circumvent the 

low and unbalanced number of samples, the tree species with the lowest number of samples 

(i.e., AG, AP and AS) were removed from the classification experiments, being used the 90 

ITCs of the remaining tree species (see Table 2). Moreover, the leave-one-out cross validation 

(LOOCV) method was chosen for the region-based classification. LOOCV is a particular case 

of k-folds cross validation, where k is equal to the total number of samples of the dataset 

(BROVELLI et al., 2008; NEVALAINEN et al., 2017). The classification model is trained 

“k” times. In each iteration, the model is trained using k − 1 samples and tested with the 

remaining sample. The final accuracy values are obtained by averaging the accuracy values of 

each iteration (BROVELLI et al., 2008). LOOCV has been successfully applied in tree 

species classification studies with a small sample size (e.g., less than 10 samples per class 

(SOTHE et al., 2019)) or with an unbalanced number of samples per class (NEVALAINEN et 

al., 2017). When applying the pixel-based classification, the 10-folds cross validation was 

used because of the higher number of samples (more than 200,000 pixels representing all the 

samples). 

The results were evaluated through the area under the receiver operating 

characteristic curve, known as AUC (area under the curve) ROC (receiver operating 

characteristics) or AUCROC (BRADLEY et al., 2006; EVANGELISTA et al., 2009; FAN; 

UPADHYE; WORSTER, 2006). ROC is the relationship between the false positive rate 

(FPR), or “1-specificity”, and the true positive rate (TPR), or sensitivity, and it is useful when 

working with unbalanced classes because it is independent of the class distribution 

(EVANGELISTA et al., 2009; FAWCETT, 2006). When using classifiers such as RF that 

provide probabilities or scores, thresholds can be applied to acquire different points in the 

ROC space to form a ROC curve (FAWCETT, 2006). AUCROC is the area under the ROC 

curve and represents the probability of the classification model correctly classifying a random 

sample in a specific class. AUCROC varies from 0 to 1 for each class, where a value of 0.5 

indicates that the specific classification model is no better than a random assignment, and a 

value of 1 represents perfect discrimination of a class from the remaining ones 

(EVANGELISTA et al., 2009). In addition, the overall accuracy (OA) (i.e., the percentage of 

correctly classified instances of the total number of samples) was calculated. 

Besides the use of spectral features, different researches showed the use of 

structural features derived from the CHM as well as vegetation indexes and textural features 
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(FERREIRA et al., 2016; MASCHLER; ATZBERGER; IMMITZER, 2018; MICHEZ et al., 

2016; NEVALAINEN et al., 2017; SOTHE et al., 2019, 2020; TUOMINEN et al., 2018). 

The structural features were extracted from the CHM described in Section 3.1. 

using the polygons from the ITCs from the 2017 dataset and the lascanopy tool from 

LAStools (ISENBURG, 2014). The extracted features were: (i) mean height (CHMm); (ii) 

standard deviation of height (CHMstd); (iii) skewness (SKE); (iv) kurtosis (KUR); (v) 90th 

percentile of height (p90); (vi) 75th percentile of height (p75); (vi) 50th percentile of height 

(p50); and (vii) 25th percentile of height (p25). These structural features were chosen because 

they were previously applied by different researches to identify tree species such as in Sothe 

et al. (2019) and Tuominen et al. (2018). 

Haralick, Shanmugam and Dinstein (1973) proposed 14 texture metrics extracted 

from the grey level co-occurrence matrix (GLCM) widely used for vegetation mapping 

purposes (DIAN; LI; PANG, 2014; KIM; MADDEN; WARNER, 2009; SOTHE et al., 2019, 

2020). Five texture features were available in the scikit-image 0.13.1 (VAN DER WALT 

et al., 2014) library for Python and were extracted from the datasets. Texture features were: (i) 

angular second moment (ASM); (ii) contrast (CON); (iii) correlation (COR); (iv) dissimilarity 

(DIS); and (v) homogeneity (HOM). The GLCM was calculated with a window size 

empirically chosen as 5 pixels × 5 pixels. The texture of each segment was extracted for each 

spectral band and dataset, summarizing a total of 375 features (5 texture metrics × 25 spectral 

bands × 3 datasets). 

Five vegetation indexes were chosen based on the knowledge that the tree species 

present different spectral responses and based on the previous experiments of Miyoshi (2016), 

who evaluated leaves and ITC spectra of trees belonging to Ponte Branca area. The vegetation 

indexes were: (i) normalized difference vegetation index (NDVI) (ROUSE et al., 1974); (ii) 

red-edge position (REP) (GUYOT; BARET, 1988); (iii) photochemical reflectance index 

(PRI) (GAMON; PEÑUELAS; FIELD, 1992; SIMS; GAMON, 2002); (iv) structure 

insensitive pigment reflectance index (SIPI) (PENUELAS; BARET; FILELLA, 1995); and 

(v) plant senescence reflectance index (PSRI) (MERZLYAK et al., 1999). Similar to the 

texture features, the vegetation indexes were extracted for each dataset (i.e., from the mosaics 

of 2017, 2018 and 2019). Table 6 shows the equations from the texture and vegetation 

indexes and Table 7 summarizes the total of features in each category. 
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Table 6 - Texture and vegetation indexes extracted from the mosaic of hyperspectral images. 

Type/Name Equation1 Reference 

Texture 

Angular second moment 
(ASM) 

∑ ���
���������

�,���   

Haralick; Shanmugam; 
Dinstein (1973) 

Contrast (CON) ∑ ���(� − �)���������
�,���   

Correlation (COR) ∑ ���
(�� ��)(����)

�(��
�)(��

�)

��������
�,���   

Dissimilarity (DIS) ∑ ���|� − �|��������
�,���   

Homogeneity (HOM)  ∑
���

��(���)�
��������
�,���   

Vegetation 
index 

Normalized difference 
vegetation index (NDVI) 

���� =  
���� − ����

���� + ����

 Rouse et al. (1974) 

Red-edge position (REP) 
��� = 700 + 40 

�������� −  ����

���� − ����

 

�������� =  
���� + ����

2
 

Guyot; Baret (1988) 

Photochemical reflectance 
index (PRI) 

��� =  
���� − ����

���� + ����

 
Gamon; Peñuelas; Field, 
(1992); Sims; Gamon, 

(2002) 

Structure insensitive pigment 
reflectance index (SIPI) 

���� =  
���� −  ����

���� −  ����

 Penuelas; Baret; Filella, 
(1995) 

Plant senescence reflectance 
index (PSRI) 

���� =  
���� − ����

 ����

 Merzlyak et al. (1999) 

1P is the grey-level co-occurrence histogram for which texture metric; i is the row number and j is the column 
number of the grey-level of P; and levels is the maximum digital number of the tested image (HALL-

BEYER, 2017; HARALICK; SHANMUGAM; DINSTEIN, 1973). 

Table 7 - Summary of the extracted features. 

Type of feature/ Description 
Number of features 

in each dataset 
Number of 

datasets (years) 
Total of 
features 

Spectral: mean normalized reflectance factor for each 
spectral band 

25 3 75 

Structural: mean, standard deviation, 25th, 50th, 75th, 
and 90th percentiles, kurtosis and skewness of the 

CHM 
8 1 8 

Textural: angular second moment, contrast, 
correlation, dissimilarity and homogeneity for each 

spectral band 
125 3 375 

Vegetation indexes: normalized difference vegetation 
index, red-edge position, photochemical reflectance 

index, structure insensitive pigment reflectance index, 
plant senescence reflectance index 

5 3 15 

  Total: 473 
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Last, but not least, it is noticed the importance to automatically delineate the ITCs 

to improve the efficiency to identify the tree species. ITCs detection and delineation are 

highly important to the production of tree species maps (CLARK; ROBERTS; CLARK, 

2005; DALPONTE et al., 2014). Additionally, the use of individual tree polygons showed to 

increase the accuracy when classifying the tree species (CLARK; ROBERTS; CLARK, 2005; 

DALPONTE et al., 2014; FERET; ASNER, 2013). However, the automatic ITC delineation is 

particularly challenging, especially in tropical forests, where the crown boundaries cannot be 

well defined due to the mixture of leaves and branches of neighbor trees, without considering 

the lianas and understory influence (COLGAN et al., 2012). Besides, when using 

multitemporal data with very high spatial resolution, the spatial differences of the same tree 

crown in the different years are visible as seen in Figure 5 from Section 3.2 and should be 

considered in the segmentation task. 

Two segmentation approaches were assessed: the simple linear iterative clustering 

(SLIC) algorithm to generate superpixels, and the watershed segmentation. Superpixels were 

successfully applied to segment and classify hyperspectral images and to evaluate the 

successional stage of forests (BERVEGLIERI et al., 2018; ZHANG et al., 2017). Watershed 

showed to provide acceptable results to ITCs delineation in boreal forests (KAARTINEN et 

al., 2012; NÄSI et al., 2015; TANHUANPÄÄ et al., 2014). Both segmentation approaches 

were divided into two steps: (i) initial segments generation using the CHM from the ALS data 

acquired in 2017; (ii) segments refinement considering the multitemporal spectral 

information, which varies in the different years as seen in the results from Section 5.3. 

The SLIC algorithm was applied using the scikit-image 0.13.1 Python library 

(VAN DER WALT et al., 2014). This algorithm uses the CIELAB space color and the pixel 

positions to calculate a 5D distance (ACHANTA et al., 2012). Three of the distances 

correspond to the values of the pixel color in the CIELAB space and the other two correspond 

to the xy pixel position. The algorithm works interactively, updating clusters based on the k-

means clustering, which uses a 2S × 2S window search size. S is the grid size of the initial 

superpixels defined by an approximated number of superpixels, which is the only input 

parameter needed in the algorithm. 

Since SLIC uses an RGB image, the CHM presented in Section 3.1 was exported 

to a raster format using the las2dem tool from LAStools (ISENBURG, 2014). As parameters, 

we used a false-color image, created based on the elevation values, in meters. In this image, 

the DN of each pixel was multiplied by 1.5 to increase the elevation differences (Figure 17). 
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Following, different numbers of superpixels were tested to minimize the error on the ITC 

delineation. 2,000, 10,000 and 20,000 were some of the tested values (Figure 18). It is worth 

noting, that those values can be chosen according to the expected number of trees. In our case 

the number of superpixels was chosen in order to generate smaller segments and thus, avoid 

under-segmentation (i.e., one segment containing more than one tree crown). Moreover, the 

algorithm considers a rectangular area delimited by the upper left and bottom right corners of 

the study area and not the four corners of the area. 

Figure 17 - False-colour CHM raster (a) without scale and (b) with scale in elevation of 1.5 times. The 
blue color represents the lower heights whereas the red color represents the highest values. 

 

Figure 18 - Superpixels generated using initial parameter of (c) 2,000, (d) 10,000, and (e) 20,000. In 
the greyscale images, the darkest color represents the lower height values whereas the brightest color 

represents the higher values. 

 

Using the initial value of 20,000 superpixels and excluding those belonging to the 

non-imaged area, around 10,000 superpixels was generated. In sequence, the refinement 

process was carried out to merge adjacent superpixels which could belong to the same tree 

crown. This step was required because the wider tree crowns were in more than one segment, 

resulting in over-segmentation. The criteria to merge the superpixels considered the minimum 
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adjacency length between superpixels, their absolute maximum heights difference, the 

maximum and mean height values of each superpixel, and the spectral distance D presented in 

Equation (3) from Section 5.1. 

Watershed was the second method applied and it is based on mathematical 

morphology (TARABALKA et al., 2008). The method considers the topographic relief to 

create catchment basins (TARABALKA et al., 2008). Based on points with minimum height 

values, the influence zones are created (LI; XIAO, 2007). In our study, we used the watershed 

from ForestTools 0.2.0 package of R, proposed and implemented by Plowright (2018). The 

watershed implemented in the package is based on Popescu and Wyne (2004) and in Beucher 

and Meyer (1993). The method considers an inverted CHM, being the treetops the seed points 

used to create the influence zones. A mean smooth filter sized 3 × 3 pixels was applied three 

times to remove small gaps in the CHM. The small gaps can be caused by the detailed 

information recorded in the ALS data, which can show the different leaves layouts of a tree 

crown. Moreover, the smooth filter is widely applied in different researches that detect and 

delineate the tree crowns such as in Näsi et al. (2015) and Silva et al. (2016). Following, a 

linear function to define the radius search of the treetops was set as 0.05 from the CHM 

values. This value was empirically chosen and considered that taller trees usually have wider 

crowns (POPESCU; WYNNE, 2004). Besides, to avoid tag lower trees as a “treetop”, the 

minimum height of 8 m was set. In sequence, with the detected treetops, the watershed was 

applied using the criterion that pixels belonging to the influence zone (i.e., to the ITC 

polygons) should be greater than 7.5 m.  

To evaluate the segmentations, the 90 samples of the 8 tree species with the 

highest number of samples were used in the classification experiments (Sections 2.1, 5.2, and 

5.3) were used. The minimum distance between centroids from the ground reference and the 

generated segments was the criterion applied to select the corresponding segments. Centroids 

and matrix distance were calculated with QGIS software version 3.0.0 (QGIS 

DEVELOPMENT TEAM, 2009). In sequence, the number of pixels classified as true 

positive, true negatives and false negatives was used to calculate the user accuracy, producer 

accuracy, F-Score, omission error, and commission error (CONGALTON, 1991; LI et al., 

2012). Figure 19 shows an example of areas with pixels representing the true positives, the 

false negatives and the false positives. 
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Figure 19 - (a) Example of manually delimited ITC and the superpixel representing the same ITC. (b) 
True positive, false negative and false positives areas.  
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5 RESULTS AND DISCUSSION 

5.1 SPECTRAL DIFFERENCES – ILLUMINATION DIFFERENCES REDUCTIONi 

This section presents the spectra assessment between-species (inter-classes) and 

within-species (intra-class) since the study area comprises different trees with different ages 

and stages of development. Besides, the variability of samples belonging to the same tree 

species may affect the classification, causing confusion among the classes. In this sense, this 

experiment aims to compare the mean reflectance factor spectra and the mean normalized 

reflectance factor spectra to verify which one presents higher spectral separability between the 

tree species. All tests were performed using the mosaic of hyperspectral images acquired in 

July 2017 and the manually delineated ITCs. 

Spectral differences within-species were calculated for all pairwise combinations, 

summarizing a total number of combinations as following (tree species and number of 

combinations in parenthesis): AG (6); AL (45); AP (3); AS (6); CL (136); EP (21); HA (90); 

HC (55); IV (28); PP (21); SR (190). Additionally, a total of 55 pairwise combinations were 

calculated for the between-species spectral difference. The Wilcoxon‐Mann‐Whitney test was 

applied to each pairwise combination between-species and for each spectral band with a 

confidence level of 95% (α = 95%). Considering 11 tree species, there are a total of 55 

pairwise combinations for each spectral band, summing up a total of 1375 tests (25 spectral 

bands times 55 pairwise combinations). This number of hypothesis tests was applied to the 

mean spectra (i.e., Mean) as well as to the mean normalized spectra (i.e., MeanNorm) using 

the SciPy 1.1.0 package for Python (VIRTANEN et al., 2019). 

Figure 20 presents the mean reflectance factor spectra (i.e., Mean) and the mean 

normalized reflectance factor spectra (i.e., MeanNorm). Similar spectral responses are noticed 

in the VIS region for both Mean and MeanNorm. In the NIR region, the Mean spectra are 

visually similar between IV, HA, HC, AS and AL and between AG and CL. Despite smaller 

differences among the MeanNorm spectra, which may lead to higher classification confusion, 

the spectral variability within the samples of Mean had a higher range (Figure 21). In 

 
i Results to be published in the ISPRS-International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences, and published at Remote Sensing Journal (ISSN 2072-4292). 
MIYOSHI, G.; IMAI, N.; TOMMASELLI, A.; HONKAVAARA, E. Spectral differences of tree species 
belonging to Atlantic forest obtained from UAV hyperspectral images. To be published, [s. l.], [s.d.].  

MIYOSHI, G. T.; IMAI, N. N.; GARCIA TOMMASELLI, A. M.; ANTUNES DE MORAES, M. V.; 
HONKAVAARA, E. Evaluation of Hyperspectral Multitemporal Information to Improve Tree Species 
Identification in the Highly Diverse Atlantic Forest. Remote Sensing, v. 12, n. 2, 2020. Available at: 
<https://www.mdpi.com/2072-4292/12/2/244> 
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Figure 21, the range between the minimum and maximum values is visually the same for both 

the Mean and MeanNorm spectra of all tree species in the VIS part of the electromagnetic 

spectrum. It is noted that the number of samples of each tree species can affect this range of 

variation, as observed for SR with 20 samples. However, this behavior was not observed for 

AL (10 samples) and HC (11 samples). The range variation in the Mean values from the red-

edge (700 nm) to near-infrared region (820 nm) had a higher variability when compared with 

the MeanNorm values, leading to the conclusion that a higher variability may influence 

classifier performance. Moreover, in Figure 20, an unusual peak may be noticed at the 

spectral response at 650 nm, probably because this spectral band is located near the edge of 

the first sensor from the FPI, which acquires information from 647 nm to 900 nm as 

mentioned in Section 3.2. 
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Figure 20 - Mean spectra of each tree species considering the: (a) Mean, and the (b) MeanNorm. 

 
Source: Adapted from Miyoshi et al. (2020). 
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Figure 21 - Values for each tree species considering the mean reflectance factor spectra (Mean) and 
the mean normalized spectra (MeanNorm). The blue line represents the Mean, the red line represents 

the MeanNorm, and the shaded area represents the minimum and maximum values. 

 
 Source: Adapted from Miyoshi et al. (2020). 
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The between-species spectral differences calculated using the mean spectra 

acquired per species, i.e., a unique spectra per class, are presented in Figure 22. As previously 

mentioned, the spectral distance D was calculated for each pairwise combination. The highest 

differences are for AP to the other tree species, with an average value of 0.043. This indicates 

that this tree species presents a higher difference in amplitude when compared with the other 

tree species, especially from PP where the difference was 0.0688. Further, AP presented a 

high spectral distance when considering AS even belonging to the same genus. The smallest 

distance of AP was with SR, where D was 0.0215. 

Figure 22 - Spectral differences between the tree species when using the Mean feature. The x-axis 
represents the tree species pairwise combination1. 

 
1Check Table 1 for tree species description. 

Source: Miyoshi et al. ([s.d.]). 

The smallest differences were obtained to the HC with AL and with AS, both with 

distance equal 0.0019. In sequence, AL with AS (D of 0.0023), IV with AL (D of 0.0026) 

and, IV with AS (D of 0.0027). From these distances, it can be noticed the challenge when 

classifying the tree species since they have similar spectra. Moreover, it is observed that the 

smallest differences are mainly for AL, AS and HC. Even belonging to different botanical 

genus and families, with different leaf sizes and blossoming, their spectra can be similar. 

Moreover, 443 of the 1375 tested combinations of the hypothesis test had a p-value lower 

than 0.05, being the null hypothesis rejected. In other words, only 32% of the observations are 

likely to belong to different populations, i.e., spectrally different (APPENDIX A). 

Considering the MeanNorm spectra, the minimum and maximum spectral 

differences were 0.0040 and 0.0081 (Figure 23). The highest differences were for PP to the 
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other tree species, different from the results obtained when using the Mean spectra. The 

smallest D value was for the pairwise between EP and HC. In fact, HC together with AL and 

CL presented the smaller values to the other tree species, being possible to infer that 

confusion among these tree species with the others may occur during the classification 

process. 

Figure 23 - Spectral differences between the tree species when using the MeanNorm feature. The x-
axis represents the tree species pairwise combination1. 

 
1Check Table 1 for tree species description. 

Source: Miyoshi et al. ([s.d.]). 

Results from the hypothesis test indicate that 40% of the observations belong to 

different populations when using the normalized spectra, i.e., 555 cases of the 1375 tests 

(APPENDIX A). In this sense, the higher number of rejections of the null hypothesis when 

using the normalized spectra leads us to the conclusion that this feature could provide better 

results when classifying the tree species. 

For the within-species case, the mean spectral variability of each tree species 

considering the Mean and the MeanNorm spectra is presented in Figure 24. As expected, the 

highest differences within-species are for the Mean spectra, indicating that the spectral 

variability intra species are higher when using the mean spectra than using the normalized 

values. Before the normalization, the average spectral difference among the samples of AG 

was 0.0095. After the normalization, the value was reduced to 0.0007 less than twice the 

original value. Even AP, which presented the smallest difference through the six pairwise 

combinations, the average difference was reduced from 0.0017 to 0.0008.  
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Figure 24 - Spectra difference within-species considering the mean spectra and the mean normalized 
spectra for each sample1. 

 
1Check Table 1 for tree species description. 

Source: Miyoshi et al. ([s.d.]). 

There were no values higher than 0.0046 for the differences within-species when 

considering the normalized spectra. The smallest value is no longer for AP, but for the AS 

tree species (D of 0.0008). Indeed, the order of spectral differences has been completely 

changed. IV was the fifth tree species with the smallest spectral difference within-species, but 

now it is the second one. Now, HA and PP presented the higher within-species differences 

with average spectral distances of 0.0041 and 0.0046, respectively. Additionally, comparing 

the results from Figure 24 with the one obtained in Figure 23 it is noticed that the difference 

within-species in some cases are higher than the difference between-species as for HA. In this 

example, the difference within-HA sample was 0.0268 when using the MeanNorm spectra. 

Pairwise combinations of HA with the other tree species, with exception to PP and AP, 

presented smaller differences than within spectra differences, i.e., lower than 0.0268. A 

similar analysis is observed for SR, where the variability among the samples of its species is 

only lower than the difference of SR with PP, AG, and CL. 

From the results obtained in the performed experiments, it can be noticed that the 

high spectral variability within-tree species can be a challenge when trying to classify the tree 

species. Possible reasons for these results are related to the different development stages of 

the trees, since the tree spectra change according to its age, development stage and 

environment (BUDDENBAUM; SCHLERF; HILL, 2005). Despite of using leaves of trees 

belonging to the Amazon forest in different ages, Chavana-Bryant et al. (2017) found out that 

the leaves’ spectra were different, supporting our hypothesis about the within-species 
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variability in tropical environments. Additionally, deciduous trees commonly have an 

irregular crown shape, which makes the reflectance pattern of tree species more difficult to be 

recognized (KE; QUACKENBUSH, 2011). Moreover, lower trees can have their spectra 

affected by neighborhood trees as well as the proportion of sunlit and shadowed pixels.  

Finally, considering just the hypothesis tests, it is noticed confusion among the 

observations. However, the mean normalized spectra presented lower confusion between-

species. Secondly, the use of normalized spectra presented lower values of spectral difference 

D as well as a lower degree of variation. Thus, it can be suggested that the use of normalized 

spectra decreases the variability of crowns spectral response, caused by different factors such 

as crown structure and BRDF effects, and it is recommended to be used in classification 

purposes. 

 

5.2 COMPARISON OF PIXEL-BASED AND REGION-BASED APPROACHESii 

This experiment aims to verify which classification approach is more suitable for 

the tree species identification task and to assess the results from Section 5.1. It is important 

noting that in this experiment, only the mosaic of hyperspectral images from 2017 was used 

and the evaluation used the manual delimited polygons because the objective was to verify the 

best classification approach and not assess the use of multitemporal data to tree species 

classification. 

Results achieved for each experiment are given in Table 8. Analyzing only the use 

of the pixel-based approach, it is noticed that they achieve similar OA values, 42.858% and 

42.922%, respectively for Mean and MeanNorm. Moreover, similar AUCROC values 

between the Mean and MeanNorm when using the pixel-based approach were achieved for all 

tree species except for EP. EP is an evergreen tree species with an irregular shape crown 

(LORENZI, 1992c), which may have caused different shadow densities and consequently 

have affected the value of AUCROC when using the spectral average (i.e., Mean). 

 

 

 
iiThis section is an extended version of the paper published at the ISPRS-International Archives of the 
Photogrammetry. 
MIYOSHI, G.; IMAI, N.; TOMMASELLI, A.; HONKAVAARA, E. Comparison of Pixel and Region-Based 
Approaches for Tree Species Mapping in Atlantic Forest Using Hyperspectral Images Acquired by Uav. ISPRS-
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 
4213, p. 1875–1880, 2019. 
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Table 8 - AUCROC values for each tree species identified in each classification experiment as well as 
its overall accuracy. Shaded cells indicate the highest AUCROC value of each tree species. 

Tree species1 
Mean MeanNorm 

Pixel-based Region-based Pixel-based Region-based 

AL 0.695 0.474 0.691 0.608 

CL 0.71 0.721 0.711 0.821 

EP 0.722 0.812 0.788 0.818 

HA 0.727 0.633 0.732 0.594 

HC 0.762 0.796 0.756 0.8 

IV 0.798 0.729 0.8 0.627 

PP 0.863 0.742 0.862 0.713 

SR 0.915 0.954 0.917 0.986 

Overall accuracy (%) 42.858 38.889 42.922 55.556 

1Check Table 1 for tree species description. 

In the pixel-based approach, higher differences in OA values are noted, 38.889% 

and 55.556%, respectively for Mean and MeanNorm. The use of a region-based approach 

showed higher differences between the AUCROC values of Mean and MeanNorm, suggesting 

that the use of normalized spectra is better than when using the mean spectra. In fact, the 

normalization reduced the illumination differences and improved the identification of most of 

the tree species. For example, CL and EP had AUCROC values higher than 0.8 (i.e., 0.821 

and 0.818, respectively) when using the MeanNorm. However, HA, IV and PP were better 

identified when using the non-normalized spectra, indicating that the response of shadowed 

pixels assisted the model to identify these tree species. 

Comparing the results obtained in Table 8 it is observed that the use of region-

region approach with the MeanNorm produces most of the highest AUCROC values for the 

tree species identification. Thus, it is possible to conclude that the use of the region-based 

approach is more appropriate as well as the use of normalized spectra, confirming the findings 

of Section 5.1. The results are in accordance with the one obtained by the previous study of 

Miyoshi et al. (2019). Regarding the spectral features, Miyoshi et al. (2019) assumed the pixel 

values for training and validation whereas we used the normalized pixel values. Additionally, 

although Clark and Roberts (2012) reported higher accuracy for the majority vote of pixels, 

Immitzer, Atzberger and Koukal (2012) found out the region-based approach was better. 

Despite both authors applied RF, it is worth noting their different datasets, not only about 

imagery data, but also different forest types, tropical rainforest and temperate forest, 

respectively for Clark and Roberts (2012) and Immitzer, Atzberger and Koukal (2012). 

Regarding the rainforest studied by Clark and Roberts (2012), it is noted that their forest area 
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was an old-growth forest located in Costa Rica, not with different successional stages and not 

being submontane semideciduous seasonal forest. 

 

5.3 CONTRIBUTION OF TEMPORAL DATA TO IDENTIFY THE TREE SPECIESiii 

The results presented in the previous Sections (5.1 and 5.2) showed that the 

region-based approach provides better performance in our study area as well as the use of 

normalized pixel values. Thus, this Section shows an initial assessment of the use of spectral 

temporal information to improve the tree species identification in the region-based approach. 

The classification process was carried out five times with four different imagery 

datasets (described in Section 3.2): (i) the 2017 (D17); (ii) the 2018 (D18); (iii) the 2019 

(D19); (iv) the combination of the 2017, 2018, and 2019 imagery (Dall). For the D17, D18, 

and D19 datasets, we used the normalized pixel values to extract the spectral features, which 

are referred to as cases D17_MeanNorm, D18_MeanNorm, and D19_MeanNorm, 

respectively. Additionally, in the case of the combined dataset (item (iv) in the previously 

described datasets), the classification was performed using both the normalized and non-

normalized values, referred to as Dall_MeanNorm and Dall_Mean, respectively. Table 9 

summarizes the number of features used in each case. 

Table 9 - The number of spectral features used in each classification investigation. 

Cases 
Spectral Data From 

Number of Features 
2017 2018 2019 

D17_MeanNorm X   25 
D18_MeanNorm  X  25 
D19_MeanNorm   X 25 

Dall_Mean X X X 75 
Dall_MeanNorm X X X 75 

Source: Miyoshi et al. (2020). 

As shown in Figure 5 from Section 3.2 despite performing joint geometric 

processing, there were differences in the spatial position of trees, especially because of the 

very high spatial resolution of the images. Thus, the spectral features were extracted using the 

manually delineated ITCs. Similar to the Section 5.2, eight tree species were used (AL, CL, 

EP, HA, HC, IV, PP, and SR) with the RF method of classification and the use of LOOCV to 

 
iii Paper published at Remote Sensing Journal (ISSN 2072-4292). 
MIYOSHI, G. T.; IMAI, N. N.; GARCIA TOMMASELLI, A. M.; ANTUNES DE MORAES, M. V.; 
HONKAVAARA, E. Evaluation of Hyperspectral Multitemporal Information to Improve Tree Species 
Identification in the Highly Diverse Atlantic Forest. Remote Sensing, v. 12, n. 2, 2020.b. Available at: 
<https://www.mdpi.com/2072-4292/12/2/244> 
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circumvent the unbalanced number of samples. Additionally, the user accuracy and the 

producer accuracy metrics (LI et al., 2012), and the importance of the features resultant from 

the RF were included in the analysis of the best classification. 

Table 10 provides the AUCROC values after applying the RF with LOOCV to 

each dataset. AUCROC values varied from 0.313 (AL in the D19_MeanNorm experiment) to 

0.999 (SR in the Dall_MeanNorm experiment) showing high variability of values. 

Considering the highest AUCROC values to each class, it is noted that Dall_MeanNorm 

presented three classes with the highest and thus, it can be considered the best dataset to 

identify the tree species. 

Table 10 - AUCROC values for each tree species identified in each dataset. AUCROC values are from 
imagery data of (i) only 2017 (D17_MeanNorm); (ii) only 2018 (D18_MeanNorm); (iii) only 2019 

(D19_MeanNorm); (iv) all years and the mean spectral values (Dall_Mean); and (v) all years and the 
mean normalized values (Dall_MeanNorm). 

Tree Species 1 
AUCROC 

D17_MeanNorm D18_MeanNorm D19_MeanNorm Dall_Mean Dall_MeanNorm

AL  0.608 0.438 0.313 0.754 0.613 

CL 0.821 0.678 0.517 0.742 0.768 

EP 0.818 0.827 0.664 0.743 0.836 

HA 0.594 0.576 0.899 0.798 0.846 

HC 0.800 0.809 0.847 0.699 0.847 

IV 0.627 0.886 0.622 0.837 0.824 

PP 0.713 0.817 0.680 0.758 0.723 

SR 0.986 0.997 0.915 0.936 0.999 

Overall accuracy 
(%) 

55.556 46.667 31.111 46.667 50 

1Check Table 1 for tree species description. 
Source: Miyoshi et al. (2020). 

Compared with the other datasets, Dall_MeanNorm had the highest AUCROC 

values for three of the eight tree species, namely, EP, HC, and SR. HA was better modeled in 

the D19_MeanNorm dataset, with an AUCROC value of 0.899, and it was worst modeled in 

the D18_MeanNorm dataset (AUCROC of 0.576). In contrast, IV was better and worse 

identified in D18_MeanNorm and D19_MeanNorm, respectively. Additionally, no significant 

differences were obtained when using normalized pixels compared with unnormalized ones 

for this tree species since the AUCROC values were 0.837 for Dall_Mean and 0.824 for 

Dall_MeanNorm. The identification of CL was similar between Dall_Mean (AUCROC of 

0.742) and Dall_MeanNorm (AUCROC of 0.768), and it was best modeled in 

D17_MeanNorm (AUCROC of 0.821). AL had the lowest AUCROC value in 
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D19_MeanNorm (0.313), which probably affected its identification in the Dall_MeanNorm 

dataset, in which its AUCROC was 0.613. 

Since Dall_MeanNorm, in general, generated the best results, its ROC curves are 

shown in Figure 25, and its confusion matrix and user and producer accuracies are presented 

in Table 11. Figure 25 reveals different threshold values for each tree species, which are 

related to predictive probabilities (WITTEN; FRANK, 2005). For AL, which had the lowest 

AUCROC value (0.613), the FPR was higher than 0 (0.088), even when the TPR was equal 0, 

which indicates that the RF performed poorly in identifying this tree species, as confirmed by 

the confusion matrix, since none of AL were correctly identified. PP had the second lowest 

AUCROC value (0.723), and its threshold varied from 0 to 0.46, i.e., similar to AL. As shown 

in Figure 25 and in the confusion matrix of Table 11, only one tree species was correctly 

identified, and the TPR was only higher than 0 (TPR of 0.143) when the FPR was 0.024 to a 

threshold of 0.4. The highest AUCROC value, 0.999 for SR, corresponded to the tree species 

with the fewest false positives; that is, it was less frequently confused with the other tree 

species. The ROC curve of SR in Figure 25 shows that a TPR of 1 was obtained when the 

FPR was 0.014. This fact indicates that samples of this tree species will always be correctly 

identified with a low degree of confusion to other tree samples. Interestingly, for IV, which 

was not among the highest AUCROC values, the FPR is equal to 0 until a threshold of 0.44, 

when the TPR is 0.375. This fact is associated with the confusion matrix of Table 11, which 

has few false positives for this tree species. 
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Figure 25 - ROC curves of the identification of each tree species from the application of RF to all 
imagery datasets (Dall_MeanNorm). (a) Apuleia leiocarpa (AL), (b) Copaifera langsdorffii (CL), (c) 
Endlicheria paniculata (EP), (d) Helietta apiculata (HA), (e) Hymenaea courbaril (HC), (f) Inga vera 

(IV), (g) Pterodon pubescens (PP), (h) Syagrus romanzoffiana (SR). 

 
Source: Miyoshi et al. (2020). 

Table 11 - Confusion matrix of the classification of eight tree species and all datasets 
(Dall_MeanNorm) and its user accuracy and producer accuracy. 

  Reference1  

  AL CL EP HA HC IV PP SR User Accuracy (%) 

C
la

ss
if

ie
d

 a
s 

AL 0 2 0 1 3 0 0 0 0 

CL 3 8 2 3 0 2 2 0 40 

EP 0 1 4 1 1 0 0 0 57.1 

HA 2 2 0 3 0 0 2 0 33.3 

HC 4 2 1 0 6 2 2 0 35.3 

IV 0 2 0 0 0 3 0 0 60 

PP 0 0 0 2 0 0 1 0 33.3 

SR 1 0 0 0 1 1 0 20 87 

 Producer 
accuracy (%) 

0 47.1 57.1 30 54.5 37.5 14.3 100 
Overall accuracy = 

50% 
1Check Table 1 for tree species description. 

Source: Miyoshi et al. (2020). 

In summary, it was observed that the use of joint spectral normalized features 

(i.e., Dall_MeanNorm) increased the AUCROC values of three tree species (EP, HC, and SR). 

In general, when using the mean spectral features together (i.e., Dall_Mean), variations in the 
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AUCROC values were more apparent compared with the use of spectral information from 

each dataset separately. The exception in the Dall_Mean results is to AL, whose AUCROC 

value increased with the use of temporal spectral information without normalization.  

All the AUCROC values for SR were higher than 0.9, leading to the conclusion 

that the identification of this tree species did not depend on multitemporal information or the 

use of normalized spectra. A similar analysis can be applied to HC, which had similar 

AUCROC values in all experiments, without counting the normalized spectra. CL had similar 

AUCROC values in Dall_Mean and Dall_MeanNorm and was better identified in 

D17_MeanNorm. Therefore, the weather pattern in 2017 can be related to the identification 

accuracy of CL. There was a higher volume of rain right before the 2017 flight campaign (as 

seen in Figure 4 from Section 2). Similarly, the weather influenced the detection of other tree 

species when using a single spectral dataset of that year. The dry weather before the 2018 and 

2019 flight campaigns could hinder the ability to identify the AL tree species when using the 

spectral data of these years.  

These three above mentioned tree species have different structures, such as the 

leaf format, and they have different blossoms and fruit sets (LORENZI, 1992a, 1992b, 

1992c). SR is a palm tree with leaves that are 2–3 m in length and spadices that are 80–120 

cm in length (LORENZI, 1992a). HC has pinnate leaves and requires sunlight to grow and 

emerge from the canopy; blooming occurs in the dry season, and fruit appears after 3–4 

months (LORENZI, 1992c). AL blooms without leaves, usually in September, and its flowers 

are white (LORENZI, 1992c). Thus, the use of multitemporal data may have influenced the 

detection of tree species. Of the previous works in the literature related to the Brazilian 

Atlantic forest, more specifically the semideciduous forest, the research of Ferreira et al. 

(2019) is highlighted. They acquired WorldView images during the wet and dry seasons of a 

well-developed Brazilian semideciduous forest to classify tree species; no improvement in the 

classification results was observed when using the combined data. On the other hand, Somers 

and Asner (2014), Deventer, Cho and Mutanga (2017), and Hill et al. (2010) found that tree 

species classification improved when using multitemporal data because of the different 

spectral changes in the data. 

The previous studies that used multitemporal data acquired datasets from different 

seasons, and they did not use UAVs or consider a semideciduous forest with different 

development stages. Deventer, Cho and Mutanga (2017) simulated both WorldView and 

RapidEye data from the leaf spectra of a subtropical forest in South Africa. Hill et al. (2010) 
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used the Daedalus 1268 Airborne Thematic Mapper (ATM) sensor to acquire data over a 

deciduous forest in England. Using WorldView images, Li et al. (2015) studied the 

multitemporal information of tree species in urban environments. When using UAVs, image 

acquisition depends on several factors (such as wind conditions since a UAV is a lightweight 

platform), and there are safety requirements to fulfill. During the spring and summer, when 

some trees may be blooming, the rainfall is usually higher; for example, summer rain events 

may occur every day. Although images were acquired in the same season in this study, annual 

differences in tree phenology provided additional information and enhanced the classification 

accuracy (Table 10). In this sense, it is noticed the benefit of using multitemporal images even 

when acquired in the same season. The benefits are due to phenological changes among the 

tree species. Additionally, it is highlighted the ability of the hyperspectral sensor in acquiring 

these spectral differences. 

The utilization of multitemporal data introduces some challenges to the data 

processing and classification processes. As shown in Figure 5, there are small differences in 

tree positions due to tree growth and probably also due to geometric projection characteristics; 

thus, trees were delineated separately in each dataset. When using structural features, the use 

of different polygons in the same point cloud might affect the classifier. Furthermore, these 

variations are challenging when working with very high spatial resolution imagery. 

Ferreira et al. (2019) used resampled WorldView images at 0.3 and 1.2 m and needed to 

adjust the polygons of each ITC. Special attention must be paid to the radiometric processing 

of multitemporal spectral datasets. In this study, the datasets from each year were first 

processed to ensure that reflectance mosaics were uniform using the radiometric block 

adjustment, and further normalization of the shadows was shown to be advantageous.  

Classification accuracies are always affected by the forest characteristics, the 

existence of several classes, and dataset characteristics, which should be considered for a 

reliable comparison of studies. Tuominen et al. (2018) used multisource data to classify 26 

different tree species of a Finnish forest into species and genus. They had more than 650 

samples and achieved accuracies from 59.9% (when classifying tree species using the RF 

classifier and DN values of the shortwave infrared range) to 86.9% (when using selected 

features and the k-NN algorithm to classify the genus). Dalponte et al. (2014) classified three 

types of trees in a boreal forest with more than 2300 samples and obtained an OA of 93.5% 

using manually delimited ITCs. Sothe et al. (2019) used hyperspectral imagery with 11 cm 
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and structural features to classify 12 tree species of a mixed ombrophilous forest, and 

achieved a maximum OA of 72.4%. 

The number of samples affects the classification results and, thus, the analysis 

results, especially when using an unbalanced number of samples and statistics that consider 

the OA rather than the class accuracy. Therefore, the use of LOOCV followed by AUCROC 

analysis is extremely important because AUCROC values are specific to each class. In this 

study, the number of samples was quite low because of challenges in detecting the training 

data of a complex forest beside the availability of small areas of forests. 

 

5.3.1 Results of the feature importance 

The feature importance in the Dall_MeanNorm dataset, which had the best 

classification results, is given in Figure 26. The feature importance was scaled from 0 to 1, 

where 0 represents the least important feature, and 1 represents the most important feature. 

The least important feature was band 21 in the 2019 dataset, centered at 750.16 nm, and the 

most important feature was band 10 in the 2017 dataset, centered at 628.73 nm. 

Figure 26 - Feature importance when using the RF for 8 tree species and all datasets 
(Dall_MeanNorm). The x-axis represents the spectral bands in each year. The black arrows point to 

the highest and lowest values of features importance. Wavelengths in nm. 

 
Source: Miyoshi et al. (2020). 

In general, the most important features in the 2017 dataset were from the VIS part 

to the beginning of the red-edge part of the electromagnetic spectrum. In the 2018 dataset, an 

exception in feature importance may be observed at bands 15, 19, and 23, centered at 

690.28 nm, 729.57 nm, and 780.49 nm. These bands were more important than most of the 

NIR bands in the 2018 dataset. In the 2019 dataset, bands 3, 6, and 12, centered at 535.09 nm, 

580.16 nm, and 659.72 nm, respectively, were highlighted because of the peak in the feature 
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importance value when compared with the other bands from 2019. These bands are in the VIS 

part of the electromagnetic spectrum; this is related to the leaves’ pigment, e.g., chlorophyll 

and carotenoids, content. As supported by previous research, VIS bands were among the most 

important features in tree species classification at the crown scale (CLARK; ROBERTS; 

CLARK, 2005; FERREIRA et al., 2016; MICHEZ et al., 2016; NEVALAINEN et al., 2017). 

Vegetation spectra are characterized by the peak and absorption in the green and red parts of 

the electromagnetic spectrum, which helps differentiate tree species. 

 

5.4 ITC DELINEATIONiv 

This Section shows the results regarding the automatic ITC delineation 

experiments. The experiments were performed before the use of structural, textural and 

vegetation index features because it is expected the use of the automatic generated segments 

in the final experiment. Figure 27 summarizes the experiment, where it is possible to see that 

SLIC superpixels and watershed methods were applied in the multitemporal data. 

Figure 27 - Flowchart of the segmentation experiments. 

 

Figure 28 shows an example of the generated superpixels before and after the 

refinement step whereas Table 12 summarizes the criteria used. All the criteria considered the 

spectral distance D to overcome the differences of the spatial positions between the different 

datasets, i.e., acquired in 2017, 2018, and 2019. D value was chosen based on the experiments 

 
ivPaper to be submitted. 
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performed in Section 5.1 where the mean spectral distance between-species was 0.0027 

considering the mean normalized spectra. Besides, the criteria concerning the segments 

adjacency and height values were empirically chosen. The first criterion considered that the 

absolute difference between the maximum and mean height of each superpixel should not be 

higher than 4.5 m; their maximum and mean heights should be greater than 17 m and 15.3 m, 

respectively; adjacency length between superpixels should be at least 2.2 m, and their absolute 

difference of maximum heights were no greater than 2.5 m. The second criterion considered 

2.5 m as minimum adjacency between superpixels; maximum height between 15.3 and 17 m; 

and maximum absolute differences equal 1.6 m. The third criterion considered the interval 

13.5 to 16 m for the maximum height of superpixels; 2.5 m and 1.6 m as maximum values to 

the length of adjacency and the absolute difference between maximum heights, respectively; 

and the difference between maximum and mean heights no greater than 1.5 m. 

Figure 28 - Superpixels merged. The red polygons represent the superpixels after they were merged, 
and the blue lines represent the original superpixels from SLIC. 

 

Table 12 - Criteria to merge the segments1.  

Criteria 
Min. adj. 

(m) 
Max. height (m) 

Mean height 
(m) 

|ΔMaxMean| (m) |ΔMax| (m) D (1) 

1 ≥2.2 ≥17.0 ≥15.3 ≤4.5 ≤2.5 ≤0.0027 

2 ≥2.5 ≥15.3 and ≤17.0 - ≤1.6 ≤1.6 ≤0.0027 

3 ≥2.5 ≥13.5 and ≤16.0 - ≤1.5 ≤1 ≤0.0027 
1Min. adj.: minimum adjacency between the tested polygons; Max. height: maximum height of the tested polygons; Mean 

height: mean height of the tested polygons; |ΔMaxMean|: the absolute difference between the maximum and mean height of 
the tested polygons; |ΔMax|: the absolute difference between the maximum height of the tested polygons; D: spectral 

distance D (Equation (3) from Section 5.1). 

As previously mentioned, the refinement step was necessary because of the 

existence of wider tree crowns and the different datasets. The criteria were the same adopted 

to merge the superpixels (Table 12) viewing a comparison of the results between superpixels 

and watershed. Figure 29 shows examples of the segments generated by the watershed 

algorithm before and after the merge. 
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Figure 29 - Segments generated by watershed after merging. The red polygons represent the segments 
after they were merged, and the blue lines represent the original ones. 

 

The results of ITC delineation are summarized in Table 13, being noticed higher 

accuracy values to the superpixels method for all datasets. F-Score values of superpixels 

varied from 54.47% to 61.15% whereas for watershed the minimum value was 48.04% and 

the maximum was 48.8%. Additionally, it is noticed that the highest F-Score values were 

obtained with the 2017 dataset. A possible reason for this result may be the use of a CHM 

from 2017 to generate the initial segments. As the tree crowns can vary in the different 

seasons and years, the use of CHM from different years could provide better results. 

Table 13 - Overall accuracies for the individual crown delineation using superpixels and watershed 
methods. Shaded cells highlight the highest F-Score values for each dataset. 

Dataset from Method User accuracy 
Producer 
accuracy 

F-Score Omission error 
Commission 

error 

2017 
Superpixel 62.03% 60.30% 61.15% 39.70% 37.97% 

Watershed 42.83% 56.34% 48.67% 43.66% 57.17% 

2018 
Superpixel 57.37% 51.84% 54.47% 48.16% 42.63% 

Watershed 41.93% 56.22% 48.04% 43.78% 58.07% 

2019 
Superpixel 56.66% 59.14% 57.87% 43.34% 40.86% 

Watershed 43.42% 55.8% 48.84% 44.2% 56.58% 

Both, user accuracy and producer accuracy, can be related to the under-

segmentation (i.e., when there is more than one ITC in the segment) and over-segmentation 

(i.e., when the ITC belongs to more than one segment). User accuracy considers the number 

of true positives and the false positives, being complementary to the commission error and 

thus, related to the over-segmentation case. In contrast, producer accuracy is complementary 

to the omission error and considers the number of true positives and the false negatives, so it 

is related to the under-segmentation. Thus, results Table 13 reveal that both cases of 

segmentation error occur in all methods and datasets.  

Concerning the use of ALS data to delineate the tree crowns, it is noticed that our 

results are supported by Dalponte et al. (2014) who found 48.5% of their reference trees, but 
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not by those who achieved OA and F-Score values up to 99% in detecting and delineating the 

tree crowns (DAI et al., 2018; HU; CHEN; XU, 2017; HYYPPÄ et al., 2001; LI et al., 2012; 

SILVA et al., 2016; STRÎMBU; STRÎMBU, 2015). In fact, it is necessary to consider that 

most of the methods developed for tree species delineation have considered different types of 

forests. Most of the researches were conducted considering high latitude forests, where the 

coniferous tree types were dominant. These types of trees usually have a cone shape and a 

circular crown, being difficult to compare these results with ours. Therefore, tree detection 

and delineation accuracy depend on the type of forest, its characteristics and type of sensor 

used to acquire the data (CARR; SLYDER, 2018; KE; QUACKENBUSH, 2011; 

VAUHKONEN et al., 2011). 

Considering Brazilian forests, Ferreira et al. (2016) and Wagner et al. (2018) were 

the pioneer researches to detect ITCs in the Atlantic forest to the best of our knowledge. 

Ferreira et al. (2016) applied the Jeffreys-Matusita (JM) distance to support the ITC 

delineation and Wagner et al. (2018) used the rolling ball algorithm and mathematical 

morphological operations. Wagner et al. (2018) correctly found 79.2% of the reference trees, 

being 23% of the trees over-segmented and only 0.9% under-segmented. These results are in 

contrast with our findings and among the reasons, it is possible to cite the differences in the 

study areas. Both Ferreira et al. (2016) and Wagner et al. (2018) used the Brazilian Atlantic 

forest located in the central region of São Paulo State. Their and our study areas represent 

submontane semideciduous forests, however, there are significant differences between the 

areas. Their area is well-preserved with minimum mean crown size of 20 m2, whereas tree 

crown sizes in our study area are mostly smaller than 20 m2 as shown in Figure 8 from 

Section 3.1. Tree species belonging to our study area have similar heights and smaller tree 

crowns because of the different stages of development, which makes the ITC delineation 

challenging. 

Mentioning the ITC delineation in multitemporal data, Ferreira et al. (2019) 

evaluated tree species identification in different seasons using resampled WorldView images. 

They worked with WorldView images with a spatial resolution of 0.30 m and 1.20 m in the 

same study area of Ferreira et al. (2016) and Wagner et al. (2018) and showed the need to 

consider the spatial difference of tree crowns. These finds reinforce the need to consider the 

spatial difference of trees crowns when using multitemporal data, especially when using very 

high resolution images, like 10 cm. So, in our case, the use of spectral distance showed to be 

useful to refine the segments from the different year datasets, since the initial segments were 
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generated with a CHM from 2017. Even not achieving high degrees of F-Score values (i.e., 

higher than 80%), the superpixel method presented the best results. Further researches 

considering more mature forests and initial CHMs from its respective date are recommended 

as well as the use of different spectral distances such as the JM distance. 

 

5.5 TREE SPECIES CLASSIFICATION USING SUPERPIXELS AND DIFFERENT SETS OF 

MULTITEMPORAL FEATURESv 

Considering the previous results from Sections 5.1 to 5.4 it was noticed the 

importance of the normalized spectral features, the use of region-based classification method, 

the contribution of multitemporal spectral information, and the ITC delineation using the 

superpixel method. Thus, the objective of this Section is to apply all these previous findings 

to identify the tree species of the initial to more advanced successional stages of our study 

area using the automatically delineated ITCs. All features were extracted from the superpixels 

generated in Section 5.4. Figure 30 exemplifies this experiment where it is possible to see that 

11 different tree species identification experiments were performed using the multitemporal 

data and different sets of features. 

 

 

 

 

 

 

 

 

 

 

 

 

 
vPaper to be submitted. 
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Figure 30 - Flowchart of the tree species identification experiments using multiple sets of features.  

 

Although RF shows to be insensitive to the number of features used, it can be 

sensitive to noisy features (SEGAL, 2004). In this sense, different combinations of features 

and their numbers were evaluated. RF was applied using the Weka software version 3.8.3 
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(The University of Waikato, Hamilton, New Zealand) (HALL et al., 2009). 500 was the 

number of decision trees set because a preliminary test showed that using 100 decision trees 

(default parameter of RF in Weka) most of the attributes would not be used to create the 

classifying model. Additionally, the use of a higher number of decision trees would not affect 

the RF results (BELGIU; DRĂGUŢ, 2016; GHOSH; JOSHI, 2014). 

The performed experiments considered: (i) all the 473 features described in 

Table 7; (ii) all mean normalized spectral features from the three datasets; (iii) the vegetation 

indexes from the tree datasets; (iv) the structural features; (v) the ASM from the three 

datasets; (vi) the CON from the tree datasets; (vii) the COR from the three datasets; (viii) the 

DIS from the three datasets; (ix) the HOM from the three datasets; (x) all mean normalized 

spectral features and the vegetation indexes from the three datasets; (xi) all mean normalized 

spectral features, the vegetation indexes from the three datasets, and the five most important 

features from (v) to (ix). Table 14 summarizes each performed experiment, its number of 

features used and its identification (ID). The results of each classification experiment were 

assessed using the AUCROC values of each tree species (Section 5.2) together with the OA 

values. 

Table 14 - Classification investigations performed using different features combination and the 
number of features used in each test. 

ID Features used 
Total number of 

features 

RF_ALL All features 473 

RF_ASM Angular second moment - 25 features/dataset 75 

RF_CON Contrast - 25 features/dataset 75 

RF_COR Correlation - 25 features/dataset 75 

RF_DIS Dissimilarity - 25 features/dataset 75 

RF_HOM Homogeneity - 25 features/dataset 75 

RF_MNo Mean normalized spectra - 25 features/dataset 75 

RF_VIs NDVI, PRI, PSRI, SIPI and REP from each dataset 15 

RF_3D 
Mean, standard deviation, skewness, kurtosis, 25th, 50th, 75th e 

90th percentiles from the CHM 
8 

RF_MNoVIs RF_MNo and RF_Vis 90 

RF_MNoVIsTXT 
RF_MNoVIs with five of the most important features from 

RF_ASM, RF_CON, RF_COR, RF_DIS, and RF_HOM 
115 

Table 15 presents the AUCROC values and OA of each classification 

investigation. Features importance and confusion matrix of each experiment are provided in 
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Appendix B. From Table 15 it is possible to see that in general, the experiments with the 

highest number of AUCROC values are for the RF_MNo and RF_VIs. These results can lead 

us to the conclusion that when using the mean normalized spectra or the vegetation indexes, 

the classification accuracies are higher. Moreover, considering the OA values and the use of 

mean normalized spectra, vegetation indexes and the most important textural features, it is 

confirmed that RF does an indirect feature selection, thus, the textural features did not 

contribute to the tree species identification. Observing the OA, it is noticed that the highest 

value is achieved when using only the vegetation indexes. The OA does not consider the 

different proportions of samples in each class, only the proportion of correctly identified 

instances, being the analysis of AUCROC a better approach to evaluate the results. As 

previously mentioned, the AUCROC value is independent of the class distribution 

(EVANGELISTA et al., 2009; FAWCETT, 2006). 

Table 15 - AUCROC values for each tree species identification in each experiment. Shaded cells 
highlight the highest value of each row. 

Tree 
species1 

RF_A
LL 

RF_A
SM 

RF_C
ON 

RF_C
OR 

RF_DI
S 

RF_H
OM 

RF_M
No 

RF_VI
s 

RF_3
D 

RF_M
NoVIs 

RF_M
NoVIs
TXT2 

AL 0.334 0.509 0.437 0.268 0.439 0.575 0.330 0.391 0.490 0.329 0.308 

CL 0.586 0.510 0.649 0.464 0.577 0.379 0.615 0.670 0.588 0.637 0.654 

EP 0.687 0.473 0.755 0.267 0.503 0.458 0.830 0.759 0.467 0.834 0.828 

HA 0.778 0.414 0.627 0.411 0.499 0.393 0.808 0.701 0.628 0.786 0.807 

HC 0.643 0.510 0.505 0.240 0.444 0.441 0.782 0.727 0.539 0.777 0.745 

IV 0.788 0.375 0.783 0.413 0.688 0.564 0.779 0.871 0.627 0.847 0.852 

PP 0.546 0.657 0.730 0.503 0.628 0.733 0.682 0.703 0.441 0.690 0.684 

SR 0.999 0.416 0.933 0.690 0.909 0.621 0.970 0.944 0.762 0.964 0.984 

Overall 
accuracy 

(%) 
38.9 20.0 32.2 18.9 25.6 18.9 43.3 47.8 26.7 43.3 43.3 

1Check Table 1 for tree species description. 
2The features importance of each tree species classification are in Appendix B. 

 From the AUCROC values, it is noticed that all models poorly describe the AL 

tree species. The highest AUCROC value achieved for AL was 0.575 when using the HOM 

feature of all datasets. For the remaining classifications, the AUCROC values were lower than 

0.5 value which according to Evangelista et al. (2009) represents that a classification model is 

no better than random, i.e., the samples are randomly correctly or incorrectly classified in AL 

tree species. Besides, bearing the results obtained in Section 5.3, it is noticed that AL also 

presents the poorest results. Possible reasons that might affect AL identification are the data 
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acquisition in the driest season, the similarity with other tree species, and the superpixels that 

delineated the tree species samples. It is important noting the superpixels results did not 

present a perfect matching with the manually delineated polygons. 

Bearing the results for CL, it is noticed the highest AUCROC value when using 

only the vegetation indexes (AUCROC of 0.67). However, close AUCROC values were 

achieved for RF_MNoVIsTXT, RF_MNoVIs and RF_CON. Additionally, slightly better 

results than AL were obtained in all classification experiments. For EP, the highest AUCROC 

value was 0.834 using the joint normalized spectral features and vegetation indexes (i.e., 

RF_MNo_VIS), value almost similar when using only the normalized spectral features 

(AUCROC of 0.83), leading to the conclusion that the use of vegetation indexes is not 

necessary to correctly identify this tree species. Moreover, these AUCROC values, were 

similar to the one when using the ITC manually delimited (Section 5.3). 

To HA, the highest AUCROC value was 0.808 in the RF_MNo case, almost the 

same value found to HC (AUCROC of 0.782) which was also better identified in RF_MNo. 

Further, HA was poorly modeled when using the texture features ASM, COR, DIS, and 

HOM. Despite these features, CON and the structural features (RF_3D) also poorly modeled 

HC species, being the lowest AUCROC value when using only the COR as a feature. 

Considering the results for IV, it is noticed the poorest performance of RF when using ASM 

(AUCROC of 0.375) or COR (AUCROC of 0.564) as features, but a good performance for 

this tree species was achieved using the vegetation indexes (RF_VIs; AUCROC of 0.871), 

similar value to the best result found in Section 5.3. 

The identification of PP was better when using the HOM textural feature, 

achieving an AUCROC value of 0.733. The same tree species was poorly modeled using the 

structural features (RF_3D; AUCROC of 0.441), and the COR features (RF_COR; AUCROC 

of 0.503). Last, but not least, interesting results were found to SR, which achieved AUCROC 

values higher than 0.9 to RF_ALL, RF_CON, RF_DIS, RF_MNo, RF_VIs, RF_MNoVIs, and 

RF_MNoVISTXT. The textural features ASM, HOM and COR produced AUCROC values 

between 0.416 and 0.69. From the AUCROC value using the structural features (RF_3D, 

AUCROC of 0.762) it can be addressed that the structural features were not suitable to 

identify the SR tree species or even that the superpixels could not correctly represent the star 

shape of SR thus, affecting its structural features. 

Comparing our results with previous ones from the literature, different findings 

are observed. Nevalainen et al. (2017) and Tuominen et al. (2018) classified tree species 
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belonging to Finnish forests using hyperspectral images acquired with different models of 

Rikola hyperspectral camera. Besides the use of hyperspectral information, Nevalainen et al. 

(2017) used structural features extracted from a CHM of the area and performed its 

classification experiments using selected features considering the mean spectra and the mean 

normalized spectra. With the RF classifier, the authors achieved accuracies up to 94.9%. 

When using the non-normalized spectra, they noticed that the structural features were among 

the most important features, which differs from our findings. As it is possible to see in 

Appendix B and in Table 15 the use of structural features did not present the best results. 

Potential reasons can be the different forest areas and tree structures. Figure 9 in Section 3.1 

shows that only a few tree species stood out from the mean height, which hinder the tree 

species identification using only this attribute. Nevertheless, their findings support our results 

considering the use of normalized spectra, which presented the best results. Tuominen et al. 

(2018) also applied the spectral features from the hyperspectral images and structural features 

from the CHM. Even though they did not use normalized spectral features, they found better 

tree species identification results for RF application using the structural features and visible to 

near infrared (VNIR) and SWIR spectral features (accuracy of 0.823).Unfortunately, SWIR 

data is not available in our dataset as well as in the Rikola camera used in our experiments. 

Regarding the use of GLCM texture features, Dian, Li and Pang (2014) used 

airborne images captured with the Compact Airborne Spectrographic Image (CASI) 1500 

hyperspectral imager to identify five tree species in a Chinese forest. As classifiers, the SVM-

RBF achieved the best results (OA of 83.4%), using textural features and features derived 

from the minimum noise fraction (MNF). Without the use of textural features, they achieved 

OA of 83.24%, showing no great improvement when textural features were used, which 

support our results. Kim, Madden and Warner (2009) classified different forest types in the 

United States of America using Ikonos satellite imagery (GSD of 4 m). When using textural 

features solely, they achieved OA varying from 60% to 79.3% and showed that the use of 

textural features improved accuracy by only 0.3% when compared with the results using 

spectral features. Using both features together, the OA decreased confirming our results 

presented in Table 15. 

When using automatic segments derived from the mean-shift algorithm and VNIR 

spectral bands, first derivative, texture, vegetation indexes, and principal components, 

Maschler, Atzberger and Immitzer (2018) achieved the OA of 89.4% when classifying 13 tree 

species from temperate Austrian forest. Using only the VNIR spectral bands and the textural 
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features, with manually delimited polygons, the OA decreased to 59.4%. The use of VNIR 

spectral bands with vegetation indexes produced the OA of 75.5% leading us to the 

conclusion that vegetation indexes were better features to identify tree species than textural 

features. This is consistent with our results. 

Considering Brazilian forests, Sothe et al. (2020) showed that the GLCM textural 

features were not among the most important features, which our results also showed. When 

using the combination of VNIR spectral bands, vegetation indexes, MNF, and GLCM 

features, they achieved the OA of 59.17% with RF, whereas the best OA was 66.06% when 

using only VNIR bands and structural features from the CHM. This is not in accordance with 

our results, where the use of structural features did not improve tree species identification. 

However, this could be explained by the differences in the study areas. Although, both areas 

belong to the Brazilian Atlantic forest biome, Sothe et al. (2020) study area belongs to the 

mixed ombrophilous forest whereas our study area is semideciduous seasonal forest. 

Additionally, regarding the use of vegetation indexes, Ferreira et al. (2016) showed that their 

utilization improved the tree species identification of semideciduous seasonal forest located 

110 km northwest of São Paulo city, in São Paulo State. 

In summary, when evaluating the impact of using the different types of features, it 

can be noticed that the use of textural features as well as the use of structural features did not 

improve the tree species classification accuracy in our study. In fact, the tree species 

identification had the accuracy decreased when using those features, especially the COR 

feature. The possible reason for the poor performance of textural features include the irregular 

tree crowns, such as, SR having a star shape, CL with a dense globose crown, AL with an 

umbrella shape crown or EP with an irregular crown, not counting the high spatial resolution 

of the used images (i.e., 10 cm) and the use of a 5 × 5 window to calculate the GLCM. 

Additionally, the varying development stages of trees and their similar heights, and the very 

high spatial resolution of images caused further challenges for the tree species identification. 

Thus, the textural features could be considered as noisy information in our study. Concerning 

the structural features, it was observed that the similarity of the tree heights was the reason 

why the accuracy of the tree species identification did not improve when using this feature 

(Figure 9 from Section 3.1). Despite some studies showing the usefulness of structural 

attributes, in our study area they did not improve the tree species identification. On the other 

hand, the vegetation indexes provided a clear improvement in the species identification. 
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It is also important to highlight the use of superpixels as ITCs in the results 

classification. Despite the F-Score values achieved in Section 5.4 (61.15%), the use of 

superpixels provides similar AUCROC values in the identification when compared with the 

AUCROC values achieved using the manually delimited polygons from Section 5.3. Thus, the 

over-segmented trees and the superpixels nearest to the centroids of the true polygons were 

suitable to provide a spectral signature to model the different tree species. 
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6 CONCLUSION 

The objective of this doctoral dissertation was to develop a methodology to 

improve the tree species identification and to evaluate whether the multitemporal information 

could improve the tree species identification. Hyperspectral images were acquired by Rikola 

camera onboard an unmanned aerial vehicle (UAV) over an area of the Brazilian Atlantic 

forest having great species diversity and different successional stages. Further objectives were 

the evaluation of spectral differences, the automatic ITC delineation and the combination of 

different temporal features to the classification task. 

The use of mean normalized spectral features showed a better performance than 

the non-normalized features in classifying tree species. Even applying the radiometric block 

adjustment, the pixel normalization indeed reduced the differences in shadowed and sunlit 

pixels and thus, increasing the tree species separability. Radiometric block adjustment was 

equally important and highlighted. Different cloud covering density affects the spectral 

response of samples from the same tree species because the incident light is different and the 

method to acquire the spectral response of the images is the empirical line method. The 

importance of the radiometric block adjustment should be emphasized because the high 

spatial resolution images show detailed information of the tree crown and are subject to the 

anisotropy effects when not properly corrected. 

Furthermore, the region-based approach presented the best results when compared 

with the pixel-based approach. Temporal spectral information improved the performance of 

the random forest classifier for three of the eight tree species analyzed, indicating that better 

accuracy could be obtained when using temporal spectral information. Separated analysis of 

single-date datasets showed that the weather pattern directly influenced the classification 

performance of some of the tree species. The analysis of datasets from several years of the 

same season showed that differences in weather conditions in different years resulted in some 

changes in the species spectra and these changes were useful for differentiating some of the 

selected tree species. 

Automatic ITC delineation was shown to be a highly complex task. The lack of a 

standard tree shape, the high forest density, its different development stages, and the 

similarity of heights directly affected the automatic ITC delineation, are weakness in all 

techniques for tree species identification. Considering the Syagrus romanzoffiana, this task is 

even more challenging. Its regular shape requires smaller superpixels, but it may cause the 

over-segmentation of wider crowns. Both assessed methods did not achieve an F-Score value 
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higher than 70%. However, the superpixels application provided similar AUCROC values 

when compared with the use of manually delineated polygons. 

The knowledge of the different tree heights was essential as well as the use of the 

spectral information. The use of spectral differences was crucial to deal with the different 

spatial positions of the ITC over the years. Concerning the spatial position of the trees, the 

initial EOP information from the camera GPS was important to geometrically produce the 

mosaic of hyperspectral images. There is a challenge to introduce GCPs inside of the forest 

because of its high density. Furthermore, even though the georeferencing of the three datasets 

was carried out in a single process there appeared small geometric differences as expected.  

Weather conditions directly affect the tree species bloom or defoliation because 

some species were better identified when using all temporal data, such as Hymenaea 

Courbaril and Inga vera. Further, the use of vegetation indexes is of fundamental importance. 

They were shown to provide similar results as the use of normalized features. The use of 

textural features was shown not to be relevant in our study area due to the high spatial 

resolution of the images, which might result in the textural features to be noisy and thus, not 

producing the best results. A similar analysis is applied to the use of structural features 

because the similar tree heights did not improve the tree species identification. Finally, despite 

the RF appeared to be insensitive to the number of attributes, the results showed its sensitivity 

to noisy features, as pointed out by other researches also. When using all textural, spectral, 

vegetation indexes and structural features, the results were worse than when using only the 

spectral features or the vegetation indexes. 

To the best of our knowledge, this is the first work to use hyperspectral UAV 

images acquired over several years to classify the highly diverse Atlantic Forest. 

Improvements should be applied regarding the number of samples per class and the 

seasonality for data acquisition. For some species, finding a higher number of tree samples is 

quite challenging, such as for Aspidosperma polyneuron which only had three individual 

samples identified in the field and was removed from the classification experiments.  

 

6.1 CONTRIBUTIONS AND FUTURE WORKS RECOMMENDATION 

As final remarks of this doctoral dissertation, it is highlighted the use of temporal 

information for tree species identification. Despite the images were not acquired in different 

seasons, it was possible to improve the identification of at least three tree species. The use of 
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an innovative lightweight hyperspectral sensor acquiring information from the VIS to the NIR 

over a small fragment of the Brazilian Atlantic forest in one of the novelties of this research. 

The multitemporal data analysis was a very challenging task because it involved not only the 

data acquisition, but the understanding of how to process and analyze all data together as well 

as the comprehension of forest components and behavior over the years. Another point to be 

reminded is the use of an area still not well-developed with similar tree heights surrounded by 

crops. Moreover, it was a protected area inside an ecological station, being required 

authorization from the environmental agencies to collect the data. It is worthy of mention the 

need for suitable forest management even when protected by laws. Therefore, the reported 

results are of great importance to decision-makers and can be used as key information to 

monitor this fragment. 

Bearing the recommendations, there is the use of a higher number of samples and 

tree species. Despite being a small fragment, a higher number of samples per tree species and 

the use of a higher number of classes can improve the monitoring task of this forest. The lack 

of samples could affect the classification results because of the unbalanced number of 

samples. Image acquisition in different seasons is another recommendation. Images acquired 

during Spring, Summer or Autumn can show higher discrepancies in the ITCs because of the 

different aspects of the soil moisture, weather and pigment content in each ITC. The use of a 

higher number of tree characteristics in different seasons could improve not only the tree 

species identification but also follow its evolution, consequently providing information to 

monitor the degree of forest restoration and conservation. 

The employment of recent deep learning approaches is encouraged. They are an 

emergent approach from the machine learning field being the state of the art of the 

classification methods in Remote Sensing. When using deep learning approaches, increasing 

the number of samples will be of higher importance, since the application of these algorithms 

requires a larger number of samples to properly model the classifiers. In the case of our study 

area it is possible to identify the Syagrus romanzoffiana because, during fieldworks and image 

interpretation, hundreds of samples were recognized. Nevertheless, the use of different 

machine learning algorithms is also suggested such as the SVM and the Multilayer 

perceptron. 

Considering the assessed features, there is the recommendation to apply different 

criteria to calculate the features importance and their application in classification experiments. 

Regarding the textural features, there is the use of different window sizes, the use of non-
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normalized pixel values, the use of different spatial resolution imagery and the use of other 

textural features not used in this doctoral dissertation. Regarding the vegetation indexes, 

different vegetation indexes assessment is encouraged. Hence, there is a recommendation to 

evaluate multispectral images in the multitemporal form. 

Finally, as a final recommendation, there is the application of the developed 

methodology in well-developed areas or even in different forest areas, such as the remaining 

types of Atlantic Forest, the Amazon forest or the Northern forests. 
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APPENDIX A – WILCOXON‐MANN‐WHITNEY RESULTS 

From the spectral response of each tree species recognized in the field, the mean 

reflectance factor spectra were obtained as well as the mean normalized spectra. In sequence, 

the spectral differences between-species (inter-classes) were calculated and the Wilcoxon-

Mann-Whitney test was applied. Tables 1 to 4 show the p-value of the Wilcoxon-Mann-

Whitney test to each pairwise combination and spectral band considering the mean reflectance 

factor and the mean normalized reflectance factor. The test was applied with a confidence 

level of 5% (α = 5%) indicating that when the p-value is lower than 0.05 the null hypothesis is 

rejected, i.e., it can be inferred that there is no spectral difference between the pairwise tested. 
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Table 1 - P-values of the Wilcoxon-Mann-Whitney test applied to spectral bands 1 to 13 in each pairwise combination when using the mean reflectance 
spectra. Shaded values represent the one where the test was rejected. 

Pairwise 
combination 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

AM - CA 0.007 0.007 0.057 0.526 0.591 0.464 0.354 0.157 0.045 0.036 0.306 0.036 0.022 

AM - CO 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 

AM - GA 0.009 0.006 0.007 0.009 0.014 0.026 0.038 0.045 0.026 0.026 0.141 0.089 0.089 

AM - GR 0.138 0.104 0.056 0.056 0.056 0.040 0.056 0.056 0.077 0.040 0.138 0.358 0.358 

AM - GT 0.028 0.020 0.028 0.040 0.040 0.028 0.020 0.020 0.020 0.020 0.028 0.028 0.028 

AM - IN 0.003 0.002 0.002 0.004 0.003 0.002 0.004 0.003 0.004 0.004 0.015 0.005 0.007 

AM - JA 0.001 0.001 0.002 0.004 0.005 0.010 0.012 0.012 0.008 0.008 0.015 0.015 0.008 

AM - JE 0.108 0.180 0.108 0.108 0.166 0.180 0.166 0.262 0.322 0.367 0.322 0.391 0.582 

AM - PE 0.933 0.933 0.554 0.554 0.272 0.205 0.272 0.272 0.272 0.353 0.554 0.933 0.800 

AM - SU 0.057 0.045 0.036 0.045 0.036 0.107 0.157 0.188 0.130 0.223 0.157 0.262 0.354 

CA - CO 0.127 0.099 0.019 0.006 0.002 0.005 0.009 0.019 0.022 0.026 0.011 0.026 0.075 

CA - GA 0.961 0.807 0.188 0.088 0.088 0.188 0.188 0.223 0.526 0.591 0.354 0.961 0.807 

CA - GR 0.637 0.395 0.777 0.395 0.299 0.395 0.508 0.508 0.925 0.925 0.508 0.777 0.777 

CA - GT 0.637 0.299 0.219 0.219 0.219 0.108 0.073 0.047 0.073 0.073 0.047 0.047 0.073 

CA - IN 0.452 0.118 0.043 0.018 0.009 0.007 0.009 0.009 0.013 0.018 0.024 0.043 0.093 

CA - JA 0.415 0.174 0.085 0.046 0.046 0.046 0.057 0.070 0.124 0.103 0.057 0.124 0.174 

CA - JE 0.001 0.002 0.006 0.014 0.064 0.050 0.050 0.043 0.072 0.072 0.103 0.064 0.056 

CA - PE 0.023 0.040 0.494 1.000 0.649 0.494 0.649 1.000 1.000 0.649 0.362 0.172 0.040 

CA - SU 0.201 0.307 0.798 0.201 0.125 0.307 0.609 1.000 0.702 0.609 0.702 0.609 0.307 

CO - GA 0.114 0.139 0.126 0.083 0.067 0.075 0.075 0.093 0.126 0.167 0.022 0.083 0.103 

CO - GR 0.395 0.347 0.347 0.347 0.303 0.347 0.347 0.303 0.303 0.347 0.347 0.347 0.395 

CO - GT 0.263 0.447 0.227 0.165 0.165 0.347 0.561 0.687 0.823 0.893 0.754 0.754 0.823 

CO - IN 0.308 0.432 0.367 0.432 0.398 0.662 0.793 0.930 0.977 0.838 0.308 0.580 0.432 

CO - JA 0.424 0.452 0.173 0.100 0.110 0.132 0.173 0.204 0.301 0.371 0.158 0.279 0.347 

CO - JE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
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Continuation

Pairwise 
combination 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

CO - PE 0.020 0.020 0.026 0.044 0.072 0.112 0.112 0.138 0.112 0.138 0.015 0.026 0.020 

CO - SU 0.182 0.182 0.253 0.374 0.341 0.204 0.204 0.127 0.144 0.127 0.374 0.127 0.099 

GA - GR 0.944 0.832 0.944 0.944 0.944 0.944 0.944 0.944 0.724 0.944 0.944 0.944 0.944 

GA - GT 0.832 0.832 0.944 0.944 0.944 0.724 0.525 0.289 0.437 0.289 0.077 0.179 0.179 

GA - IN 0.450 0.230 0.267 0.307 0.307 0.143 0.168 0.143 0.120 0.168 0.083 0.120 0.230 

GA - JA 0.379 0.307 0.550 0.860 0.860 0.699 0.597 0.699 0.550 0.460 0.193 0.307 0.275 

GA - JE 0.001 0.001 0.000 0.000 0.001 0.001 0.002 0.006 0.011 0.011 0.037 0.029 0.041 

GA - PE 0.035 0.108 0.151 0.205 0.272 0.554 0.554 0.554 0.673 0.673 0.035 0.272 0.108 

GA - SU 0.407 0.464 0.807 0.884 0.961 0.733 0.733 0.661 0.733 0.464 0.961 0.807 0.591 

GR - GT 0.665 0.665 0.665 0.665 0.885 0.665 0.665 0.471 0.471 0.471 0.665 0.471 0.471 

GR - IN 0.350 0.270 0.270 0.270 0.350 0.270 0.203 0.203 0.203 0.203 0.552 0.270 0.350 

GR - JA 0.396 0.396 0.648 0.744 0.845 0.744 0.744 0.744 0.557 0.648 0.744 0.557 0.473 

GR - JE 0.022 0.040 0.018 0.018 0.027 0.040 0.069 0.081 0.096 0.096 0.081 0.131 0.261 

GR - PE 0.216 0.216 0.377 0.596 0.596 0.860 0.860 0.860 0.860 0.860 0.216 0.377 0.377 

GR - SU 0.508 0.508 0.925 0.925 0.925 0.925 0.637 0.395 0.508 0.395 0.925 0.777 0.637 

GT - IN 0.671 0.671 0.350 0.203 0.270 0.552 0.671 0.799 0.932 0.932 0.552 0.445 0.350 

GT - JA 0.744 0.648 0.845 0.744 0.948 0.948 0.845 0.744 0.557 0.328 0.648 0.648 0.744 

GT - JE 0.008 0.010 0.008 0.012 0.012 0.015 0.012 0.012 0.012 0.012 0.018 0.012 0.018 

GT - PE 0.112 0.112 0.112 0.377 0.377 0.377 0.377 0.216 0.216 0.216 0.052 0.052 0.052 

GT - SU 0.395 0.508 0.777 0.925 0.925 0.508 0.508 0.395 0.299 0.219 0.508 0.299 0.219 

IN - JA 0.967 0.967 0.592 0.386 0.342 0.265 0.342 0.302 0.342 0.483 0.967 0.967 0.901 

IN - JE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.002 0.007 

IN - PE 0.019 0.019 0.032 0.083 0.126 0.053 0.083 0.053 0.053 0.053 0.019 0.032 0.032 

IN - SU 0.224 0.183 0.385 0.603 0.685 0.272 0.183 0.183 0.183 0.148 0.385 0.183 0.183 

JA - JE 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 

JA - PE 0.029 0.029 0.087 0.161 0.276 0.276 0.276 0.213 0.213 0.276 0.029 0.043 0.029 

 



100 
 

 

Continuation

Pairwise 
combination 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

JA - SU 0.239 0.277 0.587 1.000 1.000 0.587 0.469 0.469 0.415 0.319 0.587 0.277 0.205 

JE - PE 0.438 0.338 0.157 0.075 0.110 0.091 0.110 0.110 0.218 0.294 0.964 0.964 0.964 

JE - SU 0.014 0.016 0.004 0.003 0.004 0.014 0.022 0.043 0.064 0.092 0.029 0.128 0.257 

PE - SU 0.255 0.362 0.255 0.255 0.494 1.000 1.000 1.000 1.000 1.000 0.172 0.362 0.362 

 

Table 2 - P-values of the Wilcoxon-Mann-Whitney test applied to spectral bands 14 to 25 in each pairwise combination when using the mean reflectance 
factor spectra. Shaded values represent the one where the test was rejected. 

Pairwise 
combination 

B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 

AM - CA 0.036 0.071 0.961 0.591 0.354 0.306 0.526 0.661 0.464 0.464 0.526 0.354 

AM - CO 0.002 0.002 0.002 0.005 0.008 0.008 0.008 0.011 0.022 0.022 0.026 0.042 

AM - GA 0.064 0.121 0.141 0.345 0.385 0.473 0.521 0.473 0.571 0.678 0.791 0.850 

AM - GR 0.289 0.289 0.229 0.229 0.358 0.358 0.437 0.289 0.358 0.358 0.358 0.437 

AM - GT 0.028 0.028 0.040 0.104 0.229 0.437 0.621 0.832 0.724 0.724 0.724 0.944 

AM - IN 0.011 0.024 0.015 0.083 0.230 0.351 0.625 0.625 0.824 0.894 0.965 0.965 

AM - JA 0.008 0.022 0.073 0.245 0.379 0.418 0.550 0.504 0.504 0.550 0.699 0.916 

AM - JE 0.947 0.912 0.582 0.495 0.775 0.843 0.281 0.153 0.045 0.029 0.062 0.068 

AM - PE 0.447 0.673 0.933 0.800 0.205 0.023 0.014 0.014 0.014 0.014 0.014 0.014 

AM - SU 0.262 0.262 0.188 0.130 0.057 0.036 0.022 0.022 0.022 0.022 0.017 0.017 

CA - CO 0.086 0.019 0.005 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 

CA - GA 0.807 0.733 0.188 0.071 0.028 0.071 0.107 0.130 0.130 0.157 0.130 0.130 

CA - GR 0.777 0.777 0.395 0.219 0.219 0.219 0.156 0.219 0.219 0.156 0.219 0.156 

CA - GT 0.219 0.047 0.030 0.030 0.047 0.156 0.219 0.299 0.219 0.156 0.219 0.156 

CA - IN 0.224 0.093 0.024 0.024 0.043 0.118 0.183 0.183 0.272 0.325 0.325 0.325 

CA - JA 0.147 0.124 0.070 0.046 0.046 0.103 0.057 0.085 0.070 0.057 0.070 0.037 

CA - JE 0.092 0.257 0.678 0.175 0.143 0.455 0.978 0.455 0.175 0.194 0.175 0.489 

CA - PE 0.040 0.040 0.820 1.000 0.649 0.172 0.040 0.023 0.023 0.023 0.040 0.040 
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Continuation

Pairwise 
combination 

B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 

CA - SU 0.443 0.898 0.160 0.055 0.022 0.011 0.011 0.011 0.011 0.011 0.011 0.007 

CO - GA 0.093 0.083 0.075 0.037 0.013 0.007 0.006 0.006 0.006 0.005 0.004 0.005 

CO - GR 0.395 0.347 0.303 0.303 0.347 0.347 0.395 0.447 0.447 0.447 0.447 0.447 

CO - GT 0.754 0.687 0.622 0.347 0.194 0.098 0.028 0.035 0.035 0.035 0.054 0.066 

CO - IN 0.398 0.336 0.398 0.256 0.190 0.086 0.034 0.025 0.013 0.013 0.013 0.013 

CO - JA 0.371 0.221 0.100 0.039 0.010 0.003 0.003 0.003 0.004 0.003 0.006 0.008 

CO - JE 0.001 0.001 0.002 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CO - PE 0.020 0.015 0.020 0.015 0.011 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

CO - SU 0.127 0.253 0.446 0.657 0.849 0.409 0.162 0.099 0.086 0.075 0.066 0.086 

GA - GR 0.944 0.944 0.944 0.944 0.944 0.832 0.724 0.724 0.724 0.525 0.437 0.437 

GA - GT 0.229 0.229 0.289 0.437 0.832 0.944 0.724 0.621 0.944 0.944 0.944 0.944 

GA - IN 0.307 0.505 0.351 0.399 0.505 0.824 0.965 0.965 0.824 0.894 0.965 0.689 

GA - JA 0.218 0.504 0.805 0.972 0.916 0.916 0.860 0.751 0.860 0.972 0.860 0.805 

GA - JE 0.099 0.108 0.244 0.524 0.441 0.180 0.024 0.003 0.002 0.003 0.003 0.007 

GA - PE 0.076 0.076 0.151 0.205 0.052 0.014 0.014 0.014 0.014 0.014 0.014 0.014 

GA - SU 0.661 0.884 0.961 0.306 0.157 0.017 0.013 0.013 0.010 0.010 0.010 0.010 

GR - GT 0.471 0.471 0.471 0.665 0.665 0.885 0.665 0.471 0.885 0.885 0.885 0.885 

GR - IN 0.445 0.445 0.552 0.671 0.932 0.799 0.552 0.552 0.552 0.445 0.350 0.350 

GR - JA 0.473 0.557 0.845 0.948 0.948 0.744 0.648 0.557 0.744 0.744 0.648 0.744 

GR - JE 0.373 0.416 0.373 0.510 0.510 0.201 0.069 0.040 0.018 0.018 0.010 0.027 

GR - PE 0.216 0.377 0.377 0.112 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 

GR - SU 0.925 0.925 0.925 0.925 0.637 0.395 0.395 0.395 0.299 0.395 0.299 0.299 

GT - IN 0.445 0.552 0.932 0.932 0.932 0.799 0.799 0.932 0.932 0.799 0.799 0.671 

GT - JA 0.744 0.744 0.648 0.648 0.744 0.948 0.948 0.648 0.648 0.845 0.948 0.744 

GT - JE 0.040 0.048 0.048 0.201 0.261 0.230 0.112 0.081 0.018 0.018 0.022 0.040 
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Continuation

Pairwise 
combination 

B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 

GT - PE 0.052 0.052 0.112 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 

GT - SU 0.299 0.395 0.508 0.925 0.395 0.108 0.073 0.073 0.073 0.073 0.073 0.073 

IN - JA 0.592 0.837 0.592 0.386 0.536 0.710 0.773 0.967 0.710 0.710 0.592 0.483 

IN - JE 0.014 0.027 0.045 0.109 0.213 0.134 0.031 0.027 0.016 0.016 0.024 0.045 

IN - PE 0.032 0.032 0.053 0.083 0.032 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

IN - SU 0.224 0.272 0.603 0.862 0.385 0.073 0.032 0.018 0.013 0.013 0.013 0.024 

JA - JE 0.003 0.016 0.143 0.470 0.421 0.239 0.010 0.002 0.000 0.000 0.000 0.002 

JA - PE 0.029 0.029 0.087 0.161 0.029 0.013 0.013 0.013 0.013 0.013 0.013 0.013 

JA - SU 0.277 0.415 1.000 0.319 0.124 0.030 0.015 0.015 0.015 0.015 0.015 0.015 

JE - PE 0.494 0.494 0.616 0.254 0.061 0.032 0.032 0.032 0.040 0.050 0.050 0.050 

JE - SU 0.306 0.361 0.257 0.143 0.025 0.005 0.001 0.001 0.000 0.000 0.000 0.000 

PE - SU 0.172 0.255 0.362 0.111 0.040 0.023 0.023 0.023 0.023 0.023 0.023 0.023 

 

Table 3 - P-values of the Wilcoxon-Mann-Whitney test applied to spectral bands 1 to 13 in each pairwise combination when using the normalized mean 
reflectance spectra. Shaded values represent the one where the test was rejected. 

Pairwise 
combination 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

AM - CA 0.005 0.005 0.005 0.088 0.157 0.188 0.107 0.071 0.057 0.036 0.045 0.022 0.007 

AM - CO 0.861 0.900 0.782 0.238 0.139 0.407 0.380 0.200 0.200 0.183 0.980 0.900 0.280 

AM - GA 0.186 0.104 0.054 0.031 0.038 0.121 0.241 0.241 0.212 0.186 0.970 0.623 0.473 

AM - GR 0.621 0.621 0.832 0.944 0.621 0.944 0.944 0.525 0.944 0.944 0.358 0.437 0.832 

AM - GT 0.358 0.179 0.289 0.358 0.229 0.138 0.056 0.040 0.028 0.040 0.009 0.020 0.028 

AM - IN 0.083 0.030 0.011 0.004 0.004 0.005 0.011 0.004 0.005 0.009 0.046 0.046 0.024 

AM - JA 0.027 0.010 0.032 0.032 0.032 0.053 0.045 0.032 0.032 0.027 0.130 0.062 0.012 

AM - JE 0.947 0.878 0.878 0.878 0.644 0.708 0.775 0.441 0.322 0.244 0.344 0.194 0.068 
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Continuation

Pairwise 
combination 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

AM - PE 0.023 0.035 0.014 0.014 0.014 0.014 0.023 0.023 0.023 0.023 0.023 0.035 0.076 

AM - SU 0.130 0.130 0.130 0.223 0.306 0.157 0.157 0.223 0.223 0.223 0.157 0.157 0.223 

CA - CO 0.002 0.002 0.002 0.099 0.703 0.485 0.310 0.525 0.310 0.228 0.049 0.009 0.086 

CA - GA 0.057 0.107 0.306 0.961 0.354 0.961 0.961 0.733 0.464 0.354 0.130 0.057 0.188 

CA - GR 0.018 0.011 0.018 0.073 0.108 0.073 0.030 0.030 0.030 0.011 0.030 0.018 0.018 

CA - GT 0.108 0.108 0.156 0.219 0.637 0.299 0.219 0.108 0.156 0.108 0.156 0.925 0.777 

CA - IN 0.148 0.183 0.954 0.073 0.009 0.024 0.056 0.018 0.118 0.148 0.862 0.772 0.862 

CA - JA 0.037 0.174 0.205 0.928 0.526 0.856 0.928 0.928 1.000 0.928 0.365 0.277 0.365 

CA - JE 0.001 0.001 0.001 0.002 0.006 0.012 0.010 0.019 0.025 0.025 0.064 0.033 0.064 

CA - PE 0.820 1.000 0.068 0.023 0.023 0.023 0.023 0.068 0.068 0.068 0.172 0.362 1.000 

CA - SU 0.003 0.005 0.005 0.005 0.011 0.015 0.015 0.022 0.041 0.030 0.030 0.011 0.030 

CO - GA 0.060 0.060 0.047 0.075 0.167 0.353 0.380 0.670 0.633 0.782 0.436 0.436 0.861 

CO - GR 0.447 0.303 0.502 0.303 0.395 0.303 0.395 0.347 0.227 0.347 0.447 0.303 0.263 

CO - GT 0.140 0.140 0.227 0.687 0.447 0.263 0.140 0.117 0.098 0.066 0.011 0.014 0.140 

CO - IN 0.013 0.011 0.008 0.003 0.004 0.004 0.011 0.008 0.010 0.034 0.025 0.025 0.137 

CO - JA 0.000 0.001 0.013 0.082 0.173 0.221 0.240 0.452 0.397 0.397 0.121 0.060 0.221 

CO - JE 0.891 0.552 0.369 0.110 0.046 0.241 0.266 0.185 0.337 0.455 0.253 0.148 0.749 

CO - PE 0.008 0.015 0.008 0.011 0.008 0.008 0.011 0.026 0.034 0.044 0.034 0.020 0.244 

CO - SU 0.042 0.036 0.016 0.011 0.006 0.009 0.009 0.016 0.031 0.026 0.042 0.031 0.031 

GA - GR 0.077 0.040 0.040 0.077 0.179 0.179 0.229 0.437 0.437 0.437 0.437 0.289 0.437 

GA - GT 0.944 0.944 0.525 0.358 0.525 0.832 0.437 0.229 0.179 0.104 0.104 0.138 0.179 

GA - IN 0.689 0.450 0.230 0.100 0.143 0.056 0.120 0.037 0.083 0.143 0.100 0.198 0.267 

GA - JA 0.504 0.597 0.860 0.972 0.972 0.751 0.647 0.647 0.597 0.597 0.218 0.245 0.307 

GA - JE 0.024 0.011 0.003 0.003 0.013 0.033 0.108 0.226 0.468 0.644 0.301 0.281 0.582 

GA - PE 0.151 0.108 0.035 0.035 0.023 0.023 0.023 0.076 0.151 0.151 0.052 0.108 0.272 
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Continuation

Pairwise 
combination 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

GA - SU 0.010 0.013 0.004 0.004 0.005 0.007 0.013 0.022 0.045 0.036 0.045 0.036 0.057 

GR - GT 0.061 0.030 0.194 0.194 0.112 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 

GR - IN 0.051 0.034 0.034 0.022 0.014 0.014 0.014 0.009 0.009 0.014 0.022 0.034 0.034 

GR - JA 0.011 0.005 0.031 0.078 0.103 0.058 0.058 0.078 0.022 0.043 0.016 0.011 0.022 

GR - JE 0.727 0.847 0.786 0.670 0.510 0.969 0.847 0.908 0.561 0.561 0.040 0.027 0.069 

GR - PE 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.112 

GR - SU 0.637 0.637 0.395 0.219 0.108 0.219 0.219 0.299 0.299 0.299 0.508 0.395 0.219 

GT - IN 0.552 0.445 0.149 0.075 0.051 0.203 0.350 0.552 0.799 0.932 0.671 0.552 0.671 

GT - JA 0.215 0.473 0.744 0.557 0.845 0.845 0.396 0.170 0.103 0.133 0.078 0.215 0.215 

GT - JE 0.027 0.018 0.015 0.012 0.018 0.010 0.010 0.006 0.015 0.015 0.012 0.040 0.048 

GT - PE 0.112 0.112 0.052 0.052 0.052 0.052 0.052 0.216 0.377 0.377 0.596 0.596 0.860 

GT - SU 0.047 0.030 0.011 0.018 0.030 0.030 0.011 0.030 0.073 0.030 0.018 0.018 0.073 

IN - JA 0.967 0.967 0.342 0.091 0.076 0.063 0.127 0.052 0.076 0.107 0.386 0.483 0.773 

IN - JE 0.012 0.003 0.002 0.000 0.000 0.001 0.001 0.001 0.002 0.004 0.098 0.088 0.162 

IN - PE 0.358 0.475 0.126 0.126 0.083 0.126 0.083 0.185 0.262 0.262 0.185 0.185 0.919 

IN - SU 0.013 0.007 0.003 0.003 0.002 0.002 0.003 0.005 0.009 0.013 0.018 0.018 0.043 

JA - JE 0.001 0.000 0.000 0.001 0.004 0.004 0.005 0.006 0.027 0.024 0.312 0.193 0.103 

JA - PE 0.161 0.350 0.029 0.029 0.029 0.029 0.029 0.043 0.062 0.120 0.043 0.062 0.876 

JA - SU 0.004 0.002 0.004 0.003 0.004 0.005 0.009 0.019 0.019 0.019 0.030 0.024 0.019 

JE - PE 0.012 0.016 0.009 0.009 0.009 0.009 0.009 0.009 0.016 0.016 0.020 0.025 0.338 

JE - SU 0.033 0.056 0.050 0.064 0.056 0.043 0.038 0.043 0.043 0.043 0.029 0.019 0.033 

PE - SU 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.040 0.040 0.040 0.040 0.111 
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Table 4 - P-values of the Wilcoxon-Mann-Whitney test applied to spectral bands 14 to 25 in each pairwise combination when using the normalized mean 
reflectance factor spectra. Shaded values represent the one where the test was rejected. 

Pairwise 
combination 

B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 

AM - CA 0.010 0.028 0.188 0.961 0.354 0.013 0.010 0.188 0.188 0.088 0.130 0.088 

AM - CO 0.498 0.238 0.530 0.633 0.436 0.744 0.861 0.940 0.530 0.353 0.564 0.139 

AM - GA 0.473 0.308 0.521 0.473 0.734 0.678 0.385 0.571 0.521 0.308 0.345 0.064 

AM - GR 0.724 0.832 0.832 0.724 0.525 0.944 0.289 0.179 0.832 0.621 0.621 0.437 

AM - GT 0.028 0.028 0.028 0.077 0.229 0.621 0.013 0.006 0.056 0.056 0.289 0.138 

AM - IN 0.037 0.037 0.030 0.046 0.083 0.756 0.307 0.083 0.019 0.009 0.019 0.003 

AM - JA 0.012 0.053 0.245 0.460 0.972 0.038 0.004 0.045 0.170 0.098 0.218 0.085 

AM - JE 0.010 0.007 0.000 0.000 0.000 0.000 0.019 0.468 0.002 0.003 0.017 0.041 

AM - PE 0.076 0.076 0.023 0.023 0.052 0.800 0.014 0.014 0.023 0.023 0.052 0.052 

AM - SU 0.262 0.223 0.107 0.088 0.464 0.807 0.130 0.130 0.188 0.188 0.157 0.306 

CA - CO 0.036 0.162 0.611 0.657 0.066 0.008 0.004 0.204 0.310 0.204 0.657 0.374 

CA - GA 0.157 0.262 0.884 0.591 0.262 0.107 0.157 0.661 0.733 0.661 0.807 0.884 

CA - GR 0.018 0.018 0.508 0.395 0.073 0.030 0.011 0.011 0.073 0.073 0.219 0.047 

CA - GT 0.925 0.395 0.047 0.011 0.011 0.108 0.156 0.073 0.156 0.777 0.219 0.925 

CA - IN 0.524 0.954 0.073 0.002 0.002 0.009 0.118 0.325 0.056 0.056 0.032 0.018 

CA - JA 0.277 0.319 0.856 0.239 0.070 0.365 0.717 0.319 1.000 0.786 0.928 0.651 

CA - JE 0.175 0.847 0.002 0.000 0.000 0.000 0.000 0.422 0.081 0.128 0.103 0.306 

CA - PE 1.000 0.820 0.040 0.023 0.023 0.023 0.068 0.040 0.023 0.068 0.068 0.362 

CA - SU 0.030 0.030 0.030 0.055 0.898 0.030 0.007 0.030 0.022 0.022 0.030 0.041 

CO - GA 0.782 0.861 0.821 0.707 0.980 0.633 0.328 0.530 0.633 0.467 0.328 0.530 

CO - GR 0.303 0.263 0.823 0.964 0.754 0.754 0.263 0.347 0.561 0.622 0.502 0.395 

CO - GT 0.117 0.054 0.022 0.035 0.117 0.893 0.005 0.003 0.140 0.165 0.263 0.347 

CO - IN 0.109 0.232 0.039 0.025 0.051 0.308 0.154 0.076 0.008 0.006 0.013 0.004 

CO - JA 0.132 0.371 0.424 0.707 0.814 0.027 0.000 0.021 0.301 0.347 0.347 0.638 

CO - JE 0.148 0.075 0.000 0.000 0.000 0.000 0.011 0.307 0.002 0.002 0.012 0.726 
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Continuation

Pairwise 
combination 

B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 

CO - PE 0.244 0.169 0.026 0.011 0.044 0.672 0.008 0.008 0.008 0.015 0.072 0.138 

CO - SU 0.031 0.026 0.016 0.008 0.112 0.751 0.031 0.016 0.013 0.016 0.013 0.016 

GA - GR 0.229 0.358 0.525 0.944 0.621 0.437 0.289 0.229 0.525 0.437 0.229 0.289 

GA - GT 0.289 0.138 0.056 0.179 0.229 0.944 0.056 0.009 0.179 0.437 0.832 0.621 

GA - IN 0.307 0.307 0.100 0.083 0.143 0.399 0.689 0.198 0.056 0.069 0.120 0.030 

GA - JA 0.218 0.379 0.972 0.972 0.916 0.218 0.170 0.113 0.699 0.805 0.972 0.972 

GA - JE 0.180 0.166 0.004 0.001 0.000 0.000 0.002 0.912 0.026 0.068 0.344 0.843 

GA - PE 0.205 0.205 0.052 0.035 0.108 0.554 0.035 0.014 0.035 0.052 0.205 0.272 

GA - SU 0.057 0.045 0.022 0.028 0.306 0.464 0.036 0.022 0.028 0.028 0.017 0.022 

GR - GT 0.030 0.030 0.030 0.030 0.312 0.471 0.030 0.030 0.030 0.061 0.030 0.030 

GR - IN 0.034 0.051 0.022 0.014 0.552 0.932 0.107 0.014 0.009 0.009 0.009 0.009 

GR - JA 0.022 0.043 0.215 0.948 0.396 0.103 0.005 0.016 0.103 0.215 0.215 0.215 

GR - JE 0.022 0.010 0.004 0.002 0.033 0.081 0.416 0.027 0.008 0.006 0.012 0.112 

GR - PE 0.112 0.112 0.052 0.052 0.377 0.860 0.052 0.052 0.052 0.052 0.052 0.216 

GR - SU 0.219 0.219 0.108 0.108 0.219 0.925 0.637 0.299 0.156 0.219 0.156 0.156 

GT - IN 0.552 0.552 0.350 0.270 0.799 0.270 0.107 0.075 0.445 0.203 0.107 0.034 

GT - JA 0.215 0.215 0.078 0.058 0.043 0.473 0.043 0.043 0.078 0.396 0.396 0.557 

GT - JE 0.201 0.230 0.727 0.027 0.002 0.002 0.002 0.002 0.561 0.261 0.615 0.261 

GT - PE 0.860 0.596 0.596 0.112 0.216 0.596 0.860 0.052 0.052 0.052 0.377 0.596 

GT - SU 0.073 0.073 0.030 0.018 0.156 0.925 0.018 0.011 0.030 0.030 0.073 0.073 

IN - JA 0.901 0.901 0.091 0.019 0.023 0.023 0.063 0.967 0.063 0.063 0.063 0.052 

IN - JE 0.666 0.819 0.109 0.002 0.000 0.000 0.001 0.079 0.939 0.703 0.232 0.003 

IN - PE 0.760 0.760 0.083 0.032 0.262 0.919 0.053 0.032 0.053 0.126 0.475 0.919 

IN - SU 0.043 0.018 0.009 0.009 0.056 0.772 0.032 0.009 0.005 0.005 0.007 0.005 

JA - JE 0.522 0.496 0.004 0.000 0.000 0.000 0.000 0.034 0.041 0.041 0.112 0.853 

JA - PE 0.876 0.640 0.062 0.020 0.029 0.087 0.029 0.020 0.043 0.043 0.161 0.276 

JA - SU 0.015 0.015 0.019 0.030 0.651 0.103 0.003 0.005 0.019 0.019 0.019 0.019 

JE - PE 0.681 0.749 0.294 0.494 0.091 0.009 0.007 0.007 0.040 0.061 0.254 0.157 

JE - SU 0.016 0.005 0.001 0.000 0.000 0.002 0.115 0.009 0.001 0.001 0.002 0.010 

PE - SU 0.172 0.068 0.040 0.023 0.111 1.000 0.023 0.023 0.023 0.023 0.040 0.040 
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APPENDIX B – FEATURES IMPORTANCE AND CONFUSION MATRIXES WHEN 

USING DIFFERENT FEATURES COMBINATION 

Table 1 to Table 33 show the features importance and its confusion matrix for all 

classification tests performed in Section 5.5. The feature importance of each test was scaled 

from 0 to 1, where 0 represents the least important feature, and 1 represents the most 

important feature. In the Tables, each variable represents: 

B1: spectral band centered at 506.22 nm 

B2: spectral band centered at 519.94 nm 

B3: spectral band centered at 535.09 nm 

B4: spectral band centered at 550.39 nm 

B5: spectral band centered at 565.10 nm 

B6: spectral band centered at 580.16 nm 

B7: spectral band centered at 591.90 nm 

B8: spectral band centered at 609.00 nm 

B9: spectral band centered at 620.22 nm 

B10: spectral band centered at 628.73 nm 

B11: spectral band centered at 650.96 nm 

B12: spectral band centered at 659.72 nm 

B13: spectral band centered at 669.75 nm 

B14: spectral band centered at 679.84 nm 

B15: spectral band centered at 690.28 nm 

B16: spectral band centered at 700.28 nm 

B17: spectral band centered at 710.06 nm 

B18: spectral band centered at 720.17 nm 

B19: spectral band centered at 729.57 nm 

B20: spectral band centered at 740.42 nm 

B21: spectral band centered at 750.16 nm 

B22: spectral band centered at 769.89 nm 

B23: spectral band centered at 780.49 nm 

B24: spectral band centered at 790.30 nm 

B25: spectral band centered at 819.66 nm 

MNo: mean normalized spectra 

ASM: angular second moment 

CON: contrast 

COR: correlation 

DIS: dissimilarity 

HOM: homogeneity 

NDVI: normalized difference vegetation 

index 

PRI: photochemical reflectance index 

PSRI: plant senescence reflectance index 

REP: red-edge position 

SIPI: structure insensitive pigment 

reflectance index 

avg: mean height 

std: standard deviation of height 

kur: kurtosis of height 

ske: skewness of height 

p25, p50, p75, p90: 25th, 50th, 75th, and 90th 

percentile of height 
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Table 1 - Feature importance when using all vegetation indexes, spectral, textural, and structural features. 
 ASM COM COR DIS HOM Mno 

 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 

B1 0.890 0.716 0.695 0.810 0.752 0.737 0.823 0.715 0.795 0.752 0.750 0.735 0.752 0.675 0.558 0.715 0.701 0.697 

B2 0.860 0.727 0.852 0.776 0.757 0.671 0.791 0.741 0.714 0.777 0.705 0.675 0.801 0.974 0.550 0.697 0.620 0.726 

B3 0.909 0.829 0.636 0.805 0.800 0.617 0.887 0.728 0.479 0.738 0.654 0.646 0.773 0.690 0.768 0.759 0.662 0.665 

B4 0.882 0.879 0.574 0.759 0.718 0.626 0.775 0.789 0.599 0.834 0.706 0.734 0.854 0.678 0.803 0.792 0.667 0.664 

B5 0.888 0.639 0.903 0.804 0.741 0.690 0.882 0.714 0.681 0.821 0.776 0.584 0.824 0.758 0.000 0.758 0.655 0.679 

B6 0.938 0.763 0.747 0.814 0.687 0.733 0.807 0.785 0.665 0.796 0.670 0.669 0.696 0.798 0.414 0.731 0.643 0.682 

B7 0.925 0.770 0.829 0.824 0.817 0.620 0.804 0.749 0.674 0.758 0.661 0.640 0.793 0.813 0.829 0.774 0.734 0.616 

B8 0.841 0.728 0.587 0.803 0.741 0.671 0.811 0.665 0.626 0.816 0.727 0.665 0.806 0.833 0.768 0.765 0.683 0.784 

B9 0.866 0.835 0.648 0.808 0.749 0.708 0.809 0.736 0.627 0.797 0.797 0.698 0.671 0.673 0.676 0.758 0.672 0.727 

B10 0.839 0.799 0.754 0.811 0.752 0.649 0.807 0.742 0.747 0.740 0.767 0.648 0.893 0.608 0.479 0.742 0.727 0.662 

B11 0.882 0.772 0.728 0.828 0.833 0.678 0.731 0.736 0.759 0.773 0.784 0.647 0.837 0.568 0.567 0.672 0.705 0.767 

B12 0.884 0.733 0.605 0.849 0.763 0.676 0.785 0.801 0.561 0.839 0.627 0.665 0.802 0.611 0.839 0.733 0.698 0.672 

B13 0.837 0.679 0.734 0.832 0.735 0.705 0.849 0.777 0.650 0.795 0.678 0.603 0.725 0.734 0.657 0.775 0.658 0.613 

B14 0.870 0.702 0.689 0.877 0.700 0.689 0.827 0.840 0.916 0.769 0.714 0.693 0.746 0.658 0.545 0.748 0.679 0.674 

B15 0.874 0.688 0.873 0.893 0.843 0.765 0.853 0.692 0.688 0.805 0.688 0.799 0.795 0.646 0.540 0.705 0.690 0.688 

B16 0.898 0.699 0.718 0.843 0.656 0.622 0.841 0.780 0.298 0.828 0.685 0.649 0.803 0.697 0.711 0.738 0.736 0.622 

B17 0.939 0.723 0.606 0.831 0.760 0.793 0.788 1.000 0.522 0.760 0.726 0.745 0.818 0.756 0.985 0.742 0.713 0.692 

B18 0.864 0.694 0.818 0.829 0.778 0.708 0.824 0.727 0.620 0.828 0.721 0.596 0.760 0.683 0.739 0.776 0.733 0.681 

B19 0.869 0.887 0.717 0.770 0.685 0.691 0.841 0.773 0.799 0.767 0.749 0.738 0.824 0.646 0.662 0.755 0.717 0.728 

B20 0.916 0.719 0.766 0.819 0.745 0.622 0.837 0.750 0.630 0.777 0.720 0.742 0.838 0.700 0.790 0.679 0.697 0.735 

B21 0.850 0.638 0.771 0.751 0.761 0.724 0.805 0.657 0.586 0.692 0.730 0.655 0.837 0.798 0.652 0.766 0.729 0.638 

B22 0.913 0.769 0.740 0.768 0.699 0.672 0.760 0.725 0.622 0.755 0.644 0.699 0.801 0.794 0.925 0.721 0.602 0.698 

B23 0.893 0.672 0.930 0.783 0.731 0.761 0.737 0.695 0.676 0.753 0.711 0.661 0.806 0.704 0.813 0.712 0.570 0.633 

B24 0.844 0.633 0.658 0.814 0.664 0.822 0.814 0.773 0.643 0.741 0.690 0.678 0.782 0.939 0.541 0.701 0.680 0.691 

B25 0.883 0.602 0.549 0.806 0.734 0.615 0.763 0.800 0.713 0.834 0.796 0.720 0.919 0.843 0.000 0.755 0.631 0.666 
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Continuation 

 NDVI PRI PSRI REP SIPI 

 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 

 0.727 0.719 0.651 0.634 0.601 0.725 0.774 0.668 0.694 0.656 0.738 0.660 0.631 0.663 0.692 

 avg std kur ske p25 p50 p75 p90 

 0.853 0.809 0.876 0.832 0.870 0.841 0.865 0.836 

  

Table 2 - Feature importance when using the angular second moment textural feature 
 2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 0.867 0.429 0.232 B6 0.889 0.434 0.262 B11 0.879 0.332 0.166 B16 0.885 0.304 0.238 B21 0.880 0.315 0.102 

B2 0.874 0.391 0.301 B7 0.888 0.295 0.153 B12 0.941 0.492 0.311 B17 0.765 0.129 0.187 B22 0.923 0.266 0.000 

B3 0.940 0.451 0.272 B8 0.856 0.487 0.214 B13 0.842 0.532 0.456 B18 0.801 0.391 0.210 B23 0.940 0.141 0.085 

B4 0.899 0.427 0.213 B9 0.886 0.442 0.330 B14 0.844 0.500 0.495 B19 0.951 0.429 0.168 B24 1.000 0.275 0.168 

B5 0.894 0.482 0.242 B10 0.875 0.519 0.143 B15 0.869 0.432 0.481 B20 0.938 0.330 0.140 B25 0.803 0.193 0.154 

 

Table 3 - Feature importance when using the contrast textural feature 

  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 0.852 0.761 0.339 B6 0.838 0.437 0.105 B11 1.000 0.593 0.236 B16 0.827 0.348 0.214 B21 0.484 0.452 0.462 

B2 0.917 0.558 0.352 B7 0.872 0.449 0.316 B12 0.921 0.449 0.335 B17 0.674 0.236 0.523 B22 0.334 0.361 0.074 

B3 0.878 0.582 0.240 B8 0.963 0.492 0.274 B13 0.949 0.440 0.274 B18 0.679 0.483 0.256 B23 0.479 0.325 0.000 

B4 0.841 0.699 0.227 B9 0.839 0.569 0.246 B14 0.911 0.524 0.315 B19 0.602 0.319 0.300 B24 0.522 0.308 0.308 

B5 0.839 0.587 0.292 B10 0.970 0.486 0.281 B15 0.939 0.604 0.218 B20 0.505 0.408 0.443 B25 0.488 0.407 0.203 
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Table 4 - Feature importance when using the correlation textural feature 
 2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 0.938 0.675 0.318 B6 0.934 0.610 0.393 B11 0.941 0.357 0.247 B16 0.844 0.430 0.131 B21 0.487 0.254 0.203 

B2 0.880 0.652 0.393 B7 0.938 0.561 0.270 B12 0.817 0.587 0.200 B17 0.681 0.523 0.225 B22 0.358 0.167 0.161 

B3 1.000 0.642 0.356 B8 0.907 0.472 0.171 B13 0.692 0.590 0.108 B18 0.724 0.252 0.016 B23 0.449 0.102 0.119 

B4 0.928 0.601 0.275 B9 0.942 0.528 0.095 B14 0.870 0.331 0.265 B19 0.807 0.205 0.236 B24 0.370 0.141 0.047 

B5 0.929 0.655 0.206 B10 0.777 0.396 0.144 B15 0.917 0.213 0.191 B20 0.739 0.188 0.280 B25 0.385 0.000 0.046 

 

Table 5 - Feature importance when using the dissimilarity textural feature 
 2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 0.947 0.630 0.175 B6 0.922 0.588 0.077 B11 0.961 0.596 0.266 B16 0.675 0.279 0.234 B21 0.428 0.373 0.193 

B2 0.915 0.657 0.060 B7 0.929 0.440 0.025 B12 0.887 0.432 0.325 B17 0.703 0.301 0.277 B22 0.457 0.389 0.304 

B3 0.903 0.706 0.250 B8 0.949 0.434 0.091 B13 0.873 0.517 0.074 B18 0.665 0.216 0.323 B23 0.349 0.365 0.128 

B4 0.912 0.660 0.216 B9 0.885 0.557 0.212 B14 1.000 0.412 0.216 B19 0.712 0.429 0.332 B24 0.443 0.254 0.000 

B5 0.819 0.490 0.335 B10 0.990 0.436 0.222 B15 0.992 0.302 0.136 B20 0.495 0.246 0.260 B25 0.381 0.485 0.075 

 

Table 6 - Feature importance when using the homogeneity textural feature 
 2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 0.945 0.529 0.236 B6 0.944 0.384 0.200 B11 0.802 0.344 0.292 B16 0.709 0.318 0.290 B21 0.741 0.473 0.077 

B2 1.000 0.478 0.303 B7 0.921 0.482 0.482 B12 0.849 0.485 0.395 B17 0.740 0.323 0.244 B22 0.799 0.214 0.155 

B3 0.885 0.506 0.385 B8 0.896 0.351 0.323 B13 0.825 0.360 0.304 B18 0.692 0.295 0.112 B23 0.786 0.332 0.265 

B4 0.992 0.415 0.402 B9 0.878 0.390 0.255 B14 0.755 0.489 0.285 B19 0.579 0.352 0.101 B24 0.593 0.345 0.152 

B5 0.915 0.407 0.487 B10 0.913 0.366 0.395 B15 0.805 0.405 0.364 B20 0.797 0.130 0.165 B25 0.758 0.335 0.000 
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Table 7 - Feature importance when using the mean normalized spectral features 
 2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 0.950 0.563 0.199 B6 0.918 0.465 0.000 B11 0.691 0.391 0.491 B16 0.637 0.304 0.104 B21 0.697 0.156 0.066 

B2 0.984 0.361 0.414 B7 0.928 0.377 0.111 B12 0.848 0.143 0.101 B17 0.645 0.200 0.114 B22 0.521 0.012 0.200 

B3 0.890 0.427 0.101 B8 1.000 0.615 0.104 B13 0.888 0.186 0.080 B18 0.709 0.063 0.175 B23 0.418 0.198 0.022 

B4 0.924 0.428 0.158 B9 0.946 0.382 0.202 B14 0.807 0.342 0.032 B19 0.517 0.271 0.193 B24 0.415 0.063 0.097 

B5 0.890 0.609 0.244 B10 0.948 0.256 0.300 B15 0.880 0.633 0.110 B20 0.474 0.273 0.175 B25 0.481 0.123 0.398 

 

Table 8 - Feature importance when using the vegetation indexes 

NDVI PRI PSRI REP SIPI 

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019 

1.000 0.666 0.143 0.863 0.405 0.123 0.831 0.390 0.129 0.709 0.383 0.000 0.758 0.101 0.115 

 

Table 9 - Feature importance when using the structural features 

avg std kur ske p25 p50 p75 p90 

1.000 0.869 0.632 0.805 0.422 0.340 0.219 0.000 

 

Table 10 - Feature importance when using the mean normalized spectra and the vegetation indexes 
 2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 1.000 0.408 0.224 B6 0.982 0.486 0.260 B11 0.785 0.437 0.469 B16 0.662 0.409 0.344 B21 0.683 0.309 0.324 

B2 0.999 0.550 0.451 B7 0.966 0.482 0.237 B12 0.819 0.488 0.288 B17 0.640 0.231 0.306 B22 0.654 0.178 0.013 

B3 0.863 0.503 0.105 B8 0.855 0.436 0.036 B13 0.938 0.455 0.263 B18 0.574 0.192 0.145 B23 0.697 0.288 0.341 

B4 0.818 0.586 0.273 B9 0.970 0.377 0.189 B14 0.851 0.577 0.000 B19 0.604 0.478 0.206 B24 0.482 0.157 0.315 

B5 0.952 0.532 0.280 B10 0.883 0.497 0.175 B15 0.738 0.402 0.188 B20 0.517 0.196 0.117 B25 0.703 0.122 0.287 

 NDVI PRI PSRI REP SIPI 

 0.260 0.343 0.003 0.340 0.069 0.711 0.048 0.148 0.556 0.267 0.445 0.320 0.176 0.109 0.410 
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Table 11 - Feature importance when using the mean normalized spectra, the vegetation indexes and the five most important textural features from the previous 
classifications 

 2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019  2017 2018 2019 

B1 0.923 0.751 0.335 B6 0.843 0.543 0.221 B11 0.868 0.422 0.262 B16 0.645 0.550 0.042 B21 0.777 0.580 0.105 

B2 0.706 0.753 0.299 B7 0.984 0.499 0.313 B12 0.782 0.604 0.397 B17 0.738 0.313 0.096 B22 0.559 0.179 0.000 

B3 0.849 0.626 0.211 B8 0.835 0.492 0.058 B13 0.760 0.717 0.124 B18 0.715 0.334 0.143 B23 0.607 0.271 0.046 

B4 0.800 0.449 0.266 B9 0.836 0.457 0.307 B14 0.835 0.584 0.109 B19 0.548 0.467 0.296 B24 0.482 0.522 0.301 

B5 0.796 0.693 0.169 B10 1.000 0.730 0.373 B15 0.765 0.596 0.130 B20 0.639 0.247 0.442 B25 0.681 0.309 0.140 

 NDVI PRI PSRI REP SIPI 

 0.397 0.490 0.041 0.244 0.157 0.207 0.099 0.274 0.416 0.329 0.405 0.006 0.326 0.274 0.199 

2017 

ASM B3 ASM B12 ASM B13 ASM B19 ASM B24 CON B8 CON B1 CON B11 CON B13 CON B15 COR B1 COR B3 COR B7 

0.576 0.218 0.112 0.093 0.127 0.132 0.304 0.096 0.356 0.046 0.063 0.185 0.341 

COR B9 COR B11 DIS B8 DIS B1 DIS B11 DIS B14 DIS B15 HOM B1 HOM B2 HOM B4 HOM B6 HOM B7 

0.421 0.269 0.266 0.360 0.295 0.425 0.007 0.749 0.193 0.197 0.207 0.163 
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Table 12 - Confusion matrix when using all vegetation indexes, spectral, textural, and structural 
features 

  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 1 0 1 2 1 0 0 0 

CL 3 7 3 2 3 4 5 0 25.9 

EP 1 1 3 1 2 1 1 0 30 

HA 2 2 1 2 0 0 1 0 25 

HC 2 4 0 0 2 1 0 0 22.2 

IV 1 1 0 0 1 1 0 0 25 

PP 1 0 0 1 0 0 0 0 0 

SR 0 1 0 3 1 0 0 20 80 

 Producer 
accuracy (%) 

0 41.2 42.9 20 18.2 12.5 0 100 
Overall accuracy 

= 38.89% 
AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 

courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

Table 13 - Confusion matrix when using the angular second moment textural feature 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 3 0 0 2 0 0 2 0 

CL 1 5 1 0 1 1 1 1 45.5 

EP 0 2 2 0 0 0 0 1 40 

HA 0 2 0 0 1 1 1 7 0 

HC 4 0 1 0 2 2 0 0 22.2 

IV 1 1 1 1 3 2 0 1 20 

PP 0 1 0 2 0 0 1 2 16.7 

SR 4 3 2 7 2 2 4 6 20 

 Producer 
accuracy (%) 

0 29.4 28.6 0 18.2 25 14.3 30 
Overall accuracy 

= 20% 
AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 

courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

Table 14 - Confusion matrix when using the contrast textural feature 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 3 1 1 1 1 0 0 0 

CL 4 8 2 1 6 2 5 2 26.7 

EP 2 0 1 2 0 0 0 0 20 

HA 0 0 0 1 1 1 1 1 20 

HC 1 3 2 1 0 2 0 1 0 

IV 1 2 0 0 1 2 0 0 33.3 

PP 1 1 0 1 0 0 1 0 25 

SR 1 0 1 3 2 0 0 16 69.6 

 Producer 
accuracy (%) 

0 34 16.7 13.3 0 28.6 18.2 74.4 
Overall accuracy 

= 32.22% 
AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 

courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 
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Table 15 - Confusion matrix when using the correlation textural feature 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 0 0 1 0 0 1 2 0 

CL 3 7 3 4 4 3 1 3 25 

EP 1 0 0 0 1 0 0 2 0 

HA 0 1 1 0 1 1 2 3 0 

HC 0 2 0 0 0 0 0 0 0 

IV 0 2 0 0 0 0 2 1 0 

PP 1 1 1 0 1 2 1 0 14.3 

SR 5 4 2 5 4 2 0 9 29 

 Producer 
accuracy (%) 

0 41.2 0 0 0 0 14.3 45 
Overall accuracy 

= 18.89% 

AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 
courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

Table 16 - Confusion matrix when using the dissimilarity textural feature 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 1 0 0 1 2 1 0 0 

CL 5 7 1 2 6 3 5 4 21.2 

EP 1 0 0 3 0 1 0 0 0 

HA 0 0 1 1 0 0 1 1 25 

HC 1 4 1 1 0 1 0 1 0 

IV 1 2 1 0 1 1 0 0 16.7 

PP 1 1 0 0 0 0 0 0 0 

SR 1 2 3 3 3 0 0 14 53.8 

 Producer 
accuracy (%) 

0 41.2 0 10 0 12.5 0 70 
Overall accuracy 

= 25.56% 

AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 
courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

Table 17 - Confusion matrix when using the homogeneity textural feature 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 1 0 0 3 0 1 2 0 

CL 1 1 2 4 0 3 1 1 7.7 

EP 0 2 2 0 1 0 0 0 40 

HA 0 2 0 0 0 1 0 3 0 

HC 4 0 1 1 1 2 1 2 8.3 

IV 0 2 1 0 1 1 0 2 14.3 

PP 0 1 0 1 1 0 2 0 40 

SR 5 8 1 4 4 1 2 10 28.6 

 Producer 
accuracy (%) 

0 5.9 28.6 0 9.1 12.5 28.6 50 
Overall accuracy 

= 18.89% 
AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 

courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

 



115 
 

 

Table 18 - Confusion matrix when using the mean normalized spectral features 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 1 1 0 1 0 1 1 0 20 

CL 2 9 2 2 4 3 2 1 36 

EP 0 1 3 0 1 1 0 0 50 

HA 2 0 0 3 0 1 2 0 37.5 

HC 2 2 2 0 4 0 1 1 33.3 

IV 0 1 0 1 1 1 0 0 25 

PP 1 1 0 2 0 0 0 0 0 

SR 2 2 0 1 1 1 1 18 69.2 

 Producer 
accuracy (%) 

10 52.9 42.9 30 36.4 12.5 0 90 
Overall accuracy 

= 43.3% 
AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 

courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

Table 19 - Confusion matrix when using the vegetation indexes 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 3 0 0 0 0 0 0 0 

CL 6 7 2 6 4 1 1 0 25.9 

EP 1 0 4 0 1 0 0 0 66.7 

HA 0 2 0 1 0 0 0 0 33.3 

HC 0 5 1 1 4 0 1 0 33.3 

IV 1 0 0 0 1 5 0 2 55.6 

PP 1 0 0 1 0 0 4 0 66.7 

SR 1 0 0 1 1 2 1 18 75 

 Producer 
accuracy (%) 

0 41.2 57.1 10 36.4 62.5 57.1 90 
Overall accuracy 

= 47.78% 
AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 

courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

Table 20 - Confusion matrix when using the structural features 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 1 0 1 0 2 0 1 0 20 

CL 0 5 2 3 1 2 0 3 31.3 

EP 3 1 0 0 0 5 0 1 0 

HA 1 2 0 2 2 0 0 3 20 

HC 2 2 0 3 3 0 0 1 27.3 

IV 1 2 3 0 0 0 1 1 0 

PP 1 1 0 0 0 0 2 0 50 

SR 1 4 1 2 3 1 3 11 42.3 

 Producer 
accuracy (%) 

10 29.4 0 20 27.3 0 28.6 55 
Overall accuracy 

= 26.67% 

AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 
courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 
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Table 21 - Confusion matrix when using the mean normalized spectra and the vegetation indexes 
  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 0 0 0 0 1 1 0 0 

CL 4 8 2 1 4 3 2 0 33.3 

EP 0 1 3 0 1 1 0 0 50 

HA 0 2 0 5 0 1 2 0 50 

HC 3 3 1 0 4 0 1 1 30.8 

IV 1 0 1 1 1 1 0 1 16.7 

PP 1 1 0 2 0 0 0 0 0 

SR 1 2 0 1 1 1 1 18 72 

 Producer 
accuracy (%) 

0 47.1 42.9 50 36.4 12.5 0 90 
Overall accuracy 

= 43.33% 
AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 

courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 

Table 22 - Confusion matrix when using the mean normalized spectra, the vegetation indexes and the 
five most important textural features from the previous classifications 

  Reference 1  

  AL CL EP HA HC IV PP SR 
User Accuracy 

(%) 

C
la

ss
if

ie
d

 a
s 

AL 0 0 0 1 0 0 1 0 0 

CL 4 8 2 1 4 4 1 0 33.3 

EP 0 1 3 0 2 1 0 0 42.9 

HA 1 2 0 4 0 1 3 0 36.4 

HC 2 4 2 0 3 0 2 0 23.1 

IV 1 0 0 1 1 1 0 0 25 

PP 1 0 0 2 0 0 0 0 0 

SR 1 2 0 1 1 1 0 20 76.9 

 Producer 
accuracy (%) 

0 47.1 42.9 20 27.3 12.5 0 100 
Overall accuracy 

= 43.33% 

AL: Apuleia leiocarpa; CL: Copaifera langsdorffii; EP: Endlicheria paniculata; HA: Helietta apiculata; HC: Hymenaea 
courbaril; IV: Inga vera; PP: Pterodon pubescens; SR: Syagrus romanzoffiana. 
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