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ABSTRACT

Fiber-reinforced polymer (FRP) composites have a great potential to replace metals in
applications that require lighter components and structures since these materials can reach high
in-plane properties of specific strength and stiffness. The FRP composites frequently used in
engineering structures are laminates comprised of continuous-fiber plies without reinforcement
in the thickness direction, which reduces the material’s interlaminar strength leading to
delamination susceptibility. Most of these structures operate under long-term cyclic loadings,
resulting in a gradual delamination propagation. Hence, extensive research has been conducted
to understand and predict fatigue delamination growth in FRPs over the past decades. However,
most of the efforts were concentrated on the prediction itself rather than attributing physical
explanations to the mechanisms associated with the propagation process. In order to contribute
to this field, this research focuses on the assessment of delamination within a single loading
cycle in FRP using double cantilever beam specimens with varying stress ratios (R). The
acoustic emission (AE) technique was used to investigate damage propagation, and a new
methodology was developed to quantify the strain energy release due to crack growth in fatigue.
In addition, the development of fiber bridging in the crack propagation through different
interface configurations was investigated with focus on the influence of bridging on the strain
energy released. Results showed that under high R-ratios, the load cycle spends an increased
time above the threshold energy (Uw: minimum amount of energy required to damage
development) in terms of total strain energy, which affected the damage distribution within a
single loading cycle. Besides that, the strain energy release behavior within the fatigue cycles
indicated that different damage mechanisms are activated in different increments of the load
cycle associated with different energy thresholds. The presence of multiple energy thresholds
indicated that the application of different loading cycles results in distinct resistances to damage
propagation (dU/dA) depending on which energy threshold is crossed. For example, the rupture
of bridging fibers may impact dU/dA when the threshold energy to activate this damage
mechanism is exceeded. It was observed that the angle of the fibers («) in the interface where
the crack propagates affected the stresses acting on the bridging fibers, leading to the rupture
of more fibers when a was increased. In other words, « eases the activation of this specific
damage mechanism. Hence, once fiber breakage releases strain energy, the material resistance

to delamination growth is affected.

KEYWORDS: Stress ratio. Fractography. Fracture mechanics. Laminates.



RESUMO

Materiais compdsitos de matrizes poliméricas reforgados por fibras possuem grande potencial
para substituir os metais em aplicacdes estruturais em que o0 objetivo seja a obtencdo de
estruturas leves devido suas elevadas propriedades mecénicas especificas. Os compdsitos
poliméricos reforgados por fibras voltados para aplicagdo estrutural sdo compostos por camadas
de fibras (laminados). Portanto, ndo possuem reforco na direcdo da espessura, o que reduz a
resisténcia interlaminar do material, tornando-o suscetivel a delaminacdo. Consequentemente,
pesquisas tém sido realizadas para uma melhor compreensdo do fenémeno e o desenvolvimento
de modelos capazes de prever a delaminagdo em regime ciclico. Entretanto, o foco das
pesquisas tem sido restrito ao desenvolvimento de modelos, enquanto o entendimento fisico
associado ao fendmeno se tornou um objetivo secundario. Portanto, esta pesquisa tem o foco
no estudo da delaminagdo no curso do ciclo de carregamento em fadiga. A técnica de emisséo
acustica foi utilizada para avaliacdo da delaminacdo e para o desenvolvimento de uma
metodologia para quantificar a liberacdo de energia de deformacao elastica devido a propagacao
de dano. Além disso, o desenvolvimento de pontes de fibra durante a propagacdo da
delaminacdo por interfaces com diferentes configuracdes foi avaliado com foco na influéncia
desses mecanismos na liberacdo de energia. Os resultados mostraram que uma elevada razéo
de carregamento aumenta 0 tempo em que o ciclo permanece acima do limite de energia
necessario para propagacgéo de dano (Uw) em termos de energias totais, afetando a distribuicéo
de dano ao longo do ciclo de carregamento. A liberacdo de energia de deformacdo ao longo do
ciclo de carregamento indicou que diferentes mecanismos de dano séo ativados em diferentes
regides do ciclo pois necessitam de especificos niveis de energia para ocorrerem. A presenca
de multiplos limites de energia (Ut) associados a diferentes mecanismos de dano significa que
0 material pode apresentar diferentes resisténcias a delaminacdo. Esta variacdo se deve a
ativacdo de diferentes mecanismos de acordo com o ciclo de carregamento aplicado
dependendo da quantidade de U, ultrapassados. Por exemplo, a ruptura de pontes de fibra pode
afetar a liberacdo de energia de deformacg&o quando as condi¢fes minimas para a ativacéo desse
mecanismo séo excedidas. Foi observado que o aumento do angulo () das fibras na interface
em que a trinca se propaga eleva as tensdes atuantes na fibra, aumentando o nimero de eventos
de ruptura de pontes de fibra. Como esse mecanismo € associado a uma liberacao de energia de

deformacéo, a resisténcia do material é alterada.

PALAVRAS-CHAVE: Razéo de carregamento. Fractografia. Mecénica da fratura. Laminado.
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1 INTRODUCTION

1.1 CRACK PROPAGATION THEORY FROM GRIFFITH UNTIL PARIS: THE GAP
BETWEEN EMPIRICAL AND PHYSICAL UNDERSTANDING

One of the most critical questions that engineers have to deal with during the design of
any structure is how reliable is the approach to ensure a safe time in which the structure can
operate with or without damages. The failure or rupture of a structure usually occurs through a
crack propagation, which is nucleated and propagated due to the application of quasi-static,
dynamic or cyclic external loadings to the structure. In the last decades, innumerous crack
propagation models and different techniques were developed to predict the life of components
containing cracks. The vast majority of these life prediction models rely on the linear elastic
fracture mechanics (LEFM) theory (PASCOE; ALDERLIESTEN; BENEDICTUS, 2013).

The first relevant article related to crack propagation was developed by Griffith
(GRIFFITH, 1921), which is considered the basis of the LEFM theory. Griffith’s theory is based
on an energy balance approach, in which an amount of energy must be consumed and released
for crack propagation. The consumed energy corresponds to the energy required to create new
fracture surfaces, which is quantified by the surface energy of the material multiplied by the
area of new fracture surfaces. The released energy corresponds to the elastic strain energy
release from the surrounding material (GRIFFITH, 1921). It is important to mention that
Griffith’s work was restricted to perfectly brittle materials under fixed-grip and quasi-static load
conditions. Hence, several researchers made efforts to extend the theory first proposed by
Griffith to a broader range of materials and loading conditions.

The first significant addition to Griffith’s work was independently made by Orowan
(OROWAN, 1949) and Irwin (IRWIN, 1948), extending the energy balance concept to ductile
materials. When a crack grows in a perfectly brittle material, the energy consumption is
restricted to creating new fracture surfaces. However, ductile materials present a plastic
deformation in the vicinity of the crack tip, a process that also requires a certain amount of
energy to occur. Therefore, the energy consumption for ductile materials corresponds to a sum
of the energies consumed by plastic deformation and the creation of new fracture surfaces.

With the determination of the mechanisms responsible for energy consumption during
crack propagation, Irwin and Kies formalized the energy balance of Griffith mathematically, as
presented in Eq. 1.1 (IRWIN; KIES, 1954):
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aF _au _ dWstWp) | dEk

dA dA dA dA (1' 1)

in which F is the work applied in the body by external forces, U is the strain energy in the body,
W;s is the energy consumed by the creation of new fracture surfaces, Wy is the energy consumed
by the plastic deformation at the vicinity of the crack tip, Ex is the kinetic energy, and A is the
crack surface area.

The left side of Eq. 1.1 is the energy available for crack propagation, also known as the
strain energy release rate (SERR or G), while the right side corresponds to the energy required
for any crack increment, in which kinetic energy term is negligible in quasi-static condition.
This minimum energy required to crack propagation can be referred to as a critical energy value
(Gc), interpreted as the material resistance to crack propagation. Therefore, Eq. 1.1 works as a
stability criterion for crack propagation in which a stable propagation occurs when G = G, and
an unstable propagation occurs when G > G¢. However, one should note that the concept of G¢
is valid only for quasi-static load conditions, and should not be directly extended to cyclic
loading conditions. When a body containing a crack is submitted to cyclic loadings, the crack
propagates with values of G considerably lower than the critical value (G¢). Hence, many
researchers focused on explain and predict the fatigue crack growth behavior in fatigue.

Innumerous models have been proposed so far to predict crack growth in fatigue. Among
them, the work of Paris and co-workers was the most established and has been the basis for
most of the LEFM based-models developed after that. According to Paris, the fatigue crack
growth (FCG) is governed by the crack tip stress field rather than the far-field stresses. This
stress field surrounding the crack tip showed to be well represented by the stress intensity factor
(SIF or K), and its range (AK = Kmax — Kmin) Was used as a similitude parameter to develop the
Paris relation as follows (PARIS, 1963; PARIS; GOMEZ; ANDERSON, 1961):

= = Ccak™ (1.2)
where a is the crack length, N is the number of cycles, and C and n are curve fitting parameters.

Paris” work was developed based on the FCG in metals but was adopted to describe the
propagation of cracks and delamination in laminated composites and joint with adhesive bonds.
These materials present a non-homogeneous structure, which makes the calculation of K
extremely difficult. Thus, K was replaced by G as the similitude parameter to study fatigue
delamination growth (FDG).
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The equivalence between the SERR and the SIF was demonstrated by Irwing in Eqg. 1.3
(IRWIN, 1957):

G=1 (1.3)
Plane stress: E' = E (1.4)
(1.5)

. E
Plane strain: G = T

2

where E is the Young’s modulus of the material, and v is the Poisson ratio.

Irwin’s correlation in Eg. 1.3 means that two different principles could describe crack
propagation. The stress intensity factor (K) relies on the stress field surrounding the crack tip,
while G is based on the strain energy state of the body. The Paris relation was first developed
based on the concept that the crack tip stress field governs the FCG. When G replaces K, an
energy parameter is used to describe the stress state at the crack tip, making the similitude basis
of these FCG models unclear (PASCOE, 2016).

Besides, a crack tip will always present a stress field quantified by K, which means a
“real” quantity. On the other hand, G is defined as the amount of strain energy released due to
crack propagation, and when no propagation occurs, the value of G becomes a supposition of
the strain energy that would be released in case of damage propagation, which means a “virtual”
quantity. Therefore, according to Eqg. 1.3 proposed by Irwin, the crack tip stress state can be
measured by a “virtual” amount of energy described by G when no damage propagates
(PASCOE; ALDERLIESTEN; BENEDICTUS, 2015).

Models to predict crack propagation in composites have been developed for almost half
a century. However, most of the efforts were concentrated only on the prediction itself rather
than attributing physical explanations to the mechanisms associated with the process. This
mindset leads to models’ development through the mathematical adjustment of a curve to the
experimental data, which requires extensive test campaigns. Additionally, some factors might
affect the crack propagation behavior, e. g. the R-ratio variation, a combination of loads, and
the temperature. Aiming to account for these factors, most researchers have focused on
changing the similitude parameter of the fundamental relation, increasing the number of
empirical relations with a marginal understanding of the phenomenon itself (PASCOE, 2016).
The lack of consensus on which equation or similitude basis should be adopted to predict FCG
slows down technology advances. Thus, some backward steps are required to build a solid

foundation before any step further towards developing more empirical FCG prediction models.
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1.2 RESEARCH OBJECTIVES

The main goal of this research is to explain the underlying physics of the fatigue
delamination growth (FDG) in fiber-reinforced polymers (FRP). The research focused on the
investigation of the micro-mechanisms developed during crack propagation using the AE
technique, which led to the central question of this work:

e How does damage propagate within the loading cycles in fatigue?

This first question originated other questions regarding crack propagation within a single

loading cycle, which is addressed in Chapter 2:

e Is there an energy threshold within the loading cycle to enable damage propagation?

e How is the damage distribution along a single loading cycle?

e Does the R-ratio variation have any influence on the damage distribution along the
loading cycle?

e Does the R-ratio have any influence on the damage onset within the loading cycle?

e Is damage propagation continuous in fatigue?

In order to go into in-depth on this topic, the following questions were addressed in
Chapter 3:

e How is the strain energy release due to damage propagation within a single loading
cycle?

e What is the physical meaning of the similitude parameters most used in FDG prediction
models?

e Can the AE technique be used to measure the strain energy release within the loading
cycles?

e s it possible to correlate the strain energy release with the acoustic energy release and
the fracture surface features?

e Are different micro-mechanisms of damage associated with different energy thresholds

to enable damage propagation within the loading cycle?
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e Does the R-ratio variation have any influence on the strain energy release within the

loading cycles?

The concepts presented in Chapters 2 and 3 were used to correlate fiber bridging with

strain energy in Chapter 4, in which the following questions were addressed:

e How does fiber bridging affect the resistance to delamination growth?

e Which is the parameter that governs fiber failure?

e Does the fiber lay-up direction have any influence on the failure of bridging fibers,
affecting the strain energy released due to delamination growth?

e Can the AE technigue be used to identify fiber breakage in fatigue tests?

e When does fiber breakage occur: within the context of the loading cycles and during the

fatigue tests?
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5 FINAL CONSIDERATIONS AND FUTURE WORKS

The main objective of this research was to provide physical explanations to the
phenomenon of damage propagation (more specifically delamination growth) under cyclic
loading in laminate composites. The strategy to achieve this goal consisted of investigating the
process of damage formation within a single loading cycle using the acoustic emission
technique, which required the development of innovative methodologies. Among these
methodologies, a novel correlation was established between the release of acoustic and strain
energy, allowing the measurement of the strain energy released within the loading cycles due
to damage propagation by means of a conversion factor to convert one energy into the other.

This methodology showed to be suitable for scientific applications under controlled
testing conditions. However, the sensibility of this conversion factor to the specimen geometry
and the loading conditions inhibits the use of this technique for engineering purposes. Hence, a
challenge for future works is to gain knowledge on this correlation and, more specifically,
comprehend how this correlation varies with different testing conditions. In the present work,
a restricted number of cycles were considered in the analyses to avoid a considerable variation
of both the crack growth rate and the crack length, resulting in a linear behavior between the
acoustic and the strain energy released, which allowed the calculation of the conversion factor
using the slope of the curve adjusted to the experimental data. Consequently, the behavior of
the strain energy released within the loading cycles could be investigated by measuring the
acoustic energy released due to damage formation. These results supported the hypothesis of
multiple damage mechanisms activation associated with respective energy thresholds (U),
which was based on the variation of the strain energy release rate in different regions of the
loading cycle.

The strain energy stored in the specimen’s arms varies according to the region of the
loading cycle, meaning that different energy thresholds (each one associated with a specific
damage mechanism) are crossed in different regions of the cycle. Therefore, if more energy
thresholds are crossed, more damage mechanisms are activated, increasing the strain energy
released rate within the cycle, as observed in the results presented in Chapter 3. In addition, the
present research focused on proving the hypothesis of multiple energy thresholds.
Consequently, the identified thresholds were not associated with a specific damage mechanism,
which is a challenge for future works.

Chapter 4 gave some steps towards this direction, focusing on identifying fiber breakage

within the loading cycles using the acoustic emission technique, which is a technique with a
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great potential for damage identification. On the other hand, using the acoustic emission
technique for damage identification in fatigue presents some limitations related to the extensive
amount of data created during the test, which avoids recording the waveform, inhibiting the use
of frequency parameters for damage identification. Besides, reducing the detection of signals
related to noise is a challenge, especially signals from friction noise, and the use of different
specimen configurations could be considered.

Finally, the hypothesis of multiple energy thresholds for the activation of multiple
damage mechanisms can be beneficial for developing crack growth prediction models in
fatigue. In general, as discussed in Chapters 2 and 3, the literature refers to a single energy
threshold to damage onset, resulting in models unable to explain the influence of both the stress
ratio and the crack growth rate on the fatigue resistance curves. In the present work, the
hypothesis of multiple energy thresholds showed a clear correlation between the loading cycle
and the crack growth behavior, revealing the potential of this concept to originate models that
reflect the real behavior of the material based on physical concepts.
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