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RESUMO

Neste trabalho, sdo propostas novas condi¢des para oleahrsistemas lineares dependentes
de parametros variantes no tempo (do indlésear Parameter-Varying LPV), considerando a
realimentacao derivativa. A principio, sera abordado blproa’#, para entdo obter condi¢des
para o controlador de realimentacdo derivagaim scheduling’z,. Em seguida, condigdes
para o controlador de realimentagédo derivatiean scheduling’# sé&o obtidas. O projeto
dos controladores é baseado em desigualdades matriciessds (do ingléd,inear Matrix
Inequalities- LMIs). E importante ressaltar que sera considerada tamdbénestabilidade
no projeto de controle, como forma de obter bom desempentowu sinal de controle
passivel de implementacdo em um sistema real. Aqui, asgeglpara &-estabilidade serdo
tratadas no sentido de sistemas invariantes no tempo, doneydixos do parametro variante
em seu intervalo de variagdo. Ademais, as condi¢Oes paxplestam em conta uma fungéo
de Lyapunov quadratica comum (do ingl&mmon Quadratic Lyapunov FunctiefCQLF)
para, em seguida, serem comparadas com as condi¢cdes propossiderando uma funcao
de Lyapunov dependente do parametro variante (do ing#smeter-Dependent Lyapunov
Function- PDLF). Este trabalho também oferece condi¢cdes necess@salficientes para o
controle mistos#./.7/, ou seja, junta ambos, o problei&, e o problemas. As condicdes
propostas sdo aplicadas em diversos exemplos para moskautijizando-as € possivel
diminuir o custo garantido7;, e 772, ou seja, minimizar o efeito de um possivel distarbio no
sistema. Além disso, por meio de um sistema instavel, tequseom as condi¢des propostas
pode-se a0 mesmo tempo estabilizar o sistema e minimizasto garantido.

Palavras-chave: Desigualdades Lineares Matriciais (LMIs). Gain Scheduling(GS).
Realimentacao Derivativa. Custo Garantigdf,. Custo Garantido#2. Custo Garantido Misto
Il 7. -estabilidade.



ABSTRACT

In this work, new conditions for the control of linear parderevarying systems (LPV) are
proposed, considering the state derivative feedback. #tt tlie.7#, problem will be addressed
in order to derive conditions for the7;, gain scheduling state derivative feedback controller.
Then, conditions for the’s gain scheduling state derivative feedback controller &tained.
The design of the controllers is based on linear matrix iaégjes (LMIs). It is important to
emphasise tha¥-stability in the control project will also be considered, @ way to obtain
good performance with a control signal that can be impleetent a real system. Here, the
conditions forZ-stability will be treated in the sense of time-invarians&gms, with "frozen"
values of the parameter-varying in their range. In addjtidre proposed conditions take
into account a common quadratic Lyapunov function (CQLRhten be compared with the
proposed conditions considering a parameter-dependaptinov function (PDLF). This work
also offers necessary and sufficient conditions for the thi#g,/.7# control, i.e., it joins both
I problem ands# problem. The proposed conditions are applied in severahples to
show that using them it is possible to decrease the guarkhotst 75, and.7#, i.e, to minimise
the effect of a possible disturbance in the system. In amidithrough an unstable system, it is
possible to stabilise the system and minimise the guardmiest with the proposed conditions.

Keywords: Linear Matrix Inequalities (LMIs). Gain scheduling(GS). State Derivative
Feedback (SDF). 7, Guaranteed Cost.s# Guaranteed Cost. Mixed#,/.7# Guaranteed
Cost. Z-stability.
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1 INTRODUCTION

In the past few years, the State Derivative Feedback (SDF ¢ganed close
attention in the control literature as we can see in the séveapers dealing with it.
For instance, in the following problems: vibration contri landing gear components
(KWAK; WASHINGTON; YEDAVALLI, 2002), bridge cables (DUANNI; KO, 200%),
pole placement for linear systems (ABDELAZIZ; VALASEK, 24)) uncertain linear
systems (ASSUNCAO etal., 2007; ABDELAZIZ. 2009: FARIA et,al2009), active
suspension systems (REITHMEIER; LEITMANN, 20C3; SILVA &, #2013; SEVER et al.,
2017; YAZICI; SEVER, 2017), linear quadratic regulator (BETO etal.,, 2018;
SEVER; YAZICI, 2019), design of SDF control laws in discretene (ROSSI et al.,
2018), adjustment of vehicle’s attitude and motion (FALLAHal, 2012), pitch
motion control for a marine vehicle (BASTURK; ROSENTHAL; IXIC, 2014),
control of discretised systems (LEANDRO; PEREIRA; KIENI|TZ2020), control of
boost converters (FAISAL; LATHER, 2020), descriptor sysse (DUAN; ZHANG,
2002; CARDIM etal., 2008), singular systems (ZAGHDOUD; SAL.KSOURI, 2018),
Takagi-Sugeno (T-S¥uzzy descriptor systems (BARBOSA; SOUZA; PALHARES, 2019;
HE etal., 2020), robust PID controllers (VESELKOROSI, 2019), %, for linear
systems (SEVER; YAZICI, 2017).%, for uncertain linear systems (YAZICI; SEVER,
2018), 7%, T-S fuzzysystems (KAEWPRAEK; ASSAWINCHAICHOTE, 2016; HE etal.,
2020; RUANGSANG; ASSAWINCHAICHOT, 2019), delayed hybricestriptor systems
(GUANGMING et al,, 2019), gain scheduling (LLINS et el., 20)1 delayed fractional-order
multiagent systems (LIU etal.. 2018), partial eigenvalissignment for linear systems
(ARAUJQ, 2019), among others.

The main characteristic of SDF is that the signals of sedasrilative are available
to feedback owing to the presence of accelerometers as rsensdVith this type of
sensors, the second-derivative signals represent thdeestoen signals. According to
Abdelaziz and Valasek (2004), it is possible to obtain thieaity signals by integrating the
acceleration signals with good accuracy, but the same datescceurs with the displacement
signals. In this way, the SDF is widely applied on vibratiopgression control in mechanical
systems, hence the fact that the second-derivative sigmalacceleration and velocity. It is
worth mentioning that when sensors directly measure skateatives the State Feedback (SF)
does not always solve the problem (SUEUR, 2016), owing tostgaal noise when being
integrated twice. Therefore, the SDF has the advantagdwhgdhe problem with simplicity,
using the signal available for feedback and with lower géBisEUR, 2015; TSENG, 2009).
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Additionally, owing to their simple structure and low coatcelerometers have been applied
to a large number of engineering problerns (SABATO et al..62KASPRZYK et al., 2017;
ZHU et al., 2013).

As we can note, the SDF is used to solve a variety of enginggoblems. Newly,
Yazici and Sever (2021.8) proposed a robugt, SDF controller for an active suspension
system. In system theory %, norm is a very important performance index, which
measures the system capacity to reject energy boundedidiates (MONTAGNER et al.,
2005). Additionally, thes#, problem has been addressed by several papers, for instance,
Carniato et al. (2018) developed a robusgt, switched static output feedback controller for
continuous-time switched linear systems with polytopicenainties; Oliveira et al. (2018)
introduced a local’Z, switched controller design for a class of uncertain nomlinglants
described by T-8uzzymodels with unknown membership functions; Rosa, Morais@inira.
(2018) investigated the problems of stabilisation and ohix&/.7#, reduced-order dynamic
output-feedback control of discrete-time linear systentllowing the path of SDF and
s problem, Ren and Zhang (2010) developed a rob#st control for descriptor systems
using a proportional plus derivative state feedback; Kaaejpand Assawinchaichote (2016)
introduced an?, fuzzySF plus SDF control for photovoltaic systems based on Livestrix
Inequalities (LMIs); Ruangsang and Assawinchaichot (}0h9estigated the problem of a
robust.7Z, SF plus SDF control for a class of uncertain non-linear systelescribed by a
T-Sfuzzymodel.

Highlighting the papers that deal with the th€,-SDF problem, note that they explore
only Linear Time-Invariant (LTI) orfuzzysystems. Differently from what is presented in
(REN; ZHANG, 2010; KAEWPRAEK; ASSAWINCHAICHOTE, 20..6; YALI; SEVER,
2018; RUANGSANG; ASSAWINCHAICHOT, 2019), this work addses the./7-SDF
problem, but for Linear Parameter-Varying (LPV) systensing the Gain Scheduling (GS)
strategy with LMIs to solve the problem. In control literegy Llins et al. (2017) introduced
the GS strategy for LPV systems considering the SDF. EgAigkarian and Gahinet (19935),
Montagner et al. (2005) started the study of #4& problem for LPV systems considering the
GS strategy. Now, we intend to derive LMIs conditions #6t,-GS-SDF controllers. The main
choice of the GS strategy relies on the great interest of tiéral research community on it.
According to Rugh and Shamma (2000), Al-Jiboory and Zhu 820tLis achievable improve
the system performance by means of the GS strategy, acgessinscheduling parameters
(in real-time) through measurements or estimations. Tineegs Rugh and Shamma (2000),
Wei et al. (2014) and the references therein contain a geekignpound on GS strategy.

Regarding the GS strategy to solve the problem offieguaranteed cost for LPV systems,
several papers addressed it in specialised literature. insteince, Montagner et al. (2005),
Montagner and Peres (2006) developed LMI conditions fordibsign of 74,-GS controllers
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for LPV systems; Zhou, Zhang and Zheng (2009) addressed ribtdepn of 77%,-GS filter
design for a class of parameter-varying discrete-timeesystusing LMIs; Caigny et al. (2012)
proposed LMIs conditions for GS dynamical output feedbd®F) controllers and GS-DOF
mixed J#, / 7 controllers for discrete-time LPV systems; Rosa, Morai @fiveire. (2018)
investigated the problems of stabilisation and mixéel/ .7, reduced-order dynamic output-
feedback control of discrete-time linear systems usingipater-dependent LMIs. As we can
note, thes7, problem is successfully solved by the GS strategy, hencmotivation to develop
the 77%,-GS-SDF controller.

In addition to the J%,, the 7 control is quite considered in the control litera-
ture. For instance, in the following problems: parametrigeastructure assignment
for linear systems (WANG; LIANG; DUAN, 2006), SDF control obverhead crane
systems (ALIl, 2017), microsatellite attitude control (YBNSUN, 2002), robusti#
and 7, filters for uncertain linear systems (LACERDA; OLIVEIRA; RES, 2011),
discrete-time periodic systems (FARGES et al., 2007; PEBLE; EBIHARA; ARZELIER,
2008), active suspension control (AGHAIE; AMIRIFAR, 2007)Xwo-floors building
model vibration control (SANTOS et al., 2007), control ofrg@eter dependent systems
(OLIVEIRA; SOUZA; TROFINC, 2000). With thes# norm it is measured the Root-Mean-
Square (RMS), in time domain, value of an impulse response&tionary white noise response
(YANG; SUN, 2002). It is worth to mention that we are using LBYstems, which means
that the7# problem is considered in the parameter-dependent sengé gaaranteed cost. In
this work, the definition to this problem is based on the rssoil (PAGANINI; FERON, 2000;
SOUZA; TROFINO; OLIVEIRA, 2003; XIE, 2005), and will be bett explored later in the
text. Considering the7s guaranteed cost for LPV systems, a great number of papdraiitlea
Xie (2005), Xie (2012) designed new LMIs formulations foet&S control of LPV systems
in which the Lyapunov matrix is decoupled from the systemrivas; Aouani et al. (201.2)
developed conditions based on LMiIs for the robust stalalitgt the 75 performance analysis of
LPV systems subject to uncertainties and under polytopicire; Cai et al. (201.4) designed
sufficient conditions for the’-GS-SF and72-GS dynamic output feedback controllers for
LPV systems; Kang, Lee and Chung (2017) introduced an obsegain scheduling based
on % filter for discrete-time LPV systems; Al-Jiboory and Zhu 180 developed the static
output-feedback GS control for LPV systems with schedutiagameters measures affected by
uncertainties or noises; Palma, Morais and Oliveira (2@&jgned a technique named Sub-
Domain Optimisation Heuristic (SDOH) in order to obtaif controllers or filters that treat
robust stability independently of performance.

Note that the above papers of th& guaranteed cost for LPV systems do not use the SDF
in the problem. In fact, a few papers consider the SDF on tha@u&on of thes# problem. For
instance, Zaghdoud, Salhi and Ksouri (2015) proposed aoptiopal plus derivative feedback
controller for continuous and discrete descriptor systetaghdoud, Salhi and Ksouri (2018)
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developed SDF controllers for LTI descriptor systems abersing the 72 in terms of the Linear
Quadratic (LQ) criteria; Ali (2017) derived aw#5 optimal control using the SDF (the?
problem is also in terms of the LQ criteria). In this work, ikelwhat is done in the mentioned
papers, we consider th&> problem for LPV systems. Then, following this scenario.4f,
and.”75 problems, this work has three main objectives, derive LMiditions for the7Z5,-GS
control using SDF, the’Z,-GS-SDF control; derive LMI conditions for the?5-GS control
using SDF, the#5-GS-SDF control; and derive LMI conditions for th#3/.7,-GS control
using SDF, thei3/.7,-GS-SDF control. Note that the controllers are derived deoto reduce
the 7%, and .7 guaranteed costs for LPV systems. To the best of the autkiowledge, the
conditions for the controllers mentioned above have nohipeblished yet.

Additionally, a region in the left-half plane for pole locat is considered. This region
may assist us to improve the system performance and/or teceethe control signal. The
chosen region is th& region, presented in (CHILALI; GAHINET, 1996), where th&,
problem is also considered. It is important to emphasisethigaeigenvalue constraints must
be understood in the time-invariant sense, i.e., for "frdzealues of the varying-parameter
in its range (KAJIWARA; APKARIAN; GAHINET, 1999; PUIG; BOLE; BLESA, 2012).
Furthermore, to derive the LMI conditions a Common Quadrayiapunov Function (CQLF)
and a Parameter-Dependent Lyapunov Function (PDLF) wilideel and compared. The use of
a PDLF in the approach of LPV systems seems to lead to lesg@tisze results (WU et al.,
1996; OLIVEIRA; GEROMEL., 2005; SATO; PEAUCELLE, 2013; AUBOORY; ZHU,
2018), hence the main motivation to used it.

1.1 CONTRIBUTIONS

The main contributions of this work are:

Design of an%,-GS-SDF controller for LPV systems;

» Design of ani#,-GS-SDF controller for LPV systems considering a PDLF,;

» Design of an#%-GS-SDF controller for LPV systems;

 Design of ans#-GS-SDF controller for LPV systems considering a PDLF;
 Design of a controller considering the SDF and thestability for LPV systems;
* Design of a7-.7,-GS-SDF controller for LPV systems;

» Design of az-.7/-GS-SDF controller for LPV systems;

 Design of ans#./.75-GS-SDF controller for LPV systems;
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 Design of anz-7#,1.745-GS-SDF controller for LPV systems;

* Inclusion of a parallel with the robust control.

1.2 STRUCTURE OF THE TEXT

The work is organised as follows:

» Chapter 2 presents some fundamentals concepts and pesyibet will be used over the
text: the LPV system, the SDF for LPV systems, and a chaiaatern of the dependent
parameter (and its derivative) were presented, followeithbyntroduction of thezZ, and
5 problems in terms of parameter-dependent systems. Alsaesgepted a couple of
useful lemmas.

» Chapter 3 presents the conditions for th,-GS-SDF controllers in terms of LMIs.
It is important to mention that the first conditions obtainesed a CQLF and, in the
subsequent conditions for th&?3, problem, a PDLF was used. For illustration, the
proposed conditions were applied in four examples. The dixample shows that the
H-GS-SDF controllers performed well when applied on an acsispension system.
The second example was considered just to indicate thattip@ped conditions are able
to reduce thei, guaranteed cost and stabilise an uncertain system. Thieekaémple
is an analysis of the@ parameter when a PDLRP(a(t))) is considered. With suitable
values, it is possible to obtain low#;, guaranteed cost values. The fourth example is
concerned with the comparison between the conditions willQiF and those with a
PDLF, i.e., a feasibility analysis was performed.

e In Chapter 4 we derived GS-SDF controllers considering.#feguaranteed cost. To
obtain the controllers, the conditions were based on thdtsesf (SOUZA; TROFINO,
2006), and the first conditions take into account a CQLF terlabnsider a PDLF. To
analyse the performance of the proposed conditions, foameles were used. At first,
we consider a mass-spring-damper system. Second, an lensfatem is used to to show
that the proposed#-GS-SDF controller is capable of to reduce th#@ guaranteed cost
and stabilise the system. An analysis of th@arameter is presented in the third example.
Finally, a feasibility analysis is showed comparing thedibans with a CQLF with those
with a PDLF.

» Chapter 5 presents the conditions for the#,-GS-SDF andZ-.7#2-GS-SDF controllers
in terms of LMIs. The choser-region was a circular disk in complex plane with
center(—1,0), radiusr and decay raté, with q = 0 +r. Furthermore, in this work, the
eigenvalue constraints must be understood in the timeiavasense, i.e., for "frozen”
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values of the varying-parameter in its range (KAJIWARA; ARKIAN; GAHINET.
1999; PUIG; BOLEA; BLESA 2012). The conditions derived wdrased on a CQLF.
For illustration, the proposed conditions were appliecbime examples, according to the
examples presented in previous sections.

 In Chapter 5 we derived GS-SDF controllers consideringrhed 72,/ .77 problem. The
conditions are based on a CQLF. Furthermore @he?,/.7 controller is also presented.
Following the previous chapters, some examples are camrside show that the new
conditions performed well.

» Chapter 7 presents some comments about the new conditiopsged in this thesis.
Also, it presents a parallel with the robust control, sh@vsome new conditions
considering the SDF, the#, problem, thes# problem, the mixed//.7# problem,
and theZ-stability.

» Chapter 3 states the conclusions, as well as the relatdecatitns and suggestions for
future works.
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8 CONCLUSIONS

This work proposed methods for the gain scheduling contirdihear parameter-varying
systems subjects to a disturbance signal. Through thegbrafee gain scheduling strategy is
considered, which has been gaining attention in the contwimunity and, having access to
the scheduling parameter in real time, it is possible to owprthe performance of the system.
Furthermore, the state derivative is used owing to the easgsarement of the second-derivative
signals, once that the system has accelerometers as maorsem addition, to deal with the
disturbance signal, two approaches were considered/#hand the. 7, guaranteed costs.
With the proposed method, it is achievable to reduce thetsfigf the disturbance signal in the
performance of the systems, improving the system workingotAer important fact is that to
derive the LMI conditions, the Lemma 2.7 was used. With thimiina it is possible to deal with
the cross product between three parameter-dependeniestia

For illustration, some examples have been presented tordgrate the effectiveness of the
proposed methods. Considering th, guaranteed cost, the first example consisted of applying
the J%,-GS-SDF controller to an active suspension system. Thigesysvas subject to two
disturbance signals, a sinusoidal scan and a square waletHitases, the designed controller
was able of mitigate the effect of the disturbance signasueng a satisfactory closed-loop
performance, increasing the comfort to the driver and misiimg the mechanical stress to the
suspension system. The second example, an uncertain sysiensed to show that with the
proposed methods it is possible to ensure a.b#ly guaranteed cost and stabilise the unstable
system. The third and the fourth examples are complemenitasy present an analysis of the
P parameter and a feasibility analysis between Theoremsrgl B&!. With these analysis it
can be seen that the use of a PDLF is less conservative thaséhe a CQLF.

Regarding the5-GS-SDF controllers, similar analysis t##,-GS-SDF controller were
performed, also considering four examples. The first exarophsiders a mass-spring-damper
system subject to two disturbance signals, a sinusoidal@cd a pulse occurring periodically.
In both cases the designed controller was able to minimeseffiect of the disturbance signal,
ensuring a satisfactory closed-loop performance. Withstend example, it was shown that
the 7#-GS-SDF is capable of to minimise and to stabilise#ffeguaranteed cost of an unstable
system. The third and the fourth examples presented thgsasalf thep, parameter and a
feasibility analysis for the#Z2-GS-SDF.

It is important to highlight that, although the conditioms the 7%-GS-SDF and/Z,-GS-
SDF were based on (YAZICI; SEVER, 2018) and (SOUZA; TROFINERJVEIRA 2003),
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respectively, the conditions consideriRga (t)) (and the characterisation of(t) was based
on the results from (MONTAGNER; PERIZS, 2006). In this wag tdonsiderations made in
(MONTAGNER; PERES, 2006) fop, is valid in this work. Thus, the conditions wit(a (t))
(obtained with a PDLF and with a suitable choiceopfalways ensure a lower cost, or at least
equal, than the conditions obtained through a CQLF.

Furthermore, in this work was also presented a region in ¢fichklf plane for pole
location to improve the system performance and/or to redloeeontrol signal. The chosen
region would be the” region, presented in (CHILALI; GAHINET, 1996). It is impaurt to
emphasise that the eigenvalue constraints must be undéristéhe time-invariant sense, i.e.,
for "frozen” values of the parameter in its range (KAJIWARAPKARIAN; GAHINET . 199¢;
PUIG; BOLEA; BLESA, 2012). With thez-7#-GS-SDF and%-.77,-GS-SDF controllers,
and the properly choice of the parameterand 9, it is possible to achieve better transients
responses. However, a more detailed analysis of the inclusi the -stability would be
interesting for LPV systems.

Finally, two topics were still addressed in this thesis. Titst deals with the mixed?,/ .74
control considering SDF, LPV systems and thestability. Through the examples we saw that,
for this case, ifZ-stability was not considered, it would not be possible tplement a mixed
Jl 7 controller, since the controller norm was high. With thiswas also noticed that
the sub-optimal guaranteed cost was the best choice, dimgasipossible to implement the
controller.

The second topic deals with the robust control. As the camtitare similar, a parallel
was made between the robust control and the GS control. Hawthis topic only intends
to demonstrate that the conditions are similar and that foissible to obtain conditions for
robust control considering the SDF, thestability, the. 7, problem, the# problem and the
mixed.7%./.7/5 problem. In addition, it remains as a suggestion for futuoeks to analyse and
implement the proposed conditions for the robust case.

8.1 FUTURE RESEARCH SUGGESTIONS

The following suggestions encompass ideas for future works

 Lemma 2.7 considers the cross product between three {esjadnd its results can be
conservative. In this way, for future works, we intend tadstand analyse the triple sum
to derive less conservative LMI conditions;

« It would be interesting to make a study of how the frequemtgrferes in the proposed
conditions, since we are consideriRgo (t)) and the derivative of the parameter-varying
appears;
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* A more detailed analysis regarding the inclusion of #heegion for LPV systems would
be interesting for LPV systems. In addition to this analygisvould be opportune to
study the use of a PDLF to derive the LMI conditions for theGS-SDF controllers;

* Derive the conditions for the the mixe#?,/.7#, control considering a PDFLP(a (t)));

* Analyse and compare the conditions for the robust casesidenng the SDF, the/-
stability, the7Z, problem, thes#2 problem and the mixed#,/.5# problem.
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