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Multiplicity Results for the Fractional
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Abstract. In this paper, we establish a multiplicity result of nontrivial
weak solutions for the problem (−Δ)αu + u = h(u) in Ωλ, u = 0
on ∂Ωλ, where Ωλ = λΩ, Ω is a smooth and bounded domain in
R

N , N > 2α, λ is a positive parameter, α ∈ (0, 1), (−Δ)α is the frac-
tional Laplacian and the nonlinear term h(u) has subcritical growth. We
use minimax methods, the Ljusternick–Schnirelmann and Morse theo-
ries to get multiplicity results depending on the topology of Ω.
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1. Introduction

This paper is concerned with the following problem:{
(−Δ)αu + u = h(u) in Ωλ,
u = 0 on ∂Ωλ,

(1.1)

where Ωλ = λΩ, Ω is a smooth and bounded domain in R
N , N > 2α, λ is

a positive parameter, α ∈ (0, 1), (−Δ)α is the fractional Laplace operator,
whose definition will be briefly recalled in the next section, and h satisfies
suitable assumptions.

We are motivated in studying an equation involving the fractional Lapla-
cian due to the great attention which has been given in these last years to
problems involving fractional operators, both in R

N and in bounded domains.
Indeed these problems appear in many areas such as physics, economy, fi-
nance, optimization, obstacle problems, fractional diffusion and probabilistic.
In particular, from a probability point of view, the fractional Laplacian is the
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infinitesimal generator of a Lévy process, see e.g. [11]. We also recall that a
fractional Schrödinger equation has been derived by Laskin in the framework
of the Fractional Quantum Mechanics. More information and applications
are contained in some references such as [7,19,26,27,30].

On the other hand, in a beautiful series of papers, Benci, Cerami and
Passaseo (see [8–10]) investigate the existence and multiplicity of positive
solutions for equations of type −Δu + λu = up−1 (that with a simple change
of variable can be transformed in a problem involving an expanding domain
like (1.1) for α = 1) or −εΔu + u = f(u) in a bounded domain Ω with
Dirichlet boundary conditions. In particular, they develop a tool which allows
to estimate the number of positive solutions depending on the “shape” of the
domain (or of suitable “nearby” domains), whenever the parameters λ, ε or p
tend to a suitable limit value. They use variational methods, and introduce
suitable maps which permit to see “a photography” of Ω in a certain sublevel
set of the energy functional related to the equation. Then the Ljusternick–
Schnirelmann and Morse theory, based on the properties of the category and
some Morse relations, are used to obtain the existence of multiple solutions.
Later on, these general ideas have been successfully applied also in other
contexts, such as the “zero mass” case in [29], Klein–Gordon and Schrödinger–
Poisson type equations in [23,24,28], p-Laplacian equations in [1,2,15–18],
quasilinear equations in [3,5], fractional Schrödinger equation in R

N with a
potential in [22], problems involving magnetic fields in expanding domains in
[4,6], among many others.

The aim of this paper is to show existence and multiplicity results of
solutions for the fractional scalar field equation (1.1) in the expanding domain
Ωλ. We obtain the same type of results of the papers cited above: roughly
speaking, for λ large enough the number of nonnegative solutions is bounded
below by topological invariants related to Ωλ. In the proof of our results, we
use some arguments that can be found in [1,4,5]. However, due to the presence
of the fractional Laplacian, some more refined estimates are need, such as in
Propositions 4.1 and 4.3, for instance. To the best of our knowledge, our paper
is the first one where the Morse theory is applied to the fractional Laplacian
to obtain multiplicity of solutions depending on the domain topology. For
other applications of the Morse theory to fractional operators see, e.g., [25].

More precisely, let us assume that h : R → R is a C1-function verifying
the following conditions:

(H0) h(s) = 0 for s ≤ 0;
(H1) lim|s|→∞ h(s)/|s|q−1 = 0 for some q ∈ (2, 2∗

α) where 2∗
α = 2N/(N−2α);

(H2) there exists θ > 2 such that 0 < θH(s) ≤ sh(s) for all s > 0, where
H(s) =

∫ s

0
h(t) dt;

(H3) the function s �→ h(s)/s is increasing for s > 0.

The typical function satisfying the above conditions is h(s) = sμ for
s ≥ 0, with 1 < μ < q − 1, and h(s) = 0 for s < 0.

Note that by the regularity of h and (H0) it holds h(s) = o(|s|) near the
origin, and h′(0) = 0.

Our main results are the following.
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Theorem 1.1. Suppose that (H0)–(H3) hold. Then there exists λ∗ > 0 such
that for λ ≥ λ∗, problem (1.1) has at least catΩλ nonnegative weak solutions.

For Y ⊂ X, we are denoting with catX Y the Ljusternick–Schnirelmann
category of X in Y , i.e., the least number of closed and contractible sets in
X which cover Y . When X = Y we just write cat X.

As usual, we get one more solution if the domain Ωλ is not contractible,
i.e.,

Theorem 1.2. Beside the assumptions of the previous theorem, assume that
catΩλ ≥ 2. Then there exists λ∗ > 0 such that for λ ≥ λ∗, problem (1.1) has
at least catΩλ + 1 nonnegative weak solutions.

If we replace (H1) by a slightly stronger condition to deal with the
second variation of the energy functional associated to problem (1.1), we can
get a better result using the Morse theory. To this aim, let

(H1’) lim
|s|→∞

h′(s)/|s|q−2 = 0 for some q ∈ (2, 2∗
α).

Then, we have

Theorem 1.3. Suppose that (H0)–(H1’)–(H2)–(H3) hold. Then there exists
λ∗ > 0 such that for λ ≥ λ∗, the Eq. (1.1) has at least 2P1(Ωλ)−1 nonnegative
weak solutions, if counted with their multiplicity.

Here P1(Ωλ) denotes the Poincaré polynomial of Ωλ evaluated in t = 1.
This definition will be recalled later during the proof.

To prove our results, we use variational methods. Indeed a functional on
a Hilbert space can be defined in such a way that its critical points are exactly
the solutions of (1.1). In this framework, the assumptions on h are quite
natural to deal with Nehari manifolds, Mountain Pass arguments and Palais–
Smale condition. We recall that if I is a C1 functional on a Hilbert manifold
M and c ∈ R, a sequence {vn} ⊂ M is said to be a Palais–Smale sequence
for I at level c (briefly, a (PS)c sequence) if I(vn) → c and I ′(un) → 0 in the
tangent bundle. Furthermore, I is said to satisfy the Palais–Smale condition
at level c if every (PS)c sequence has a convergent subsequence.

The functional related to our problem will turn out to be bounded from
below on the “manifold solution” and verify the Palais–Smale condition at
every level c, so the “photography method” of Benci and Cerami can be
implemented and the classical Ljusternick–Schnirelmann and Morse theory
can be used to estimate the number of critical points of the functional, that
is, the number of solutions of (1.1).

1.1. Notations

Let us introduce here few notations that will be used throughout the paper.
• BR(x) denotes the open ball in R

N of radius R centered in x; if x = 0
we write BR. In all the paper, we assume without loss of generality that
0 ∈ Ω.

• For U ⊂ R
N , we denote with CU the half cylinder U × (0,+∞) ⊂ R

N+1.
In particular, CRN = R

N × (0,+∞). Whenever an element of CU is
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written as (x, y), it has always to be intended as x ∈ U, y ∈ (0,+∞). If
U 	= R

N , the lateral boundary of the cylinder is ∂LCU = ∂U × [0,+∞).

Other notations will be introduced along the paper as soon as we need. Fi-
nally, we will use C1, C2, . . . to denote suitable positive constants, whose exact
value may change from line to line.

The plan of the paper is the following. In Sect. 2, we recall some facts
on the fractional Laplacian and write the variational framework in which we
will work. Section 3 is devoted to study the limit problem associated to our
equation; in particular compactness results are proved and, en passant, also
the existence of a ground state solution for (1.1). In Sect. 4, we introduce the
barycenter map and its properties. Moreover, a careful analysis of the ground
states level in terms of λ is carried out. Finally, in Sect. 5, we give the proof
of Theorems 1.1 and 1.2, and finally in Sect. 6, after recalling some facts and
introducing some notations in classical Morse theory, we prove Theorem 1.3.

2. Preliminary Results and the Variational Framework

In this section, we start by introducing the functional framework nec-
essary to apply variational methods and recover some known results about
the different forms of definition of the fractional power of the Laplacian with
Dirichlet boundary condition.

Let us consider the half cylinder with base Ωλ, i.e., CΩλ
and let

H1
0,L(CΩλ

, y1−2α) =
{

v ∈ H1(CΩλ
); v = 0 on ∂LC and ‖v‖α < ∞

}
,

where

‖v‖α =

(
k−1

α

∫
CΩλ

y1−2α|∇v|2dxdy +
∫

Ωλ

|trΩλ
v(x)|2dx

)1/2

,

kα = 21−2αΓ(1 − α)/Γ(α), α ∈ (0, 1) and trΩλ
is the trace operator given

by trΩλ
v = v(·, 0) for v ∈ H1

0,L(CΩλ
, y1−2α). It is not difficult to see that

H1
0,L(CΩλ

, y1−2α) is a Hilbert space when endowed with the norm ‖ · ‖α,
which comes from the following inner product

〈v, w〉α =
∫

CΩλ

k−1
α y1−2α∇v∇wdxdy +

∫
Ωλ

v(x, 0)w(x, 0)dx.

Consider the following space:

Vα
0 (Ωλ) =

{
trΩλ

v; v ∈ H1
0,L(CΩλ

, y1−2α)
}

.

By [14, Proposition 2.1], there exists a trace operator from H1
0,L(CΩλ

, y1−2α)
into the fractional Sobolev space Hα

0 (Ωλ). Then Vα
0 (Ωλ) is a subspace of the

fractional Sobolev space Hα(Ωλ) endowed with the norm

‖u‖Vα
0 (Ωλ) =

(
‖u‖2

L2(Ωλ) +
∫

Ωλ

∫
Ωλ

|u(x) − u(y)|2
|x − y|N+2α

dxdy

)1/2

.
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Moreover, by the Trace theorem and embeddings of the fractional Sobolev
spaces (see [20, Theorem 6.7] for instance) it follows that

‖trΩλ
v‖Lp(Ωλ) ≤ C‖v‖α, ∀v ∈ H1

0,L(CΩλ
, y1−2α),

where p ∈ (1, 2∗
α).

By [14, Proposition 2.1] it holds that

Vα
0 (Ωλ) =

{
u ∈ L2(Ωλ); u =

∞∑
k=1

bkϕk such that
∞∑

k=1

b2
kμα

k < ∞
}

,

where hereafter (μk, ϕk) are the eigenpairs of (−Δ,H1
0 (Ωλ)), μk repeated as

much as its multiplicity.
Given u ∈ C∞

0 (Ωλ), with u =
∑∞

k=1 bkϕk, we define the operator

(−Δ)αu =
∞∑

k=1

μα
k bkϕk (2.1)

which extends by density on Vα
0 (Ωλ).

Instead of working with this definition, we can get a local realization of
(−Δ)α by adding one more dimension. Indeed, as proved in [14, Section 2.1],
for each u ∈ Vα

0 (Ωλ) there exists a unique ũ ∈ H1
0,L(CΩλ

, y1−2α), called the
α-harmonic extension of u such that⎧⎨

⎩
−div(y1−2α∇ũ) = 0 in CΩλ

ũ = 0 on ∂LCΩλ

ũ(·, 0) = u on Ωλ.

Moreover, if u =
∑∞

k=1 bkϕk then

ũ(x, y) =
∞∑

k=1

bkϕk(x)ψ(μ1/2
k y), ∀(x, y) ∈ CΩλ

, (2.2)

where ψ solves the Bessel equation⎧⎪⎪⎨
⎪⎪⎩

ψ′′(s) +
1 − 2α

s
ψ′(s) = ψ , s > 0

− lim
s→0+

s1−2αψ′(s) = kα

ψ(0) = 1.

(2.3)

Now, for a fixed u ∈ Vα
0 (Ωλ) define the functional

1
kα

∂ũ

∂yα

∣∣∣∣
Ωλ×{0}

∈ Vα
0 (Ωλ)∗

by〈
1

kα

∂ũ

∂yα
(·, 0), g

〉
(Vα

0 (Ωλ)∗,Vα
0 (Ωλ))

:=
1

kα

∫
CΩλ

y1−2α∇ũ∇g̃ dxdy, g ∈ Vα
0 (Ωλ).

Integration by parts in the right-hand side of the last equality explains the
notation chosen to the functional, since〈

1
kα

∂ũ

∂yα
(·, 0), g

〉
(Vα

0 (Ωλ)∗,Vα
0 (Ωλ))

=
〈

1
kα

∂ũ

∂yα
(·, 0), g

〉
L2(Ωλ)
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for all g ∈ Vα
0 (Ωλ), where

∂ũ

∂yα
(x, 0) = − lim

y→0+
y1−2α ∂ũ

∂y
(x, y) ∀x ∈ Ωλ.

Then we can define an operator Aα : Vα
0 (Ωλ) → Vα

0 (Ωλ)∗ such that

Aαu :=
1
kα

∂ũ

∂yα

∣∣∣∣
Ωλ×{0}

.

Let us prove that the operators Aα and (−Δ)α defined in (2.1) are in fact
the same, i.e., that for all u ∈ Vα

0 (Ωλ),

Aαu =
∞∑

k=1

μα
k bkϕk, where u =

∞∑
k=1

bkϕk.

It is enough to show that for all u ∈ Vα
0 (Ωλ),〈

1
kα

∂ũ

∂yα
(·, 0), ϕk

〉
(Vα

0 (Ωλ)∗,Vα
0 (Ωλ))

= 〈(−Δ)αu, ϕk〉L2(Ωλ) , for all k ∈ N.

For u ∈ Vα
0 (Ωλ) and k ∈ N, by (2.2),

ũ(x, y) =
∞∑

k=1

bkϕk(x)ψ(μ1/2
k y) and ϕ̃k(x, y) = ϕk(x)ψ(μ1/2

k y).

Now, integration by parts implies that, for y > 0,∫
Ωλ

y1−2α∇ũ(x, y)∇ϕ̃k(x, y)dx = y1−2αbk

(
μkψ(μ1/2

k y)2 + ψ′
k(μ1/2

k y)2
)

.

Then, by (2.3)〈
1
kα

∂ũ

∂yα
(·, 0), ϕk

〉
(Vα

0 (Ωλ)∗,Vα
0 (Ωλ))

=
1
kα

∫
CΩλ

y1−2α∇ũ∇ϕ̃k dxdy

=
1
kα

∫ +∞

0

y1−2αbk

(
μkψ(μ1/2

k y)2 + ψ′
k(μ1/2

k y)2
)

dy

=
1
kα

lim
η→0+

y1−2αμ
1/2
k bkψ′(μ1/2

k y)ψ(μ1/2
k y)

∣∣∣∣
y=η

= bkμα
k

= 〈(−Δ)αu, ϕk〉L2(Ωλ) .

Hence, in (1.1) we are going to understand (−Δ)α as Aα.
Let us pass to the definition of weak solution for problems involving

the fractional Laplacian. We say that a function u is a solution of the linear
problem {

(−Δ)αu = f(x) in Ωλ

u = 0 on ∂Ωλ,
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where f ∈ Vα
0 (Ωλ)∗, if u = trΩλ

v, where v ∈ H1
0,L(CΩλ

, y1−2α) is a solution
of ⎧⎪⎨

⎪⎩
−div(y1−2α∇v) = 0 in CΩλ

v = 0 on ∂LCΩλ

1
kα

∂v

∂yα
(x, 0) = f(x) x ∈ Ωλ.

Analogously, we say that u ∈ Vα
0 (Ωλ) is a weak solution of (1.1) if

u = trΩλ
v, where v ∈ H1

0,L(CΩλ
, y1−2α) is a weak solution of

⎧⎪⎨
⎪⎩

−div(y1−2α∇v) = 0 in CΩλ

v = 0 on ∂LCΩλ

1
kα

∂v

∂yα
+ v(x, 0) = h(v(x, 0)) x ∈ Ωλ,

that is, ∫
CΩλ

k−1
α y1−2α∇v∇ψdxdy +

∫
Ωλ

v(x, 0)ψ(x, 0)dx

=
∫

Ωλ

h(v(x, 0))ψ(x, 0)dx, ∀ψ ∈ H1
0,L(CΩλ

, y1−2α).

As it is easy to see, this is equivalent to say that v is a critical point of the
C1 functional

Iλ(v) =
k−1

α

2

∫
Cλ

y1−2α|∇v|2dxdy +
1
2

∫
Ωλ

|v(x, 0)|2dx −
∫

Ωλ

H(v(x, 0))dx

in H1
0,L(CΩλ

, y1−2α).
It is not difficult to see that, in virtue of the assumptions on the nonlin-

earity h, the functional Iλ possesses a Mountain Pass Geometry: the mountain
pass level will be denoted with c(Ωλ) > 0. We also define the Nehari manifold
associated to Iλ by

Mλ =
{

v ∈ H1
0,L(CΩλ

, y1−2α)\{0} : Jλ(v) = 0
}

, (2.4)

where

Jλ(v) := I ′
λ(v)[v] = k−1

α

∫
CΩλ

y1−2α|∇v|2dxdy +
∫

Ωλ

|v(x, 0)|2dx

−
∫

Ωλ

h(v(x, 0))v(x, 0)dx.

We will need the following properties of Mλ stated in the Lemma below.
They are standard, as well, and just based on the hypothesis made on the
nonlinearity. Observe first that for v ∈ Mλ, it is

meas{x ∈ Ωλ : v(x, 0) > 0} > 0.

Otherwise by the definition of Mλ and using (H0) we arrive at

k−1
α

∫
CΩλ

y1−2α|∇v|2dxdy +
∫

Ωλ

|v(x, 0)|2dx = 0
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which gives v(·, 0) = 0 on Ωλ and then
∫

CΩλ

y1−2α|∇v|2dxdy = 0, that is
v = 0 which is a contradiction. In virtue of this one can define the map

σv : t ∈ [0,+∞) �→ 1
t

∫
Ωλ

h(tv(x, 0))v(x, 0)dx

and then repeat the arguments of [9, Lemma 2.2] to get the next result.

Lemma 2.1. Let λ > 0. The following propositions hold true:
1. for every v ∈ Mλ it is J ′

λ(v)[v] < 0;
2. Mλ is a differentiable manifold radially diffeomorphic to

S={v ∈ H1
0,L(CΩλ

, y1−2α) : ‖v‖α = 1}\{v ∈ H1
0,L(CΩλ

, y1−2α) : v(x, 0) ≤ 0 a.e. in Ωλ}
and is bounded away from 0;

3. Iλ is bounded from below on Mλ and

0 < c(Ωλ) = inf
Mλ

Iλ = inf
u�=0

sup
t>0

Iλ(tu). (2.5)

In particular, every nonzero function v ∈ H1
0,L(CΩλ

, y1−2α)\{v ∈ H1
0,L

(CΩλ
, y1−2α) : v ≤ 0 a.e.} can be “projected” on Mλ; in other words, we have

an homeomorphism which just multiplies a function by a positive constant
(depending on the function)

v ∈ H1
0,L(CΩλ , y1−2α)\{v ∈ H1

0,L(CΩλ , y1−2α) : v(x, 0) ≤ 0 a.e.} �−→ tλv ∈ Mλ.

(2.6)

It is clear that Mλ is a natural constraint for Iλ in the sense that

Corollary 2.2. If v is a critical point of Iλ on Mλ, then v is a nontrivial
critical point of Iλ on H1

0,L(CΩλ
, y1−2α).

Moreover, standard arguments show that the Palais–Smale sequences
for Iλ restricted to Mλ are Palais–Smale sequences for the free functional Iλ,
and Iλ satisfies the Palais–Smale condition on Mλ if and only if it satisfies
the same condition on H1

0,L(CΩλ
, y1−2α).

Remark 1. In the next sections, we will use some auxiliary functionals: they
differ from Iλ just for the domain on which these functionals are defined. In
a similar way as in (2.4), we will define the Nehari manifolds related to these
functionals and it is clear that analogous properties to that stated for Mλ

hold, since they are essentially based on the structure of the functional, on
the hypothesis made on the nonlinearity, and on the definition of the Nehari
manifold. For this reason, the above cited properties will be used without any
other comment through the paper.

3. Compactness Results and Existence of a Ground State
Solution for Iλ

Now let us consider the half cylinder with base R
N , CRN , and define

H1(CRN , y1−2α) = {v ∈ H1(CRN ) : ‖v‖C
RN

< ∞},
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where

‖v‖C
RN

=

(
k−1

α

∫
C
RN

y1−2α|∇v|2dxdy +
∫
RN

|v(x, 0)|2dx

)1/2

.

It is easy to see that H1(CRN , y1−2α) is a Hilbert space when endowed with
the norm ‖ · ‖C

RN
, which comes from the following inner product:

〈v, w〉C
RN

= k−1
α

∫
C
RN

y1−2α∇v∇wdxdy +
∫
RN

v(x, 0)w(x, 0)dx.

An important result we are going to use in this work is related with the
existence of a nonnegative ground state solution of the limit problem

(−Δ)αu + u = h(u) in R
N ,(P∞)

i.e., the least energy solution for the functional

I∞(v) =
k−1

α

2

∫
C
RN

y1−2α|∇v|2dxdy +
1
2

∫
RN

|v(x, 0)|2dx −
∫
RN

H(v(x, 0))dx.

It is standard to see that I∞ has a Mountain Pass Geometry in
H1(CRN , y1−2α), whose mountain pass level is denoted by c(RN ) > 0. More-
over, we can define the Nehari manifold associated to I∞ by

M∞ =
{

v ∈ H1(CRN , y1−2α)\{0} : I ′
∞(v)[v] = 0

}

and standard computations give

0 < c(RN ) = inf
M∞

I∞.

The theorem below states the existence of a ground state solution for (P∞),
hence c(RN ) is achieved on a function of mountain pass type. The result is
known in the literature (it can be obtained with similar arguments used in
[1, Theorem 3.1]) but for completeness, and since it will be very useful for
us, we prefer to give the proof.

Lemma 3.1. Let {vn} ⊂ M∞ be a sequence satisfying I∞(vn) → c(RN ).
Then, either
(a) {vn} has a strongly convergent subsequence in H1(CRN , y1−2α)

or
(b) there exists a sequence {xn} ⊂ R

N such that, up to a subsequence,
|xn| → +∞ and vn(x, y) := vn(x − xn, y) strongly converges in
H1(CRN , y1−2α).

In particular, there exists a nonnegative minimizer, hereafter denoted by w∞,
for c(RN ).

Proof. By the Ekeland Variational Principle we can assume without loss of
generality that {vn} is a (PS)c(RN ) sequence for I∞ on M∞ which is non-
negative and then, by very known arguments, it follows that it is a (PS)c(RN )

sequence for I∞ on H1(CRN , y1−2α). In a standard way, one can prove that
{vn} is bounded in H1(CRN , y1−2α) and then, up to a subsequence, vn ⇀ v
in H1(CRN , y1−2α).
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First case: v 	= 0. It is a simple matter to prove in this case that I ′
∞(v) =

0. It follows from the Fatou Lemma, (H2) and the weak lower semicontinuity
of the norm that

c(RN ) ≤ I∞(v)

= I∞(v) − 1

θ
I′
∞(v)[v]

=

(
1

2
− 1

θ

)
‖v‖2

C
RN

+

∫
RN

(
1

θ
h(v(x, 0))v(x, 0) − H(v(x, 0))

)
dx

≤ lim inf
n→∞

[(
1

2
− 1

θ

)
‖vn‖2

C
RN

+

∫
RN

(
1

θ
h(vn(x, 0))vn(x, 0) − H(vn(x, 0))

)
dx

]

= c(RN ),

which implies that I∞(v) = c(RN ). Now let us prove that vn → v in
H1(CRN , y1−2α) and for this it is enough to show that ‖vn‖C

RN
→ ‖v‖C

RN
.

By the weak lower semicontinuity of the norm it follows that

‖v‖C
RN

≤ lim inf
n→∞ ‖vn‖C

RN
. (3.1)

Assuming by contradiction that

lim sup
n→∞

‖vn‖C
RN

> ‖v‖C
RN

,

the Fatou Lemma implies that

c(RN ) = lim sup
n→∞

(
1
2

− 1
θ

)
‖vn‖2

C
RN

+ lim sup
n→∞

∫
RN

(
1
θ
h(vn(x, 0))vn(x, 0) − H(vn(x, 0))

)
dx

>

(
1
2

− 1
θ

)
‖v‖2

C
RN

+
∫
RN

(
1
θ
h(v(x, 0))v(x, 0) − H(v(x, 0))

)
dx

= c(RN ),

which is a contradiction. Then it follows that

lim sup
n→∞

‖vn‖C
RN

≤ ‖v‖C
RN

and this together with (3.1) implies that vn → v in H1(CRN , y1−2α).
Second case v = 0. Then {vn} is not strongly convergent; indeed, if

this were not the case, we would have a contradiction with the fact that
I∞(vn) → c(RN ) > 0. Hence, there are R, γ > 0 and {xn} ⊂ R

N such that,
up to a subsequence ∫

BR(xn)

|vn(x, 0)|2dx ≥ γ > 0.

Otherwise by [21, Lemma 2.2], we get vn(·, 0) → 0 in Lq(RN ) for 2 < q < 2∗
α.

This fact together with conditions (H0)-(H3), implies that

I∞(vn) =
∫
RN

(
1
2
h(vn(x, 0))vn(x, 0) − H(vn(x, 0))

)
dx + on(1) = on(1),
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which contradicts again I∞(vn) → c(RN ) > 0. Moreover, since v = 0, it
follows that |xn| → +∞, otherwise the Sobolev embedding would give v 	= 0.
Since RN is invariant by translation, defining vn(x, y) := vn(x−xn, y) we still
have a (PS)c(RN ) sequence for I∞, which is contained on M∞ and is bounded
in H1(CRN , y1−2α). Then vn ⇀ v 	= 0 and hence, by the first case, vn → v in
H1(CRN , y1−2α), I∞(v) = c(RN ) and v is a ground state for I∞. �

For what concerns our functional, we have

Lemma 3.2. For every λ > 0, the functional Iλ satisfies the Palais–Smale
condition on H1

0,L(CΩλ
, y1−2α), and hence on Mλ.

Proof. Let {vn} ⊂ H1
0,L(CΩλ

, y1−2α) be a sequence such that

Iλ(vn) → c and I ′
λ(vn) → 0.

Thus, by (H2), we get

C1 + on(1)‖vn‖α ≥ Iλ(vn) − 1
θ
I ′
λ(vn)[vn] ≥

(
1
2

− 1
θ

)
‖vn‖2

α,

which gives that {vn} is bounded in H1
0,L(CΩλ

, y1−2α). Then we may as-
sume that, up to a subsequence, vn ⇀ v in H1

0,L(CΩλ
, y1−2α) and hence

trΩλ
vn → trΩλ

v in Ls(Ωλ), with 2 ≤ s < 2∗
α. Thus, since the nonlinearity h

has subcritical growth, by standard calculations, we see that Iλ satisfies the
Palais–Smale condition. �

Then, taking into account that Iλ is bounded from below on Mλ we
have

Theorem 3.3. For every λ > 0, c(Ωλ) is achieved on a ground state solution
denoted with wΩλ

.

4. The Barycenter Map and Behavior of the Mountain Pass
Levels

In this section, we study the behavior of some minimax levels with respect
to the parameter λ. To do so, some preliminaries are in order.

Recall we are assuming that 0 ∈ Ωλ. Following [9], for
v ∈ H1

0,L(CΩλ
, y1−2α) with compact support and such that trΩλ

v+ 	≡ 0, we
define the barycenter or center of mass of v in the following way: first consider
the “trivial” extension of v+(·, 0) = trΩλ

v+ to the whole R
N (denoted by the

same symbol) and then set

β(v) := β(v+(·, 0)) =

∫
RN

x|v+(x, 0)|2dx∫
RN

|v+(x, 0))|2dx

∈ R
N .

For R > r > 0 let us denote by AR,r(x̃) the open annulus in R
N centered in

x̃

AR,r(x̃) = BR(x̃)\Br(x̃).
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Define the functional on H1
0,L(CAλR,λr(x̃), y

1−α)

Îλ,x̃(v) =
1
2

∫
CAλR,λr(x̃)

y1−2α|∇v|2dxdy +
1
2

∫
AλR,λr(x̃)

|v(x, 0)|2dx

−
∫

AλR,λr(x̃)

H(v(x, 0))dx, (4.1)

and set

M̂λ,x̃ =
{

v ∈ H1
0,L(CAλR,λr(x̃), y

1−2α)\{0}; Î ′
λ,x̃(v)[v] = 0

}
(4.2)

a(R, r, λ, x̃) = inf
{

Îλ,x̃(v) : v ∈ M̂λ,x̃ and β(v) = x̃
}

. (4.3)

As is customary, when x̃ = 0 we simply write Îλ, M̂λ and a(R, r, λ). We
observe that the value a(R, r, λ, x̃) does not depend on the “center” x̃.

Since Îλ,x̃ is bounded from below on M̂λ,x̃ and satisfies the Palais–Smale
condition, the infimum a(R, r, λ, x̃) is attained.

The next result will be useful in future estimates with the barycenter
map.

Proposition 4.1. The number a(R, r, λ) satisfies

lim inf
λ→∞

a(R, r, λ) > c(RN ).

Proof. From the definition of a(R, r, λ) and c(RN ), we get

a(R, r, λ) > c(RN ).

Suppose by contradiction that there exist λn → ∞ such that a(R, r, λn) →
c(RN ). Since a(R, r, λn) is achieved there exists vn ∈ M̂λn

such that

β(vn) = 0 and Îλ(vn) = a(R, r, λn) → c(RN ).

Since h ≥ 0, by (H0) and Lemma 5.1 it is vn ≥ 0 for all n ∈ N.
Moreover, since vn = 0 on ∂LCAλnR,λnr

, by considering the trivial extension
on CRN \CAλnR,λnr

(which we denote with the same symbol), we obtain a
function in H1

0,L(CRN , y1−2α). Consequently,

vn ⇀ 0 in H1(CRN , y1−2α), I∞(vn) = a(R, r, λn) → c(RN ) and vn ∈ M∞.

Recalling that c(RN ) > 0, we have that {vn} is not strongly convergent. From
Lemma 3.1, we get (recall z = (x, y))

vn(z) = wn(z + zn) + w∞(z + zn)

where {wn} ⊂ H1(CRN , y1−2α) is a sequence converging strongly to 0, {zn} =
{(xn, 0)} ⊂ R

N+1 is such that |xn| → ∞ and w∞ ∈ H1(CRN , y1−2α) is a
nonnegative function verifying

I∞(w∞) = c(RN ) and I ′
∞(w∞) = 0.

Due to the fact that I∞ is rotationally invariant on functions of type w(·, 0),
we can assume that

zn = (x1
n, 0, 0, . . . , 0) and x1

n < 0.
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Now we set

M =
∫
RN

|w∞(x, 0)|2dx > 0.

Since ‖wn‖α → 0, it follows that∫
Brλn/2(xn)

|wn(x + xn, 0) + w∞(x + xn, 0)|2dx → M,

from which we obtain∫
Θn

|vn(x, 0)|2dx → M, where Θn = Brλn/2(xn) ∩ AλnR,λnr

and hence∫
Υn

|vn(x, 0)|2dx → 0, where Υn = AλnR,λnr\Bλnr/2(xn). (4.4)

From β(vn) = 0, we get

0 =
∫

AλnR,λnr

x1|vn(x, 0)|2dx =
∫

Θn

x1|vn(x, 0)|2dx +
∫

Υn

x1|vn(x, 0)|2dx.

Thus,

−rλn

2
(M + on(1)) + Rλn

∫
Υn

|vn(x, 0)|2dx ≥ 0

with on(1) → 0. Then,∫
Υn

|vn(x, 0)|2dx ≥ rM

2R
− on(1)

which contradicts (4.4), finishing the proof. �
The other auxiliary functional we need is IBξ

: H1
0,L(CBξ

, y1−2α) → R,
where ξ > 0, given by

IBξ
(v) =

k−1
α

2

∫
CBξ

y1−2α|∇v|2dxdy +
1
2

∫
Bξ

|v(x, 0)|2dx −
∫

Bξ

H(v(x, 0))dx.

(4.5)

This functional has a Mountain Pass Geometry and we denote with c(Bξ)
the mountain pass level. If

MBξ
=

{
v ∈ H1

0,L(CBξ
, y1−2α)\{0} : I ′

Bξ
(v)[v] = 0

}
denotes the Nehari manifold associated to IBξ

, then, as usual,

c(Bξ) = inf
v∈MBξ

IBξ
(v). (4.6)

Arguing as in Theorem 3.3 and using Schwartz symmetrization techniques,
we get

Proposition 4.2. The functional IBξ
defined in (4.5) satisfies the (PS) condi-

tion on MBξ
. In particular, there exists a ground state solution wBξ

∈ MBξ

and wBξ
(·, 0) is radially symmetric with respect to the origin.

The next result will be fundamental.
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Proposition 4.3. The numbers c(Ωλ) and c(Bξ), defined, respectively, in (2.5)
and (4.6), verify the limits

lim
λ→∞

c(Ωλ) = c(RN ) and lim
ξ→∞

c(Bξ) = c(RN ).

Proof. Here we will just prove the first limit, since the second one follows
from the same kind of arguments.

Let us fix a λ̄ > 0 and R > 0 such that BR ⊂ Ωλ. By density, let
wk ∈ C∞

c (RN+1
+ ) be such that wk → w∞ in H1(CRN , y1−2α) and let ΦR ∈

C∞
c (RN+1

+ ),ΦR ≥ 0 such that ΦR = 1 on DR/2 and ΦR = 0 on R
N+1
+ \DR.

Here

DR = {z = (x, y) ∈ CRN : |z| ≤ R}.

In particular, supp(ΦRwk) ⊂ BR. Let tR,k > 0 such that ηR,k := tR,kΦRwk ∈
Mλ. Then

c(Ωλ) ≤ Iλ(tR,kΦRwk) = I∞(tR,kΦRwk) for all λ ≥ λ̄. (4.7)

Claim 1 : limR→∞ tR,k = tk > 0.
Indeed, since tR,kΦRwk ∈ Mλ, we get

‖ΦRwk‖2
C
RN

= k−1
α

∫
C
RN

y1−2α|∇ηR,k|2dxdy +
∫
RN

|ηR,k(x, 0)|2dx

=
∫
RN

h(ηR,k(x, 0))t−1
R,kΦR(x, 0)wk(x, 0)dx

≥
∫

|x|≤a

h(tR,kmk)t−1
R,kmkdx,

where mk = min|x|≤a ΦR(x, 0)wk(x, 0) > 0 and the ball of radius a is con-
tained in BR/2. It follows that {tR,k}R has to be bounded by (H3) and we
can assume limR→∞ tR,k = tk ≥ 0. Moreover, if there exists Rn → ∞ with
tRn,k → 0, recalling that h(s) = o(|s|) near zero and (H1), for all ε > 0 there
exists Cε > 0 such that

‖ΦRn
wk‖2

C
RN

=
∫
RN

h(ηRn,k)t−1
Rn,kΦRn

(x, 0)wk(x, 0)dx

≤ ε

∫
RN

|ΦRn,(x, 0)wk(x, 0)|2dx + Cεt
q−2
Rn,k

∫
RN

|wk(x, 0)|qdx.

and the contradiction follows by passing to the limit as Rn → +∞ and using
the arbitrariness of ε.

Then passing to the limit in R in (4.7)

c(Ωλ) ≤ I∞(tkwk). (4.8)

Claim 2: limk→+∞ tk = t0 > 0.
First observe, by passing to the limit in R → ∞ in

‖tR,kΦRwk‖2
C
RN

=
∫
RN

h(tR,kΦRwk)tR,kΦRwkdx

that tkwk ∈ M∞. Then arguing as in Claim 1, the claim holds.
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Passing to the limit in k in (4.8), we get

c(Ωλ) ≤ I∞(t0w∞) ≤ I∞(w∞) = c(RN )

and hence

lim sup
λ→+∞

c(Ωλ) ≤ c(RN ). (4.9)

On the other hand, by the definition of c(Ωλ) and c(RN ), we get c(Ωλ) ≥
c(RN ) for all λ > 0, which implies

lim inf
λ→∞

c(Ωλ) ≥ c(RN ). (4.10)

The conclusion follows by (4.9) and (4.10). �

Before to proceed, we need to introduce other notations. Given a ∈
(−∞,+∞], we set

• Ia
λ :=

{
u ∈ H1

0,L(CΩλ
, y1−2α) : Iλ(u) ≤ a

}
, the a-sublevel of Iλ;

• Ma
λ := Mλ ∩ Ia

λ .

Moreover, from now on we fix a real number r > 0 such that Br ⊂ Ω and the
sets

Ω+
r = {x ∈ R

N : d(x,Ω) ≤ r}
and

Ω−
r = {x ∈ Ω : d(x, ∂Ω) ≥ r}

are homotopically equivalent to Ω; then Bλr ⊂ Ωλ, so that Mc(Bλr)
λ 	= ∅.

The next proposition will be of primary importance in order to apply
the “barycenter method”. We use the notation Ω+

λ,r = λΩ+
r .

Proposition 4.4. There exists λ∗ > 0 such that for all λ ≥ λ∗,

v ∈ Mc(Bλr)
λ =⇒ β(v) ∈ Ω+

λ,r.

Proof. Suppose that there exist λn → ∞, vn ∈ Mc(Bλnr)
λn

, that we may
assume positive, such that

xn := β(vn) /∈ Ω+
λn,r.

Fixing R > diam(Ω), we have that

AλnR,λnr(xn) ⊃ Ωλn

and so, recalling (4.1)–(4.3),

a(R, r, λn) = a(R, r, λn, xn) ≤ Iλn
(vn) ≤ c(Bλnr). (4.11)

Sending n → ∞ in (4.11) and using Proposition 4.3, it follows that

lim sup
n→∞

a(R, r, λn) ≤ c(RN )

which contradicts Proposition 4.1. �
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For λ>0, we define the injective operator Ψλ,r : Ω−
λ,r →H1

0,L(CΩλ
, y1−2α)

given, for every x̃ ∈ Ω−
λ,r by

[Ψλ,r(x̃)](x, y) =

{
tλwBλr

(x̃ − x, y) for (x, y) ∈ CBλr(x̃)

0 for (x, y) ∈ CΩλ\Bλr(x̃),

where wBλr
is the ground state solution given in Proposition 4.2 and tλ > 0

is such that Ψλ,r(x̃) ∈ Mλ, see (2.6). Note that for every x̃ ∈ Ω−
λ,r, it holds

β(Ψλ,r(x̃)) = β([Ψλ,r(x̃)](·, 0)) = x̃

and since

Iλ(Ψλ,r(x̃)) = IBλr
(tλwBλr

(x̃ − ·, ·)) ≤ IBλr
(wBλr

(x̃ − ·, ·)) = c(Bλr),

we infer also

Ψλ,r(x̃) ∈ Mc(Bλr)
λ .

Then, we have

Lemma 4.5. For λ ≥ λ∗ given in Proposition 4.4, the composite map

Ω−
λ,r

Ψλ,r−→ Mc(Bλr)
λ

β−→ Ω+
λ,r

is well defined and coincides with the inclusion map of Ω−
λ,r into Ω+

λ,r

The next result is a consequence of the above setting, but for the sake
of completeness we give the proof. It is understood, from now on, that for λ∗

we mean the one given in Proposition 4.4.

Proposition 4.6. For every λ ≥ λ∗, we have

catMc(Bλr)
λ ≥ catΩλ.

Proof. Assume that catMc(Bλr)
λ = n. This means that n is the smallest

positive integer such that

Mc(Bλr)
λ =

n⋃
j=1

Aj ,

where Aj , j = 1, . . . , n are closed and contractible in Mc(Bλr)
λ ; that is, there

exist hj ∈ C([0, 1]×Aj ,Mc(Bλr)
λ ) and fixed elements wj ∈ Mc(Bλr)

λ such that

hj(0, u) = u for all u ∈ Aj and hj(1, u) = wj for all u ∈ Aj .

Consider the closed sets Dj = Ψ−1
λ,r(Aj) and note that

Ω−
λ,r =

n⋃
j=1

Dj .

Using the deformation gj : [0, 1] × Dj → Ω+
λ,r given by

gj(t, x) = β
(
(hj(t,Ψλ,r(x))+(·, 0)

)
,
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we have for j = 1, . . . , n and x ∈ Dj

gj(0, x) = β
(
(hj(0,Ψr(x)))+(·, 0)

)
= β

(
Ψλ,r(x)(·, 0)

)
= x

and

gj(1, x) = β
(
(hj(1,Ψr(z)))+(·, 0)

)
= β

(
wj(·, 0)+

)
∈ Ω+

λ,r.

This means that Dj , j = 1, . . . , n is contractible in Ω+
λ,r, hence catΩ+

λ,r
Ω−

λ,r ≤
n. The conclusion follows since Ω+

λ,r and Ω−
λ,r are homotopically equivalent

to Ωλ. �

5. Proof of Theorems 1.1 and 1.2

We remark here once for all the solutions we find in this section and in the
next one are nonnegative in virtue of the following.

Lemma 5.1. Let Γ ⊂ R
N be a smooth domain and v ∈ H1

0,L(CΓ, y1−2α) such
that ⎧⎪⎨

⎪⎩
− div(y1−2α∇v) = 0 in CΓ

v = 0 on ∂LCΓ

1
kα

∂v

∂yα
(x, 0) + v(x, 0) = f(x) on Γ.

(5.1)

in the weak sense. If f ≥ 0, then v ≥ 0 in CΓ.

Proof. Since v satisfies (5.1), it follows that for all ψ ∈ H1
0,L(CΓ, y1−2α), we

have

k−1
α

∫
CΓ

y1−2α∇v∇ψdxdy +
∫

Γ

v(x, 0)ψ(x, 0)dx =
∫

Γ

f(x)ψ(x, 0)dx.

If we take v− (where v = v+ + v−) as a test function in the last expression,
we get

k−1
α

∫
CΓ

y1−2α|∇v−|2dxdy +
∫

Γ

|v−(x, 0)|2dx =
∫

Γ

f(x)v−(x, 0)dx ≤ 0.

But this implies that v− ≡ 0 and then v ≥ 0. �

Let us fix λ ≥ λ∗ given in Proposition 4.4. Since Iλ satisfies the Palais–
Smale condition on Mλ, applying the Ljusternik–Schnirelmann theory and
Proposition 4.6, we get that Iλ on Mλ has at least catΩλ critical points
whose energy is less than c(Bλr).

To get another solution, and then proving Theorem 1.2, we use the same
ideas of [10]. Since Ωλ is not contractible, the compact set A := Φλ,r(Ω−

λ,r)

cannot be contractible in Mc(Bλr)
λ . Moreover, as we have seen, functions on

the Nehari manifold have to be positive on a set of nonzero measure.
In the following, for u ∈ H1

0,L(Ωλ, y1−2α)\{0} we denote with tλ(u) > 0
the unique positive number such that tλ(u)u ∈ Mλ.
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Take u∗ ∈ H1
0,L(Ωλ, y1−2α) such that u∗ ≥ 0, and Iλ(tλ(u∗)u∗) >

c(Bλr). Consider the cone

K :=
{

tu∗ + (1 − t)u : t ∈ [0, 1], u ∈ A
}

(which is compact and contractible) and, since functions in K have to be
positive on a set of nonzero measure, 0 /∈ K. Then it makes sense to project
the cone on the Nehari manifold

tλ(K) :=
{

tλ(w)w : w ∈ K
}

⊂ Mλ

and consider the number

c := max
tλ(K)

Iλ > c(Bλr).

Since A ⊂ tλ(K) ⊂ Mλ and tλ(K) is contractible in Mc
λ, we infer that also A

is contractible in Mc
λ. In conclusion, A is contractible in Mc

λ, not contractible
in Mc(Bλr)

λ , and c > c(Bλr); this is only possible, since Iλ satisfies the Palais–
Smale condition, if there is a critical level between c(Bλr) and c, that is,
another solution to our problem.

6. Proof of Theorem 1.3

Before proving the theorem, we recall some basic facts of Morse theory and fix
some notations. For a pair of topological spaces (X,Y ), Y ⊂ X, let H∗(X,Y )
be its singular homology with coefficients in some field F (from now on omit-
ted) and

Pt(X,Y ) =
∑

k

dim Hk(X,Y )tk

the Poincaré polynomial of the pair. If Y = ∅, it will be always omitted
in the objects which involve the pair. Recall that if H is an Hilbert space,
I : H → R a C2 functional and u an isolated critical point with I(u) = c, the
polynomial Morse index of u is

It(u) =
∑

k

dim Ck(I, u)tk

where Ck(I, u) = Hk(Ic ∩ U, (Ic\{u}) ∩ U) are the critical groups. Here
Ic = {u ∈ H : I(u) ≤ c} and U is a neighborhood of the critical point
u. The multiplicity of u is the number I1(u).

It is known that for a non-degenerate critical point u (that is, the self-
adjoint operator associated to I ′′(u) is an isomorphism) it is It(u) = tm(u),
where m(u) is the (numerical) Morse index of u: the maximal dimension of
the subspaces where I ′′(u)[·, ·] is negative definite.

Coming back to our functional, we know that Iλ satisfies the Palais–
Smale condition (see Lemma 3.2). Moreover, Iλ is of class C2 and for v, v1, v2 ∈
H1

0,L(CΩλ
, y1−2α) it is
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I ′′
λ(v)[v1, v2] = k−1

α

∫
CΩλ

y1−2α∇v1∇v2 dxdy

+
∫

Ωλ

v(x, 0)w(x, 0)dx −
∫

Ωλ

h′(v(x, 0))v1(x, 0)v2(x, 0)dx.

So I ′′
λ(v) is represented by the operator

Lλ(v) := Rλ(v) − Kλ(v) : H1
0,L(CΩλ

, y1−2α) →
(
H1

0,L(CΩλ
, y1−2α)

)′
, (6.1)

where Rλ(v) is the Riesz isomorphism and Kλ(v) is compact. Indeed let
vn ⇀ 0 in H1

0,L(CΩλ
, y1−2α) and w ∈ H1

0,L(CΩλ
, y1−2α); using that h′(0) = 0

and (H1’), for a given ξ > 0 there exists some constant Cξ > 0 such that∫
Ωλ

∣∣∣h′(v(x, 0))vn(x, 0)w(x, 0)
∣∣∣dx ≤ ξ

∫
Ωλ

|vn(x, 0)w(x, 0)|dx

+Cξ

∫
Ωλ

|v(x, 0)|q−2|vn(x, 0)w(x, 0)|dx.

Using that vn ⇀ 0 and the arbitrariness of ξ, we get

‖Kλ(v)[vn]‖ = sup
‖w‖α=1

∣∣∣
∫

Ωλ

h′(v(x, 0))vn(x, 0)w(x, 0)dx
∣∣∣ → 0.

In particular Lλ(v) is a Fredholm operator with index zero. Moreover, for
a ∈ (−∞,+∞], we set

• Critλ :=
{

u ∈ H1
0,L(CΩλ

, y1−2α) : I ′
λ(u) = 0

}
, the set of critical points

of Iλ;
• (Critλ)a := Critλ ∩ Ia

λ ;

• (Critλ)a :=
{

u ∈ Critλ : Iλ(u) > a
}

.

In the remaining part of this section, we will follow [6,9]. We will not
give the proofs of the next Lemma 6.1 and Corollary 6.2 since they follows
by general arguments.

Let λ∗ > 0 as given in Proposition 4.4 and λ ≥ λ∗ be fixed from now
on. In view of Corollary 2.2, to prove Theorem 1.3 it is sufficient to show that
Iλ restricted to Mλ has at least 2P1(Ωλ) − 1 critical points.

First note that we can assume that c(Bλr) is a regular value for Iλ.
Otherwise, we can choose a ρ ∈ (0, r) so that the new sets

Ω+
ρ = {x ∈ R

N ; d(x,Ω) ≤ ρ} and Ω−
ρ = {x ∈ Ω; d(x, ∂Ω) ≥ ρ}

are still homotopically equivalent to Ω, c(Bλρ) > c(Bλr) and c(Bλρ) is a
regular value; and we rename c(Bλρ) as c(Bλr). Of course, we can also assume
that Critλ is discrete. Since Iλ is bounded from below on Mλ, let us say by
a δλ > 0, we have

(Critλ)c(Bλr) =
{

v ∈ Critλ : 0 < δλ < Iλ(v) ≤ c(Bλr)
}

and (Critλ)c(Bλr) and (Critλ)c(Bλr) are (critical) the isolated sets covering
Critλ.
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By Lemma 4.5 and the fact that (Ψλ,r)∗ induces monomorphism be-
tween the homology groups H∗(Ω−

λ,r) and H∗(Mc(Bλr)
λ ), it is standard to see

that

Pt(Mc(Bλr)
λ ) = Pt(Ω−

λ,r) + Qt, Q ∈ P, (6.2)

where we are denoting with P the set of polynomial with nonnegative integer
coefficients. Recall that c(Ωλ) = minMλ

Iλ. As in [9, Lemma 5.2] (the proof
just uses a topological lemma and a general deformation argument) one proves
the following.

Lemma 6.1. Let d ∈ (0, c(Ωλ)) and l ∈ (d,+∞] a regular level for Iλ. Then

Pt(I l
λ, Id

λ) = tPt(Ml
λ).

From this lemma, (6.2) and the fact that π1(Mλ) ≈ {0}, it follows that

Pt(I
c(Bλr)
λ , Id

λ) = t
(
Pt(Ω−

λ,r) + Qt

)
(6.3)

and

Pt(H1
0,L(y1−2α), Id

λ) = tPt(Mλ) = t. (6.4)

Finally, we need the next result, whose proof is a matter of algebraic topology
(see [6, Lemma 2.4] or [9, Lemma 5.6]).

Corollary 6.2. We have

Pt(H1
0,L(y1−2α), Ic(Bλr)

λ ) = t2
(
Pt(Ωλ) + Qt − 1

)
, Q ∈ P. (6.5)

Then the Morse theory, (6.3), (6.4) and (6.5) give∑
v∈(Crtitλ)c(Bλr)

It(v) = Pt(I
c(Bλr)
λ , Id

λ) + (1 + t)Q′
t

= t
(
Pt(Ωλ) + Qt

)
+ (1 + t)Q′

t

and ∑
v∈(Crtitλ)c(Bλr)

It(v) = Pt(H1
0,L(y1−2α), Ic(Bλr)

λ ) + (1 + t)Q′′
t

= t2
(
Pt(Ωλ) + Qt − 1

)
+ (1 + t)Q′′

t

for some Q,Q′,Q′′ ∈ P. As a consequence, we obtain∑
v∈Crtitλ

It(v) = tPt(Ωλ) + t2
(
Pt(Ωλ) − 1

)
+ (1 + t)Qt (6.6)

for a suitable Q ∈ P.
For a non-degenerate critical point v (that is, Lλ(v) given in (6.1) is an

isomorphism) it is It(v) = tm(v).
Then, if the solutions are non-degenerate, (6.6) easily gives the existence

of at least 2P1(Ωλ) − 1 solutions, completing the proof of Theorem 1.3.
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