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ARTICLE INFO ABSTRACT

Keywords: Recent decades have witnessed major growth in the use of agrochemicals worldwide, — for maximizing the food
Sustainable agriculture production for a rapidly growing human population. However, the indiscriminate use of these substances
Biodiversity especially the pesticides has led to the accumulation of toxic residues in food, soil, air, and water, as well as the

Green nanotechnology

- development of resistance in pests. Moreover, pesticides affect soil enzymes, which are essential catalysts that
Botanical pesticides

govern soil quality. In order to meet the food security, it is necessary to produce more food, sustainably and
safely, in a diminishing area of available arable land and with decreased water resources. Given this situation,
there is an increased interest in the use of alternative substances to synthetic agrochemicals that present less risk
to the environment and human health while increasing the food safety. Promising results have been obtained
using compounds derived from aromatic plants for the control of agricultural pests. Such compounds of botanical
origin can be highly effective, with multiple mechanisms of action, while at the same time having low toxicity
towards nontarget organisms. However, the large-scale application of these substances for pest control is limited
by their poor stability and other technological issues. In this backdrop, the present work discusses perspectives
for the use of compounds of botanical origin, as well as strategies employing the encapsulation techniques that

can contribute to the development of systems for use in sustainable agricultural practices.

1. Introduction

Human population is increasing at an alarming rate (i.e., 70 million
per year) and if this trend continues, there will be 10 billion people in
the world by the end of the century (Gerland et al., 2014; Tilman et al.,
2002; United Nations, 2013). In order to feed such a population, it will
be necessary to double or even triple agricultural production in the
coming years. Since most of the cultivable land is already being used,
this growth must come from higher yields in the existing production
areas (Archana Singh, 2014; Fountain and Wratten, 2013; Kumar, 2013;
Tilman et al., 2002). With the advent of the Green Revolution, agri-
culture started to generate higher yields, although the growth in pro-
ductivity of most crops has now stabilized (a phenomenon known as
yield stabilization), and one of the main contributing reasons for this is
the damage caused by pests and diseases (Archana Singh, 2014;
Grassini et al., 2013). Approximately 67,000 species of organisms are
known to affect agricultural crops, and without preventive protection
using agrochemicals, 70% of agricultural production could be lost
(Archana Singh, 2014; Donatelli et al., 2017; Ross and Lembi, 1985).
Although the use of agrochemicals has benefited agricultural

production, indiscriminate use (intensive and extensive) has led to
many problems, including environmental damage (contamination of
water, air and soil resources), toxicity to nontarget organisms, toxicity
to humans associated with the presence of agrochemical residues in
food, and decreased effectiveness of the chemicals following the de-
velopment of pest resistance (Aktar et al., 2009; Fountain and Wratten,
2013; Kumar, 2012).

Agrochemicals can reach the soil due to direct applications, such as
for weed control and following seed treatment, as well as indirectly by
spraying of the aerial parts of plants, the falling of treated foliage or
fruits, and the movement of contaminated water on the surface and
within the soil profile (Chaplain et al., 2011; Chowdhury et al., 2008;
Cycon et al., 2017; Gevao et al., 2000). Once accumulated in the soil,
these chemicals can be transported by leaching and surface runoff and
they can undergo chemical processes such as hydrolysis, photolysis, and
chemical degradation, as well as they can interact with the living
fraction of the soil (the microbiota) and be biodegraded (Arias-Estévez
et al., 2008; Chaplain et al., 2011; Kookana et al., 1998; Meite et al.,
2018; Salazar-Ledesma et al., 2018; Shaheen et al., 2017). As a result of
these processes, pesticides and/or their metabolites (which may be
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Fig. 1. Schematic representation of agricultural development and potential gains from implementation of sustainable agriculture.

more or less toxic than the parent compounds) can reach hydric re-
sources (surface and subterranean waters), become bioaccumulated
through the food chain, be completely mineralized, or persist for long
periods in the soil (Chaplain et al., 2011; Gevao et al., 2000). The in-
tensive use of agrochemicals increases their persistence in the soil and
thereby negatively affecting the soil microbiota. The microorganisms
that compose this microbiota respond in different ways to the different
types of pesticides, and may exhibit increased or inhibited growth and
metabolism (Chaplain et al., 2011; Chowdhury et al., 2008; Cycon
et al., 2017). Many studies have shown that pesticides cause qualitative
and quantitative changes in the soil microbiota (Duah-Yentumi and
Johnson, 1986; Hartmann et al., 2015; Komorowicz et al., 2010), al-
teration of nitrogen cycling (Damin and Trivelin, 2011), changes in soil
enzymatic activity, and disruption of the symbiosis between mycor-
rhizae and root nodules in legumes. These factors lead to alterations of
soil fertility and, consequently, plant growth (Malik et al., 2017).
Since 2008, more than 80% of soybean and maize grown in the
United States are genetically engineered. Corn seeds are modified in
two genes: one kills insects that feed on seeds and the other allows seeds
to tolerate glyphosate while soybeans contain only the gene that confers
resistance to glyphosate. According Perry et al. (2016), farmers who
used the insect-resistant seeds used significantly less insecticide (about
11.2% less when compared with to farmers who did not use genetically
modified maize). It was observed also a reduction around 1.3% of
herbicide applications. However, farmers who used soybean genetically
modified seeds used 28% more herbicides than the farmers who did not
use genetically modified seeds. These authors also attribute this in-
crease to the proliferation of glyphosate-resistant weeds. Despite the
decrease in insecticide use, continued growth in herbicide use poses a
significant environmental problem as large doses of the chemicals can

harm biodiversity and increase water and air pollution. (Kniss, 2017)
evaluate the how mammalian toxicity of herbicides has changed in
United States in the last 25 years especially regarding the widespread
use of genetically modified crops. According to this author there is a
strong evidence that herbicides applications has increased in maize,
soybean and cotton genetically modified crops. Nevertheless, this au-
thor also found an increasing in herbicides uses in non-genetically
modified crops (such as rice and wheat). These finding indicates that
there is a general trend towards increased use of herbicides in-
dependent of the use of genetically modified plants. In addition, the
authors suggested that the dependence of current agriculture on ge-
netically modified crops and herbicides use has resulted in a decrease in
the development of other potential solutions.

Soil degradation is now one of the greatest environmental chal-
lenges, especially in agriculture (Pimentel and Burgess, 2013; Squire
et al., 2015). The intensification of agriculture after the Green Re-
volution resulted in widespread degradation of soils in the forms of
erosion, compaction, pesticide contamination, loss of organic matter,
increased salinity, and loss of biodiversity, among others (Kibblewhite
et al., 2008; Schiefer et al., 2016; Turpin et al., 2017). Therefore, it is
essential that sustainable agriculture should be able to recover soil
quality by means of strategies such as the use of biopesticides and
biofertilizers, crop diversity and rotation, and the use of microbial
consortia, in order to meet the growing demand for food (Verma et al.,
2015; Zhang et al., 2016). The search for effective and environmentally
safe techniques for controlling pests has intensified, with the main
strategies being biological control using natural enemies present in the
field, as well as the use of natural products such as those derived from
plants. Botanical pesticides offer a good alternative to traditional che-
micals for use in crop protection systems (Bissinger and Roe, 2010;
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Nerio et al., 2010; Kumar, 2012; Fountain and Wratten, 2013; Kumar,
2013; Campos et al., 2014; Pavela and Benelli, 2016). A variety of
different strategies can be adopted for the development of sustainable
agriculture. Therefore, the present study considers the potential of
botanical pesticides as tools in pest control, with the aim of maintaining
the long-term productivity of crops, while at the same time reducing
environmental degradation.

About 12,000 years ago, a new process of instrument manufacture
began to develop, resulting in the Neolithic revolution (Fig. 1). Some of
these neolithic societies began to sow plants and keep animals in cap-
tivity, in order to multiply them and use their products. After some
time, these selected and exploited plants and animals were domes-
ticated, and thus these predator societies were progressively trans-
formed into societies of cultivators and breeders. This passage from
predation to agriculture is known as the Neolithic Agricultural Re-
volution (Scanes, 2018). The second Agricultural Revolution (Fig. 1)
refers to the period of change in the agriculture that occurred between
the mid-1600s and the late 1800s. Before the revolution, the open-field
system of cultivation was used which caused cattle overgrazing, un-
controlled breeding, and spread of animal diseases. Mechanization and
scientific principles were adopted, which led to increased productivity
and efficiency. As agricultural outputs became increasingly more effi-
cient, fewer workers were required, more food was on hand, and in-
dustries cropped up as a result of the agricultural revolution (Demont
et al., 2001; Hess, 2016). Technological innovations in agriculture to
achieve higher productivity through the development of bio-engineered
seeds that worked in conjunction with chemical fertilizers and agro-
chemicals, heavy irrigation and mechanization in the field to increase
productivity was called the Green Revolution (Fig. 1). Although in-
itially used to improve crop production, overuse of chemicals has now
started affecting the environment and human health (Evenson, 2003;
Pingali, 2012). These chemicals have drastic effects on non-target or-
ganisms and affect animal and plant biodiversity, aquatic as well as
terrestrial ecosystems. In addition, one of the major problems of pes-
ticide overuse is the development of resistant species to pesticides
commonly used to control agricultural pests (Bernardes et al., 2015;
Chowdhury et al., 2008; Kaur and Garg, 2014). Thus sustainable de-
velopment represents in many ways a critique and contrast to the
successes of the Green Revolution. In this way, sustainable agriculture
is the way to feed the world (Caira and Ferranti, 2016; Martin-Guay
et al., 2018).

Industrialized agriculture and sustainable agriculture (Fig. 1) differ
in terms of the use of land and agrochemicals, crop yields, and en-
vironmental impacts. The traditional agricultural management model is
characterized by high dependence on inputs of materials such as pes-
ticides and fertilizers, many of which cause environmental con-
tamination (Pretty and Pervez Bharucha, 2015; Seufert et al., 2012).
The sustainable agriculture model is based on improved efficiency of
the use of agrochemicals by means of integrated pest management
(IPM), substitution of materials, and the application of alternative
technologies with low energy consumption and plant/animal integra-
tion (Alam et al., 2016; Lechenet et al., 2014; Seufert et al., 2012).

2. Botanical pesticides

The main botanical pesticides are essential oils produced as sec-
ondary metabolites in plants. These oils play an important roles in the
life cycles of plants, acting as defenses against pathogen and herbivore
attacks, or attracting pollinators and seed disseminators (Isman, 2000a,
2006; Pavela and Benelli, 2016; Regnault-Roger et al., 2012). Essential
oils (Fig. 2) are responsible for the different flavors and aromas of
aromatic plants (Nagegowda, 2010). These oils consist of complex
mixtures of volatile and lipophilic compounds, with typically around
20-60 substances, of which two or three are considered major com-
pounds present at high concentrations, while the other substances are
present at trace levels (Bakkali et al., 2008; Burt, 2004). The
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compounds present in the essential oils can be classified into two che-
mical groups, according to their metabolic synthesis pathways: (i) low
molecular weight phenylpropanoids, and (ii) terpenoids (monoterpenes
and sesquiterpenes). Monoterpenes are synthesized in the plastids via
the methylerythritol phosphate pathway, while sesquiterpenes are
synthesized in the cytosol via the mevalonate pathway (Aharoni et al.,
2005; Nagegowda, 2010; Regnault-Roger et al., 2012).

Botanical pesticides, in the form of isolated substances or complex
mixtures, exhibit a range of biological activities, acting as repellents,
insecticides, fungicides, nematicides, and bactericides (Isman, 2006).
Studies have found that in several species of mosquito, including spe-
cies of agricultural importance, botanical pesticides inhibit food in-
gestion, growth at various stages of development, and egg laying
(Aharoni et al., 2005; Nagegowda, 2010; Pavela, 2011; Regnault-Roger
et al.,, 2012). However, there is poor understanding of the mode of
action of these substances, which appear to differ according to the in-
dividual compounds (Table 1). In bacteria and fungi, the action of es-
sential oils is generally associated with their ability to disrupt the cell
walls and cytoplasmic membranes of the organisms, This results in cell
lysis and loss of intracellular components, or increased absorption of
inorganic phosphate (PO,>”) and consequent leakage of potassium
(K™) (Devi et al., 2010; Lambert et al., 2001; Tian et al., 2012; Turgis
et al., 2009). There is evidence that botanical pesticides can present
different mechanisms of action in insects and mammals, acting espe-
cially in the nervous system, affecting y-aminobutyric acid (GABA)
gated chloride channels, acetylcholinesterase, nicotinic acetylcholine
receptors (nAChR), octopamine and tyramine receptors, and sodium
channels, among other possible mechanisms (Pavela and Benelli, 2016;
Regnault-Roger et al., 2012).

Monoterpenes isolated from essential oils have been found to be
capable of binding to ionotropic GABA receptors in insects, rodents, and
other mammals. Positive allosteric modulators of mammalian GABA,
receptors include camphor, carvone, linalool, menthol, and thymol,
among other monoterpenes (Garcia et al., 2006; Hall et al., 2004;
Krasowski et al., 2002). Homozygous GABA receptors of Drosophila
melonogaster were found to be positively modulated by thymol
(Priestley et al., 2003). All of these compounds have been shown to
increase the GABA-induced chloride current at recombinant GABA re-
ceptors in different models. In addition to receptors, botanical pesti-
cides can affect enzymes present in the nervous system, such as acet-
ylcholinesterase. Some compounds, such as geraniol, linalool, y-
terpinene, and fenchone have been observed to bind to the active site of
the enzyme, resulting in reversible competitive inhibition. Others, such
as camphor, estragole, and S-carvone have shown non-competitive in-
hibition, binding to the free enzyme or to the enzyme-substrate complex
at locations different to the active site (Dickens and Bohbot, 2013; El-
Wakeil, 2013; Lambert et al., 2001; Ahmed et al., 2011).

In insects, tyramine and octopamine receptors are coupled to G-
protein and are important targets for botanical pesticides. Studies using
Periplaneta americana showed that eugenol affects the octopaminergic
system, leading to the activation of octopamine (a neuromodulator)
receptors (Enan, 2001, 2005a,b). An increase in adenylate cyclase ac-
tivity was observed at low doses of eugenol and octopamine, while high
doses of eugenol decreased the activity of this enzyme. Similar to eu-
genol, compounds including carvacrol, a-terpineol, pulegone, and 20
other monoterpenes were found to bind to the octopamine receptors of
Periplaneta americana, with high sensitivity. Receptors for tyramine,
which is a precursor of octopamine, were also involved in the me-
chanism of action of some monoterpenes, such as carvacrol, a-terpi-
neol, and thymol, in Drosophila melonogaster cells presenting tyramine
receptors. Thymol acted to increase the intracellular cAMP levels,
whereas carvacrol and a-terpineol decreased this intracellular second
messenger, hence modulating intracellular calcium levels (Enan, 2001,
2005a,b).

Botanical pesticides whose mechanisms of action involve GABA
receptors may be more effective, due to the speed of the effect, since
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Fig. 2. Essential oils from plants obtained by extraction processes, and identification and quantification of the active components. The different compounds include

the phenylpropanoid, monoterpene, and sesquiterpene classes.

Table 1
Mechanisms of action of some botanical pesticides.

Compound Botanical species® Mechanism of action® References

Pyrethrin Chrysanthemum cinerarifolium  Agonists of voltage-sensitive sodium channels (GABAergic system) Wakeling et al. (2012) and Soderlund and Bloomquist
(1989)

Thujone Artemisia absinthium Reversible modulator of GABA, receptors Hold et al. (2000)

Thymol Thymus vulgaris Stimulates GABA, receptors Enan (2005a)

Azadirachtin Azadirachta indica Inhibits the activity of acetylcholinesterase Senthil Nathan et al. (2008)

Linalool Aniba rosaeodora Competitive and reversible inhibition of acetylcholinesterase activity =~ Perry et al. (2000) and Ryan and Byrne (1988)

Carvacrol Origanum vulgare Binds to nicotinic acetylcholine receptors Tong et al. (2013)

Eugenol Syzygium aromaticum Stimulates octopamine receptors Price and Berry (2006)

Menthol Mentha piperita Positive allosteric modulator of the GABA, receptor Hall et al. (2004)

a-Terpineol Citrus sinensis Reduces intracellular levels of second messenger cAMP (tyramine Enan (2001)

receptors)

1,8-Cineol Rosmarinus officinalis Antagonist of octopamine receptors Dayan et al. (2009) and Fischer et al. (2013)

Cinnamaldehyde  Cinnamomum zeylanicum Antagonist of octopamine Dayan et al. (2009) and Fischer et al. (2013)

Nicotine Nicotiana sp. Agonist of acetylcholine Copping and Duke (2007) and Isman and Paluch
(2011)

Rotenone Derris sp. Mitochondrial cytotoxin Copping and Duke (2007) and Isman and Paluch
(2011)

Citronellal Cymbopogon nardus Antagonist of octopamine Dayan et al. (2009) and Fischer et al. (2013)

these receptors are mainly present in the peripheral nervous systems of
insects, especially at neuromuscular junctions. In contrast, those com-
pounds that act on receptors attached to G-protein (octopamine and
tyramine receptors) have lesser effects, due to the complex signaling
cascades of these pathways (El-Wakeil, 2013; Ahmed et al., 2011).

Other botanical substances, such as pyrethrins, rotenone, nicotine,
and azadirachtin, among others, have insecticidal activities that are
well documented in the literature (Bennett and Wallsgrove, 1994;
Campos et al., 2016; Isman, 2000a, 2006; Pascual-Villalobos and
Robledo, 1998; Regnault-Roger, 1997). However, with increasing in-
terest in pest control employing substances that are safer in the en-
vironment, recent research has shown that essential oils or their con-
stituent compounds, such as carvacrol and linalool, are not only able to
repel insects (Tambwe et al., 2014), but also present insecticidal action
following direct contact or entry into the insect respiratory system
(Beier et al., 2014). Both carvacrol and linalool have proven fungicidal
activity against several important pathogens (Engel et al., 2017;
Guimaraes et al.,, 2015; Herman et al.,, 2016; Hsu et al., 2013;
Keawchaoon and Yoksan, 2011; Miiller et al., 2009; Peana et al.,
2004a,b; Silva Brum et al., 2001; Tong et al., 2013).

It is already known that the performance of essential oils and/or
their components may vary according to the susceptibility of a parti-
cular species, i.e., essential oils are not effective for all species of
agricultural pests (Khani and Asghari, 2012; Khani and Rahdari, 2012;
Lee et al.,, 2003; Negahban et al., 2007). In addition, the chemical
composition as well as the functional groups (position and nature)
present in the essential oils plays an important role in the insecticidal
and/or repellent activity (Kumbhar and Dewang, 2001; Mossa, 2016).
This biological activity can be potentiated by modifying the chemical
structure of the monoterpenoids present in essential oils (Kumbhar and
Dewang, 2001; Mossa, 2016). In this sense, the relationship between
performance and chemical composition, regarding the importance of
functional groups can be studied through biorational design of the de-
rivatives (Kumbhar and Dewang, 2001; Mossa, 2016).

3. Botanical pesticides: R&D, gaps, and market

Microorganisms are known to play a key role in soil quality and
health. In this way, the microbial biomass as well as the enzymatic
activity are potential indicators of soil quality, since they are directly
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correlated with the soil biology and for rapidly responding to changes
due to anthropogenic and environmental action. Stimulating or in-
hibitory effects may be observed after the application of essential oils
and/or their compounds alone, in microorganisms (Stamou et al., 2017;
Vokou, 2007) and soil enzymes (Papatheodorou et al., 2014; Stamou
et al., 2017). There may be an increase or decrease in the microbial
population, alter the microbial community profile and influence the
activity of various microbial taxa (Kadoglidou et al., 2011; Abdel
Rasoul, 2012; Vokou et al., 2002). However, it has also been shown that
these compounds affect the soil enzymes in a selective manner, i.e., at
the recommended dose, have no effect on soil structure and microbial
biomass (Papatheodorou et al., 2014; Spyrou et al., 2009). Thus, these
compounds cause lower impacts to soil organisms and enzymatic ac-
tivity when compared to chemical pesticides being then used to control
agricultural pests.

Antonious (2003) evaluated the soil urease activity caused by pyr-
ethrin and Neemix formulations. According to this author application of
these compounds resulted in a transitional effect on urease activity.
However, this effect was beneficial since they were neither drastic nor
prolonged enough to be considered toxic to soil microorganisms. This
author also found that the application of botanical insecticides could
reduce the urea fertilizer mineralization to some extent. Stamou et al.
(2017) evaluated the mutual effect of arbuscular mycorrhizal fungi
(AMF) and essential oil in the soil microbial community. The results
found that both AMF and essential oil operate as selective forces during
fungal pre-symbiotic phase. Experiments carried out with essential oil
only showed microbial community dominated by actinomycetes and
micro eukaryotes while experiment with both treatments revealed the
emergence of new microbial communities due to the divergent effects
of both treatments. However, a synergistic effect of these treatments
was observed for enzymatic activity of asparaginase and glutaminase.
In this sense, the soil microbiota as well as soil quality can be benefited
by the association of beneficial microorganisms and essential oils for
sustainable agriculture. However, factors such as concentration, form of
application, as well as application phase (in relation to the development
of the microorganism) should be better studied in order not to harm the
beneficial effects of this association.

In recent years, there is an exponential growth in the number of
academic publications regarding the use of botanical pesticides as a tool
for pest control, applying the integrated pest management (IPM) ap-
proach. Furthermore, many laboratories worldwide have intensified
research into essential oils and their constituents, with the aim of ex-
ploiting their pesticidal properties (Grumezescu, 2017). However, de-
spite these advances, there are still only few commercially available
products based on plant essential oils or their isolated constituents
(Table 2). According to Isman and Grieneisen (2014), the major factors
limiting the wide scale exploitation of botanical pesticides are i) due to
the lack of practically applicable results in many of the published stu-
dies ii) lack of the availability of good quality botanical pesticides at
affordable prices; iii) strict legislation; iv) short persistence of the
compounds in the environment, due to rapid degradation; v) extraction
of oils from plants grown under different climatic conditions, resulting
in different compositions in terms of active agents, with potentially
weaker effects in pest control and likelihood of variability among bat-
ches.

Therefore, issue of sustainability of botanical resources represents
one of the main barriers to advances in the commercial availability of
these products. Production on a commercial scale requires a large
biomass of the source plant, necessitating its production on an agri-
cultural scale (Isman, 2006). However, the increasing demand for
production of food and energy crops hinders the cultivation of plants
containing essential oils, making it difficult to obtain sufficient quan-
tities for commercial purposes, unless the plants are highly abundant in
nature (Sola et al., 2014a). A further difficulty lies in the reproducibility
of botanical pesticides, mainly due to natural genetic variations of the
species, as well as different cultivation conditions (considering
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geography and climate, among other factors) (Ndakidemi et al., 2016).
In addition to the problems of cultivation, a key issue in the marketing
of botanical products concerns the confidence of agriculturalists. Since
many botanical compounds do not show any immediate effects and also
have low residual action, many potential users are reluctant to sub-
stitute conventional products by botanical pesticides (Isman et al.,
2011).

Even if it is possible to resolve all the issues described above, current
regulatory barriers also present a major obstacle to the commerciali-
zation of these naturally occurring substances. In much of the world,
legislation makes no distinction between synthetic pesticides and bio-
pesticides (including botanicals). As a result, these products need to
pass through long and costly registration processes, often accompanied
by expensive toxicological and environmental assessments (Pavela,
2014; Pavela and Benelli, 2016). Therefore, the fact that many of these
products may be destined for use in organic agriculture and by small
producers means that it is often not possible to obtain the financial
resources required to cover the costly processes involved in registration
of new products (Hernandez-Moreno et al., 2013).

In this context, the successful exploitation of emerging technologies
seems to offer a way to overcome many of the difficulties that hinder
the large scale production and commercialization of the botanical
pesticides (Pavela and Benelli, 2016). For example, plant biotechnology
research shows that genetic manipulation of certain field crop species
will make it possible to produce large quantities of natural compounds
originally isolated from other plant species (Daviet and Schalk, 2010).
The nano/microencapsulation of natural compounds in different ma-
trices has been shown to be an effective way of overcoming stability
problems, increasing the effectiveness of the compounds due to: i) in-
creased solubility; ii) protection against premature degradation (by
high temperatures, photodegradation, and biodegradation); and iii)
increased residual activity due to sustained release (de Oliveira et al.,
2014; Mossa, 2016). The wall material of nanoparticulate system is
selected according to the physicochemical properties of the active agent
and required usage of the final formulation. However, according Kah
and Hofmann (2014), among the different nanoparticulate system
produced for agricultural applications, polymeric nanoparticles are
those with greatest potential for development and practical application
in agriculture. For this purpose, polysaccharides represent very attrac-
tive molecules, as they are biocompatible, biodegradable, low cost and
high availability and can undergo various chemical modifications
(Campos et al., 2015; Posocco et al., 2015; Raemdonck et al., 2013).
Currently, nanotechnology has been shown to be a potential tool in the
field of agricultural entomology (Kumar et al., 2017). Companies are
already involved in the development of nanoformulations, for example,
Syngenta started marketing the Karate® ZEON that is a broad-spectrum
pesticide consisting of the insecticide lambda-cyhalothrin na-
noencapsulated to regulate the insect population in rice, peanut, cotton
and soybean crops. Many nanoformulations loading botanical pesti-
cides has proven biological activity against pre and post harvest crop
pests (Ebadollahi et al., 2017; Khoobdel et al., 2017; Negahban et al.,
2014, 2012; Yang et al., 2009). In addition, progress has been also
made in unblocking the marketing of products based on botanical
pesticides. The recent classification of some botanical products as “low
risk” by the European Food Safety Authority has contributed to de-
creasing the regulatory requirements for these products (Marchand,
2015).

4. Botanical insecticides and nanotechnology: is it a real new
possibility?

It is increasingly accepted that traditional approaches to integrated
pest management (IPM) are insufficient to combat pests and increase
food productivity, and that there are adverse effects of intensive and
extensive use of pesticides on animal and human health, nontarget
organisms, and soil fertility. Alternative options have been sought to
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Table 2
Examples of commercially available products based on botanical pesticides.
Active ingredient Application Commercial product Company
Oil of neem (Azadirachtin) Insecticide Margosom® Agri Life (India)
AZA-Direct R® Gowan Company (USA)
AzeraTM® MGK (USA)
Azamax® UPL Ltda. (Brazil)
Molt-X® BioWorks Inc. (USA)
Neemix 4.5® Certis (USA)
Azatin XL® OHP Inc. (USA)
NeemAzal T/S® Trifolio-M (Germany)
Fortune Aza 3%EC® Fortune Biotech (USA)
Shubhdeep NeemOil® King AgroFood (India)
Essential oil of garlic (Allium sativum L.) Insecticide AjoNey® L.H.N. (Mexico)
EcoA-Z® EcofloraAgro (Colombia)
L’EcoMix®
CapsiAlil®

Citrus sinensis L. oil (limonene and linalool)

Essential oil of thyme (Thymus vulgaris)
Rotenone

Nicotine (Nictiana tabacum L.)

Insecticide/repellent

Insecticide/repellent
Insecticide

Insecticide

Demize EC®

Prev-Am®

EcoVia WD®

5.% Rotenone ME®
Rotenone Dust®
Nico Dust®

Paragon Professional Pes

Control Products (USA)

Oro Agri SA Ltd. (South Africa)
Rockwell Labs Ltd. (USA)

Beijing Kingbo Biotech Ltd. (China)
Bonide Products Inc. (USA)

Nico Orgo Manures (India)

Carvacrol/essential oil of oregano (Origanum vulgare)

Insecticide/animal feed supplement

Nico Neem®
10% Nicotine AS®
By-O-reg +©

Beijing Kingbo Biotech Ltd. (China)
By-O-reg+ (USA)

combat these problems, by developing pesticides that are more effective
and do not persist in the environment (Arora and Mishra, 2016;
Chandler et al., 2011; Park and Tak, 2016; Parsa et al., 2014). In order
to reduce the adverse effects of conventional pesticides, plant-based
biopesticides (such as essential oils) can be employed as an alternative
or complementary tools in integrated pest management, benefiting
from their desirable characteristics, as discussed above (Archana Singh,
2014; Bakkali et al., 2008; Isman, 2000b; Pavela and Benelli, 2016;
Regnault-Roger et al., 2012). However, problems related to low aqu-
eous solubility, high volatilization rates, and oxidation when exposed to
the environment need to be resolved before these compounds can be
employed in integrated pest management (Pavela and Benelli, 2016;
Regnault-Roger et al., 2012).

The combination of two or more alternative pest control methods in
production systems can enhance the effects and extend the range of
target organisms, affecting different species or different stages of de-
velopment of the same species. The use of botanical pesticides in as-
sociation with bioinsecticides based on microorganisms offers a pro-
mising technique for the control of agricultural pests. In this approach,
botanical pesticides cause stress in pests, hence facilitating their attack
by disease organisms, whose toxins act more rapidly and consequently
increase the mortality rates of the pests (Ansari et al., 2012; Ezhil
Vendan, 2016; Raja, 2013; Wezel et al., 2014).

Among alternative methods, nanotechnological techniques can
provide effective tools to overcome many difficulties. Benefits include
protection of the compounds against degradation and losses by volati-
lization, easier handling, sustained release, and specific targeting of the
active agents (Bilia et al., 2014; de Oliveira et al., 2014; Donsi et al.,
2014; Marques, 2010; Pavela and Benelli, 2016; Regnault-Roger et al.,
2012; Werdin Gonzalez et al., 2014). In addition, such nanoformula-
tions can be more effective than non-encapsulated substances (Anjali
et al., 2012, 2010; Werdin Gonzélez et al., 2014).

There has been a steady increase in published studies concerning
the encapsulation of essential oils and/or their constituents in matrices
including natural or synthetic polymers, lipids, and proteins, among
others, according to the desired characteristics (Chen et al., 2009, 2015;
de Oliveira et al., 2014; Gabriel Paulraj et al., 2017; Guimaraes et al.,
2015; Keawchaoon and Yoksan, 2011; Negahban et al., 2007, 2012,
2014; Yang et al., 2009). However, it should be noted that most of these
studies have focused on the development of methods for the

encapsulation of these compounds for food and pharmaceutical pur-
poses (Pavela and Benelli, 2016; Rodriguez et al., 2016).

Synergistic effects obtained using combinations of different com-
pounds can result in enhanced biological activity, compared to the
activities observed for the individual compounds. The use of this
strategy can enable application of lower dosages of the active agents,
hence reducing both the cost of pest management and the environ-
mental risks (Akhtar and Isman, 2013). Furthermore, the use of mix-
tures of compounds is less likely to lead to resistance and behavioral
adaptation of insects (Akhtar and Isman, 2013; Pavela and Benelli,
2016). However, there are few reports concerning the action of dif-
ferent essential oils and/or their major components in the control of
agricultural pests (Koul et al., 2013; Kumrungsee et al., 2014).

Although the combination of nanotechnology and botanical pesti-
cides could be a promising tool for integrated pest management, further
studies are required in relation to i) the use of encapsulation technology
to encapsulate mixtures of different essential oils and/or their con-
stituents; ii) the toxicological evaluation of nanoformulations, including
effects on nontarget organisms; iii) effects of sublethal concentrations
on target and nontarget organisms; iv) regulation of the use of nano-
materials and botanical pesticides in agriculture; v) selection of natural
matrices for the production of nanoparticles and scalable nanoformu-
lations; vi) comparative cost-benefit studies of nanoformulations and
current commercial formulations; and (vii) evaluation of the fate and
behavior of nanoformulations in the environment (Archana Singh,
2014; Fraceto et al., 2016; Isman and Grieneisen, 2014; Regnault-Roger
et al., 2012; Servin and White, 2016).

Nanotechnology is described by the European Union as one of the
six key technologies required for global sustainable development
(European, 2012). It has been used in many branches of science, in-
cluding pharmaceutical sciences, materials science, physics, chemistry,
and medicine. In agriculture, there have been advances in nano-
technology applied in animal husbandry, insect control, and soil
treatment (Chen and Yada, 2011; Salamanca-Buentello et al., 2005), as
well as in the production, storage, processing, packaging, and trans-
portation of agricultural products (Campos et al., 2014; Fraceto et al.,
2016; Mukhopadhyay, 2014; Sekhon, 2014).

Nanotechnology can provide many benefits in sustainable agri-
culture (Chaudhary and Misra, 2017; Kumar et al., 2017; Prasad et al.,
2017), including i) control of pests and diseases using nanoformulations
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that enable the sustained release of pesticides, improving their effec-
tiveness and decreasing the concentrations required to achieve the
desired effects; ii) sustained release of fertilizers to increase plant
growth while reducing losses in runoff and decreasing water pollution
problems such as eutrophication; iii) nanoparticle-mediated transfer of
genes or DNA, assisting in the development of species resistant to pests
and/or diseases; iv) use of nanomaterials to develop biosensors able to
detect signs of diseases and/or predators, as well as identification of
lack of nutrients and water; and v) new economically viable methods
for the removal of pollutants from the soil and for water treatment
(Aragjo et al., 2015; Duhan et al., 2017; Fraceto et al., 2016; Iavicoli
et al., 2017; Mukhopadhyay, 2014; Nair et al., 2010; Rai and Ingle,
2012; Sekhon, 2014; Torney et al., 2007; Verma, 2017).

Although there are various uncertainties regarding the use of na-
notechnology and botanical pesticides in agriculture, cordial efforts
should be made to convince the policy makers to seriously provide a
market for such products by reducing many existing regulatory barriers
(Amenta et al., 2015; Chandler et al., 2011; Jain et al., 2016; Sola et al.,
2014b). In nanotechnology, the uncertainties are not related to the risks
themselves, but the impossibility of calculating them (dos Santos and
Gottschalk Nolasco, 2017; Pyrrho and Schramm, 2012). There are risks
associated with nanotechnology in a complex and yet difficult to define
scenario, but which, however, cannot be underestimated (Maynard,
2014; Stokes, 2013). Among them, we can emphasize the identification
and management of the impacts of nanomaterial during the production
chain; monitoring the cycle of persistent nanoparticles in the environ-
ment; and the complexity in the definition of acceptable levels of par-
ticles present in working conditions, environmental exposure and
consumer of nanoproducts (Simone et al., 2009; Strand and Kjglberg,
2011; Tavares et al., 2015). Within this context, there is a question:
what are the global strategic directions for a specific regulation for the
use of nanotechnology? To date, there is no specific international reg-
ulation for commercially available products incorporating nano-
particles at some stage of industrial processing. Another point to be
made is the lack of reliable international standard protocols for asses-
sing the human and environmental toxicity of nanoparticles (dos Santos
and Gottschalk Nolasco, 2017; Retzbach and Maier, 2015; Stokes, 2013;
Strand and Kjglberg, 2011).

Due to the improvement in the quality and cost-effectiveness of
nanotechnological products and processes, as well as the social benefits
added to this technology, companies have developed strategic business
plans and policies in research, development and innovation with the
aim of bringing industrial competitive advantages in several areas (dos
Santos and Gottschalk Nolasco, 2017; Riccardi, 2015). Importantly,
effective cooperation is needed between academic research institutions
and botanical pesticide producers in order to put into practice the re-
sults obtained at the laboratory scale. This is one of the keys to the
success of integrated pest management, as both nanotechnology and
biopesticides are tools that can be used in the development of sus-
tainable agriculture, with the aim of providing significant improve-
ments in food quality and safety, human health, and environmental
preservation (Bilia et al., 2014; Pavela and Benelli, 2016; Regnault-
Roger et al., 2012).

In addition to the nanotechnology associated with botanical pesti-
cides, other technologies have been widely used in sustainable agri-
culture with the aim of reducing the population of insects that attack
crops, such as the use of biological insecticides. Biological insecticides
are excellent alternatives to bypass the environmental pollution derived
from chemical insecticides, besides providing the most selective control
of insects (Bravo et al., 2015; Narva et al., 2014). For the biological
control of insect pests, the bacterium Bacillus thuringiensis, 1915 is
considered the most interesting species being characterized by the
production of protein crystals during sporulation, which have in-
secticidal activity (Proteins Cry) with high specificity against insect
larvae of several orders. Transgenic cultures expressing Bt proteins re-
quire fewer applications of pesticides, reduce production costs, provide

Ecological Indicators xxx (Xxxx) XXX-XXX

selectivity and specificity against target pests, and natural enemies
(Bravo et al., 2015; Narva et al., 2014; Savini and Fazii, 2016). How-
ever, in spite of these advantages, there is currently great concern for
the widespread use of Bt crops since they can accelerate the selection of
resistant organisms in target pest populations (Niu et al., 2016; Vachon
et al., 2012). In this sense, the association of bio-insecticides, both
botanical and biological, may be potential tools in the control of agri-
cultural pests in sustainable agriculture.

As highlighted here, the nanoencapsulation and sustained release of
botanical pesticides has becoming a promising strategy to efficiently
protect these compounds from premature degradation, thereby in-
creasing their biological activity as well as reducing negative impacts
on the environment. It is believed that in the near future, the sustained
release of botanical pesticides will become a key tool for sustainable
agriculture, aimed at improving agricultural production in order to
produce sufficient food for the growing world population. In addition,
the use of these nanoformulations aims to reduce environmental im-
pacts and reduce risks to human and animal health. Thus, efficient
management of agricultural pests with these nanoformulations will
result in less use of bioactive molecules to control pests and conse-
quently reduce several problems associated with the intensive use of
synthetic agrochemicals, as previously mentioned.

5. Future trends in sustainable agriculture

The use of synthetic pesticides remains the principal technique for
the control of pests and diseases in conventional agriculture, but it is
acknowledged that agricultural production will be seriously threatened
if sustainable techniques are not adopted. Many studies have shown
that the intensive use of synthetic chemicals leads to irreversible da-
mage to the structure and ecology of soil (Dabrowski et al., 2014;
Saruchi et al., 2016), with negative effects on the microbiota (Asad
et al., 2017; Bending et al., 2007; Yang et al., 2017). In contrast, there
have been few studies and little is known concerning the impacts of
botanical pesticides on soil microbiota (Fig. 3). It is mistakenly believed
that since botanical pesticides are obtained from natural sources, they
are therefore not toxic towards nontarget organisms and are always
safer than synthetic pesticides (Rousidou et al., 2013; Spyrou et al.,
2009).

Botanical pesticides typically exhibit broad spectrum antimicrobial
activity, in most cases being nonselective, so they can potentially affect
the soil microbiota population (Bhat et al., 2012; Conti et al., 2014;
George et al., 2010; Spyrou et al.,, 2009). Nonetheless, as discussed
earlier, these compounds offer considerable advantages, compared to
the synthetic compounds currently used, and are promising for use in
sustainable agriculture (Chowdhury et al., 2015; Dar et al., 2014;
Dubey et al., 2010; Karani et al., 2017; Khaliq et al., 2014; Xu et al.,
2015). Their rapid breakdown in the environment, together with low
accumulation in the soil organic matter, can help to decrease the de-
gradation of agricultural soils (Ansari et al., 2012; Archana Singh, 2014;
Blazquez, 2014; Carrubba and Catalano, 2009; Pavela and Benelli,
2016; Raja, 2013). Botanical pesticides have been shown to provide
effective control of different species of agricultural pests, in many cases
being more effective than synthetic chemicals, due to their varied me-
chanisms of action (Sola et al., 2014a,b; Tambwe et al., 2014; Oliveira
et al., 2017; Stefanidesova et al., 2017). An important point is that the
formulation of new commercial products (using, for example, nano-
technological techniques) could further enhance the performance of
these natural compounds, reducing both the dosages required and their
toxicity towards nontarget organisms, especially the soil microbiota
(Chhipa, 2017; de Oliveira et al., 2014; Mattos et al., 2017; Mossa,
2016).

Although nanotechnological materials have been shown to provide
superior performance in many areas of science, the processes used to
produce them can result in the generation of hazardous wastes, while
the raw materials may be non-renewable resources (Duhan et al., 2017;
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Fig. 3. Representation of a conventional agricultural system (A), based on the use of synthetic chemical compounds to control pests, with the development of pest
resistance and decrease in the soil microbiota. (B) A sustainable agricultural system based on biological pest control, use of botanical insecticides/repellents, and
application of new technologies. This scheme highlights the diversity of the soil microbiota, which is essential in sustainable agricultural practices, as well as

potential improvements in plant development and consequently in food production.

Tavicoli et al., 2017; Mishra et al., 2017; Sinha et al., 2017). Hence,
there have been considerable efforts to reduce the generation of toxic
wastes and their disposal in the environment, as well as to develop
production methods that are more energy efficient, in compliance with
the principles of green chemistry. The aim of green nanotechnology
(the combination of nanotechnology and the practices of green chem-
istry) is to develop and manufacture safer nanomaterials with zero or
minimal generation of hazardous waste (de la Guardia, 2014; Lu and
Ozcan, 2015; Nath and Banerjee, 2013; Pleissner, 2017). Green nano-
technology is one of the keys to successful implementation of sustain-
able agriculture in the 21st century, and has three basic principles: i)
use of biocompatible and nontoxic solvents; ii) use of natural raw ma-
terials; and iii) use of energy efficient processes (de la Guardia, 2014; Lu
and Ozcan, 2015; Nath and Banerjee, 2013).

For applications in sustainable agriculture, sustained release sys-
tems should preferably be manufactured using natural biodegradable
polymers, instead of the synthetic polymers. Natural polysaccharides
such as alginate, chitosan, and cyclodextrins, among others, have been
extensively studied for the production of sustained release systems for
use in agriculture, since they are biodegradable, biocompatible, and
present low toxicity towards mammals (Campos et al., 2014). Chitosan
is used in agriculture for the management of biotic and abiotic stress
(Sharp, 2013; Wang et al., 2015; Xing et al., 2015). In addition to an-
timicrobial activity, chitosan is believed to enhance the systemic re-
sistance of plants against pathogens (Katiyarl et al., 2014; Sharp, 2013;
Xing et al., 2015), and also to increase and regulate the growth, de-
velopment, and yield of crops (Wang et al., 2015), and stimulate certain
soil microorganisms (Cretoiu et al., 2013; Kamari et al., 2011).

Nanostructured systems can also be used to resolve a major issue in
sustainable agriculture, namely the presence of contaminants in the
soil, by detecting, monitoring, and removing these substances. This is
especially important due to losses of productive agricultural areas fol-
lowing extensive soil degradation. The adoption of more sustainable
agricultural practices is the only viable way of increasing productivity
without causing negative impacts in the environment and on human
health, and the use of botanical pesticides in agricultural systems can
contribute to this goal. Further advantages could be gained by im-
plementing techniques employing botanical pesticides in combination
with nanomaterials produced in accordance with the principles of green
chemistry. These promising systems offer effective and ecologically
more sustainable ways for reducing the pest attack and consequently
maximizing crop productivity. Nonetheless, it is clear that further work
will be needed to obtain a better understanding of the fate and behavior

of these materials in the environment.

To make the nanoencapsulated botanical pesticides closer to ap-
plication in field condition, some issues need to be addressed. Studies
involving the toxicity of these systems for humans, soil microorganisms
and plants need to be better studied and understood in order to predict
the possible toxic effects of these systems when they are deposited in
the ecosystem. In addition studies focused on the elucidation of how
these systems behave in relation to climatic changes, soil composition
and structure, interaction/absorption and translocation in plants are of
extreme importance to understand how these nanoformulations behave
under different conditions and with different degrees of severity. As for
example, these nanoformulations will behave in the same way in a
tropical climate when compared to a temperate climate? It is worth
mentioning that these studies cannot be limited only in laboratory
scale, through in vitro tests. After obtaining satisfactory results in vitro,
these studies are expected to be carried out under field conditions in
small scale or in greenhouses, in order to bring these products closers to
commercialization.

Another important fact that needs to be analyzed by future studies
in the sustained release of botanical pesticides is the association of two
different compounds in the same nanoparticulate system. These com-
pounds may be derived from the essential oil of the same or different
species. It is already known that the association of different compounds
originating from essential oils may have additive, synergistic or an-
tagonistic effects in a particular pest (Akhtar and Isman, 2013; Singh
et al., 2009; Tak and Isman, 2017; Yang et al., 2017). However, these
studies were largely performed only with non-encapsulated botanical
pesticides. It is of great importance to analyze if the nanoencapsulation
of these compounds, as well as the sustained release of them do not
alter the effect patterns in the pests. As for example, two compounds
which exhibit antagonistic effects when associated may have synergistic
or additive effects when nanoencapsulated? Synergistic effects between
botanical pesticides are quite promising for the application of these
compounds in agriculture. Since potentiation of the effect results in the
use of lower concentrations of these compounds for the control of pests
and, consequently, would delay further the emergence of species re-
sistant to botanical pesticides.

Finally, another trend in the field of nanotechnology that should be
widely studied for agricultural applications is the development of “in-
telligent” sustained release systems (Hussain, 2017), which change the
pattern of release of the substance according to a given stimulus. In
agriculture, for example, release systems that are sensitive to changes in
pH, salinity, temperature, and others can be strong candidates for
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increasing agricultural productivity.
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