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In this paper, we construct for the first time the noncommutative fluid with the deformed Poincaré
invariance. To this end, the realization formalism of the noncommutative spaces is employed and the

results are particularized to the Snyder space. The noncommutative fluid generalizes the fluid model in

the action functional formulation to the noncommutative space. The fluid equations of motion and the

conserved energy-momentum tensor are obtained.
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I. INTRODUCTION

Recent studies have shown that physical systems from a
variety of fields have physical properties that can be cast
simultaneously in terms of concepts from two distinct
areas: the noncommutative gauge theories and the fluid
mechanics [1-6]. This leads to the natural question of
whether there is a well defined noncommutative fluid
theory. Probably the best known example of a system in
which the two fields are closely related is the quantum Hall
liquid whose granular structure can be described in terms
of noncommutative gauge fields. In particular, the quantum
Hall effect for fraction 1/n, the Abelian noncommutative
Chern-Simons theory at level n and the Laughlin theory at
1/n are related by a mapping among noncommutative
spaces. [1,2]. The comparison of the transformations of
the fluid phase space and of symmetries of the noncommu-
tative field theories suggests that there should be a deeper
analogy between the volume preserving diffeomorphisms
in the commutative phase space and the symplectic pre-
serving diffeomorphism in the noncommutative space that
might lead to the noncommutative analogue of the
Bernoulli equation [7-11]. More arguments in favor of
the noncommutative fluids can be found in Ref. [12] where
it was shown that the lowest Landau levels of the charged
particles are related to the noncommutative curvilinear
coordinate operators, and in Ref. [13] where the linear
cosmological perturbations of a quantum fluid were shown
to exhibit noncommutative properties. In Ref. [14], a gen-
eralization of the symplectic structure of the irrotational
and rotational nonrelativistic fluids to the noncommutative
space was proposed.
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The generalization of the fluid equations to define non-
commutative fluids is not obvious since many extensive
long range degrees of freedom of the commutative systems
do not have a simple interpretation in terms of quantities
defined on the noncommutative spaces. Therefore, finding
the noncommutative correspondents of the statistical me-
chanics or thermodynamical concepts is a nontrivial open
problem which has not been fully undertaken in the litera-
ture (see for some tentative approaches [15,16]). However,
there are canonical formulations of the ideal fluids in terms
of the Lagrangian functionals over the set of fluid poten-
tials [17] that can be generalized to noncommutative func-
tionals. This procedure needs to be supplemented by a
correspondence principle needed to fix the constraints
which are imposed on the noncommutative fluid fields in
order to obtain the known fluid equations in the commu-
tative limit. By pursuing this line of reasoning, some of
us have proposed a noncommutative fluid action in terms
of the Moyal deformed algebra of functions over the
Minkowski space-time M [18] that generalizes the com-
mutative relativistic ideal fluid in the K&hler parametriza-
tion [19] in which the fluid is parametrized in terms of one
real 6(x) and two complex potentials z(x) and Z(x), respec-
tively. As shown in Ref. [17], the description of the fluid
degrees of freedom in terms of fluid potentials allows one
to lift the obstruction to inverting the symplectic form in
the canonical phase space of the fluid variables. (For other
applications of the Kéhler parametrization of the fluid
potentials see Refs. [19-25].)

The action functional from Ref. [18] describes the non-
commutative fluid model on canonical noncommutative
space-times [26], i.e., spaces with the coordinate algebra
characterized by a constant antisymmetric matrix 6 ,,.
However, the canonical coordinate algebra and the
Lorentz algebra are inconsistent with each other.
Therefore, a Lie-algebra noncommutative space structure
is needed [26] in order to properly generalize the
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relativistic fluid to a noncommutative Lorentz-covariant
model. One interesting alternative is the Snyder space S
[27] in which the noncommutative coordinates are inter-
preted as the Lie generators of so(1, 4)/so(1, 3). The alge-
bra of functions over the Snyder F(S) space can be
endowed with the star product and the coproduct con-
structed recently in Refs. [28-30] and is isomorphic to
the deformed algebra over the Minkowski space-time
(C*(M), ). However, the formulation of the field theory
in the Snyder space is not trivial, since the star product is
nonassociative and the momenta associated to the coordi-
nates do not form a Lie group. A particularly important
problem for these systems is to define and calculate the
relevant physical quantities such as the energy and the
linear momenta.

In this paper, we are going to construct the noncommu-
tative fluid in the Snyder space-time by generalizing the
Lagrangian functional approach from Ref. [18]. To this
end, we have found it convenient to formulate the geome-
try of S in the realization formalism developed in
Refs. [31-38] (see for similar ideas [39,40]) that has
been used recently in Ref. [41] in an attempt to formulate
the scalar field theory. The realization method has at least
two nice features: it allows one to circumvent the problems
related to the nonassociativity in the interacting field theo-
ries, and it represents a unified framework for handling
simultaneously different types of noncommutative spaces
such as the Snyder, the Maggiore and the Weyl spaces [41].
Also, it can be used to interpolate between the k-deformed
Minkowski and the Snyder space-times [42]. In the real-
ization formalism, the coordinates belong to the noncom-
mutative space in which the algebra of the coordinate
operators closes over the generators of the Lorentz sym-
metry. The corresponding momenta are defined as being
the duals to the coordinates and they belong to a coset
space. In general, the algebra of coordinates does not fix
the commutation relations either among the momenta or
among the coordinates and momenta. In order to obtain a
noncommutative fluid with the largest symmetry group, we
require that the symmetries of the noncommutative space-
time be described by the undeformed Poincaré algebra.
Also, we require that the commutative limit of the non-
commutative fluid be the relativistic ideal fluid in the
Clebsch parametrization in which the fluid potentials are
given in terms of three real fields 6(x), a(x) and B(x), and
that they parametrize the velocity of the fluid elements as
v, = 3,0 + @d, B [17]. The present construction can be
easily applied to the relativistic fluid in the Kéhler
parametrization.

The paper is organized as follows. In Sec. II we review
the geometry of the Snyder space-time in the realization
formalism and establish our notations. In Sec. III we con-
struct the noncommutative Lagrangian that generalizes the
relativistic ideal fluid in the Clebsch parametrization.
We discuss the transformation of the action under the
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symmetries of the noncommutative space. The energy-
momentum tensor is defined from the variation of the
action under the deformed translations and we show that
it satisfies a conservation equation. The last section is
devoted to conclusions.

II. GEOMETRY OF THE SNYDER SPACE-TIME

In this section we are going to review the geometry of
the Snyder space-time in the framework of the realization
formalism following [34,41]. The Snyder space-time is a
lattice space characterized by a length scale /; and com-
patible with the Lorentz symmetry. These two properties
are obtained by associating noncommutative position
operators ¥, to the sites of the lattice. The algebra of
%,’s is closed over the generators of so(1, 3). The Snyder
algebra was originally obtained by descending from five
dimensions and can be interpreted as a deformed algebra of
the so(1, 3) with the deformation parameter s = 2 [27].

Let us start with the deformed algebra generated by the
operators {%,, p,, M, } that satisfy the following commu-
tation relations:

(X, %] =sM,,, (1

[Pp P11 =0, (2)

My Mpol= 1M g = M0pMug + MpeM oy = MM i,
(3)

M, 501 = 10p%0 — Mupks, 4)

My Pp] = M0pPp = NppPor 5

where w, v = 0, 3 and the deformation parameter is s > 0.
The generators M, satisfy the commutation relations of
the Lorentz group and can be written in terms of the
commutative coordinates of the underlying Minkowski
space-time M in the usual way, M, = i(x, p, — x,p,).
Thus, the Snyder algebra defined by the commutators
(1)—(5) can be interpreted as a deformation of the commu-
tative Poincaré algebra of M. In fact, the relation (1)
shows that the noncommutative coordinates ¥, are func-
tions of the commutative phase space variables x,, and p,.
However, the Snyder algebra leaves the functions ¥, (x, p)
and the commutators [%,(x, p), p,] undetermined.! The
realizations of the noncommutative Snyder geometry are
defined by the simplest choice possible for the coordinate
operators X, (x, p) as momentum-dependent rescalings of
the coordinates x,:

'Tt has been shown in Ref. [36] that there are infinitely many
commutation relations among %, and p, that are compatible
with the Snyder algebra.
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%, p)=D,,0s5p)x,. (6)

The smooth functions ® ,,(s; p) can be reduced to a set of
two dependent functions ¢; and ¢,:

% ,(x p) = x,01(A) + sxp)puea(A), @)
ea(A) = [1 " 2‘14‘;;”][@1@) 24 dg‘;{iA)]l, ®)

and A = sn*"p,p,. The commutative scalar product is
denoted by (ab) = n*”a,b,. The realizations defined by
the relations (6)—(8) show that the Snyder geometry de-
fined by the algebra (1)—(5) can be viewed as a noncanon-
ical deformation of the commutative phase space. Different
realizations can be obtained by choosing different func-
tions ¢, (A). For example, the Weyl, the Maggiore and the
Snyder noncommutative space-times can be obtaining
by choosing ¢;(A) = VA cot(A), ¢,(A) = /1 — sp* and
¢1(A) = 1, respectively [41]. The physical momenta de-
pend on the specific realization since

Pu=rAp. A =[e (A7 +AT2 (9

An important property is that from the point of view of the
realizations, the algebras generated by {%,, p,, M,,} are
deformed Heisenberg algebras

(X 2] = i(0,,01(A) + sp,p,ea(A). (10

The symmetries of the Snyder space-time are described by
the algebra of the Lorentz generators and the co-algebra of
the translation generators acting on the noncommutative
coordinates ¥, according to the relations (4) and (10),
respectively. The translation algebra acts covariantly
from the left on the space of commutative functions as
follows. If qz(i) is a noncommutative function and 1 is the
identity element of the algebra of commutative functions
over x, then

P(HO>1 = (x), amn

where i(x), in general, differs from ¢(x). Since the non-
commutative functions can be expanded formally in terms
of the noncommutative wave functions ¢“*¥ the deformed
momentum K, = K, (k) is defined by the following
relation:

ekI>1 = iKD), (12)
with its inverse given by
KT RIS, = pilkn).

The left-action can be extended to products of a finite
number of noncommutative wave functions:

UK (kD) G UK (k)3) . L L KT (k) >q

= D" ki1, K1) ) (13)
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where the functions D™ (k;, ks, .
sively as

.., k,,) are defined recur-

D%’l)(km’ km—lv SRR kl) = Dg)(km’ D(m_l)(km—l! LR kl))

(14)
In particular, the product of two wave functions determines

the *-product, the coproduct and the antipode S of the
Poincaré coalgebra as follows:

UK D) g piKy ()T — D (kpsk1)x) (15)
Ap,=DP(pe11ep), (16)
DP (g, S(g)) =0 17

for any element of the deformed Poincaré group. Thus,
the whole structure of the coalgebra is encoded in the
two-functions D® (k,, k;). These functions depend on the
realization of the Snyder geometry. The *-product and
the coproduct are nonassociative and noncommutative,
and that makes it difficult to construct the field theories.
The coproduct of the Lorentz generators takes the follow-
ing form:

AM,, =M, ®1+18M,, (18)

The *-product can also be given a representation in terms
of differential operators by taking p, = —id, [34]. Then
one can write

(f * g)(x) = lim lim expli{(D@(py, p.) — py = p)x)]
(19)

The deformed Poincaré group can be obtained from the
coproduct of the translation generators which is compatible
with the Lorentz subgroup of the deformed Poincaré group
according to the relation (18). In the realization formalism,
any realization represents a deformation of the Poincaré
algebra that is a generalized Hopf algebra, and that de-
scribes the symmetries of the Snyder geometry with the
translation space given by a deformation of the de Sitter
space SO(1,4)/S0(1, 3).

III. NONCOMMUTATIVE FLUID IN
THE SNYDER SPACE-TIME

In this section, we are going to use the realization
formalism to derive the action functional of the noncom-
mutative relativistic fluid in the Snyder space-time S. The
functions over S can be mapped into the deformed algebra
of the Minkowski space-time (C*(M), *). Thus, the ac-
tion can be represented by a functional over (C*(M), ).
In the same way, the deformed Poincaré group over S can
be mapped bijectively into the deformed Poincaré group
over M.
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A. Action of the noncommutative fluid

The dynamics of the relativistic ideal fluid in the
Minkowski space-time M in the Clebsch parametrization
can be obtained from an action functional that depends
on the density current and three real fluid potentials
¢ (x) = {j*(x), 8(x), a(x), B(x)} [17]. The first step to be
taken in order to construct the action of the noncommu-
tative fluid is to generalize the potentials to functions
& (%) = {j*(x), 6(%), a(%), B(¥)} over the Snyder space-
time that should be identified with the degrees of freedom
of the noncommutative fluid. The correspondence princi-
ple in this case is

m&[&(ﬁ] = S[¢(x)] (20)

where S,[ ()] is the action functional of the noncommu-
tative fluid and S[¢(x)] is the action of the perfect relativ-
istic fluid in the Clebsch parametrization. Guided by this
principle, we propose the following Lagrangian for the
noncommutative fluid in the Snyder space-time:

I[0(3), a(3), BE] = ~*®N0,0() + &0, B
- I{-®7.0) @)

where j#(X) is an arbitrary smooth function of the non-
commutative coordinates that generalizes the fluid current
and f is an arbitrary smooth function that characterizes
the equation of state of a specific model. According to the
realization method discussed in the previous section,
the Lagrangian functional L[j*(x), 8(%), @(®), B(®)] is
mapped to a functional L [j*(x), 8(x), a(x), B(x)] that
depends on functions from the algebra (C*(M), %) where
the *-product is given by the relation (19). In order to
determine the form of L [j#(x), 8(x), a(x), B(x)] we per-
form the Fourier transformation of the noncommutative
potentials,

B — [ [dk], b () exp((K (BT, (22)

The integration-invariant measure depends on the antipode
S(k,) = —k, which is a realization-dependent quantity.
However, since the momenta in different realizations are
related by the relations (9) the antipode is exactly trivial in
all realizations [28,41] and the measure takes the following
form:

d*k
[dk], = ot (23)

From the Fourier transform (22) and the definition of the
*-product (19) we can derive the first term of the
Lagrangian L [j*(x), 0(x), a(x), B(x)] as follows:
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d*k, d*k, .

|| =7 " k) ky , O(k

l (277_)4 (277)4] ( 1) 2,,u, ( 2)

X (exp(i(K ™" (k1)) exp(i(k,)))

d*k, d*k, n
| —— —— % (ky)k, ,0(k
l 2 (27)41 (ky) 2,0 (ky)

X exp(i{DP(ky, kp)x))
= j*(x) % 9,,0(x). (24

(j*(%)0,,6(x)>1 =

The last product is defined on the algebra (C* (M), x). The
second term of the Lagrangian L[#(%), @(%), B()] can be
mapped into (C®(M), %) in exactly the same way. The
third term involves a triple *-product. Its Fourier transform
can be calculated by using the relation (14). After some
algebraic manipulations, the following result is obtained:

(D a®)a, fF)>1
3 d*k N
=i ’””‘k&kkﬂ(k
[(p )]<1><2>3,33>

2 @m)?
X exp(i{DP(k3, ky, k;)x))
= j*(x) * (a(x) x 9, B(x)). (25)

The relations (21), (24), and (25) lead to the following
action of the noncommutative fluid defined on the algebra

(C™(M), %):

SLj*(x), 6(x), a(x), B(x)]
- f P I10E), @@, BET1
= [ d4x[— JH() % [0,0(x) + alx) *x 9, B(x)]

~ £y % 7,0)] (26)

where in the second term from (26) the *x-product from the
square bracket should be computed first. The relationship
between f and f, is given by the map (11). Since the
function f is arbitrary, the action (26) describes a class of
noncommutative fluids parametrized by «, 8 and f, for
any given value of s.> Equation (26) can be used to con-
struct the noncommutative deformation of a commutative
fluid model characterized by a particular function f by
deforming f to f; such that lim,_,,f; = f. Then it is a
simple exercise to verify that the action (26) satisfies the
corresponding principle (20).

This is different from the noncommutative fluid in the Kéhler
parametrization in which the action describes a class of fluids
parametrized by f, and the Kihler potential K, where A is the
noncommutative parameter [18].
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B. Deformed Poincaré transformations

The common point of view adopted to define the physical
quantities associated to a noncommutative field theory is
that they should be associated to the group of transforma-
tions of the noncommutative structure underlying the
theory. According to this point of view, the infinitesimal
variation of the action §,.S, under the deformed Poincaré
algebra should define physical quantities relevant to the
noncommutative fluid described by (26). Note that, in gen-
eral, the variation &, viewed as an operator on (C®(M), %)
is linear but does not necessarily satisfy the Leibniz condi-
tion. The variation of the action under the deformed
Poincaré transformations is defined by the usual relation

6sSs = SS(S) - SS’ (27)

where S,(g) represents the action with all variables acted
upon by the infinitesimal deformed Poincaré transformations

(28)

where 6,.x is defined by (4) and (10). In the first case, the
parameter g, is an infinitesimal constant vector on M while
in the second case it is an infinitesimal antisymmetric con-
stantmatrix € ,,, = —&,,,,. The transformation (28) induces a
map between the translated functions from F(S) and

(C*(M), %),

Xy = X, + 6,x,,

P(E+ 85, 5)>1 = f(x + 8,x), (29)
where ¢ is the function defined by Eq. (11).
Let us consider the deformed translations
8.%, = [X,.(ep)] (30)

For any realization, the variation (30) induces a transfor-
mation in M which, in general, is not the commutative

|
py = p)x)]expli{(DP(p,, p,) —

expli{(D®(p,, p,) —
— exp{i<<D<2><py, )= py— px+ 8.0) -

isp,(A)

X D(Z)V ) oV v . P2

X (D?*(py, p,) — py = p)(DP*(p,, p.) — pi — p¥ }

As can be seen, the exponential that defines the x-product
at x + 8,x does factorize in the Maggiore realization but
not in the Snyder’s. In general, even if the exponential
factorizes, the *-product does not. This behavior is not
restricted to the relativistic fluid. Actually, it is the result of
the structure of the noncommutative algebra given by the

>The additive subgroup is mapped to right and left product of
exponentials which are not isomorphic to each other due to the
noncommutativity of the product.

Dy
s@y(A)

2¢,(A)

PHYSICAL REVIEW D 86, 045019 (2012)

translation. This can be seen by inverting the relation (7)
and by calculating the variation of x, from

©2(A)
¢1(A)
As can be easily checked, the transformation (31) leaves

the volume element invariant. After some algebra, we can
show that the relation (27) takes the following form:

8.x, =[x, (ep)] = ie, + isp,(ep) 3D

8.5, = [alLtx+ 8.0~ L) (D)
where L (x + 8,x) is the Lagrangian from (26) with the
*-product computed at x + 5x.

The deformed rotations have the following form:

8,%, = [%,, (sM)] 33)

where (eM) = €*”M,,,. The induced transformation in
M can be obtained from the inverse of the relation (7)
and takes the following form:

2

8.x, = [x,, (eM)] = —msij.

(34)
The volume element is invariant under the transformation
(28) with (34). Therefore, the variation of the action under
(33) has the form (32).

In general, there is no simple expression that describes
the variation 6.5, due to the nonassociativity of the
*-product. Indeed, one can compute the *-product at
x+ 0,x and compare it with the Baker-Campbell-
Hausdorff formula. We consider the mapping of the
additive subgroup by the exponential at right.> Then after
some calculations one can show that under the deformed
translations,

= P)8ex)]

(Mulep) + pie ) DPH(p,, p,) — pi — p¥)

(Sunptr + nuvsp)(D(z)p(py’ pz) - pf - p?)

(35)

|
relations (1)—(5) and it is expected to hold for any field
theory. Similar conclusions can be drawn for the deformed
rotations. Apparently, the difficulties generated by the non-
associativity of the *-product could be circumvented by
defining the variation of the action functional as generated
by the operator &, instead of (27) with the following
action:

5,5, — [ [ dx E[7#(x), 60, @), BE)I>1, <sG>], (36)
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where G is either p, or M,,. However, the problems
related to the nonassociativity return in the form of the
variation of the *-products from L[ j*(x), 6(x), a(x), B(x)]
as can be verified easily.

A very important consequence of the nonassociativity
of the *-product is that it makes it difficult to calculate
and even to define relevant physical quantities associated
with the fields, such as the energy and the momentum.
Nevertheless, some important properties of the quantities
associated with the variations §,x, can be derived in the
general case. To this end, we write the deformed Poincaré
transformations (31) and (34) as

Gﬂz(A))’ 37)

0,x =i< wu TSPy
p T\ PP (@)

€02(A):|
®1(A)

@2(A)
®1(A)

5wm=[mA%+ﬂwmﬁ

—[nUﬂ(xp+s<xp>pp) ] (38)

Then one can show by direct calculations that the variation
of the action under the deformed transformations d,x,
produces the following equation:

9, (08" ($)0.x,) = 0#(LS.x,), (39)

where ©@#¥(¢) is a functional of the fluid potentials and
their derivatives up to the third order. Since (38) depends
linearly on x,,, it follows that the equations of motion alone
are not sufficient to guarantee the conservation of the
quantities described by the functions @#”(¢) associated
t0 0,5, On the other hand, the right-hand side of Eq. (37)
is independent of x,. One can check that the following
quantity associated to the deformed translations,

T, = 05(¢) — Ly, (40)

is conserved. Note that, in general, the functions @#*(¢)
that correspond to the translation are different from the
ones derived from the rotations. T% represents the variation
of the action S under the deformed translation. Therefore,
it can be interpreted as being the energy-momentum tensor
of the noncommutative fluid in an arbitrary realization.
Note that the tensor TW = Ny pT5 does not have a definite
symmetry. Actually, a symmetric energy-momentum ten-
sor can be obtained by coupling the fluid with a c-number
metric g ,,, and by deriving the action with respect to it (see
Ref. [18]). However, by this procedure information about
the noncommutative properties of the fluid could be lost
due to the contraction between the antisymmetric compo-
nents of the *-product and the metric. The invariance of
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the theory under the noncommutative translations has
been discussed and used in the literature to define the
energy-momentum tensor of different field theories
[40,43-51]. Equation (31) generalizes the deformed trans-
lations to the realization formalism which treats simulta-
neously various noncommutative spaces, as we have seen
in the previous section. From this point of view, Eq. (40)
represents a generalization of the previous results within
the realization formalism.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have constructed for the first time a
model of the noncommutative fluid on the Snyder space-
time. To this end, we have used the realization formalism
of the noncommutative spaces and we have generalized the
action functional formulation of the relativistic perfect
fluid in the Minkowski space-time. This model is important
for understanding the behavior of the effective (or long-
wave) degrees of freedom on noncommutative spaces. It
provides a new class of noncommutative field theories with
deformed Poincaré symmetry that generalizes the field
theories on the commutative space-time in the first order
formulation. By using the realization maps from the
algebra F(S) to the (C*(M), %), we have obtained a
representation of a large class of noncommutative fluids
parametrized by three arbitrary functions a(x), B(x)
and f(x) in terms of the deformed algebra of smooth
functions on the Minkowski space-time. In this formula-
tion, the fluid dynamics is given by the equation of
motion of the fluid potentials viewed as fields on the
Snyder space and subjected to the conservation of the
energy-momentum tensor. Establishing these equations in
the general case is a difficult task due to the interactions
among the fluid potentials that involve infinitely many
derivatives of fields. This particular structure is the result
of the action of the *-product, which is neither commuta-
tive nor associative. However, it is possible to study the
theory perturbatively in the noncommutative parameter s.
Nevertheless, even at the first order, the equations of
motion are highly nonlinear even in the simplest case of
the model that reduces to the irrotational fluid in the
commutative limit. It is an important and interesting
problem to study these equations and to determine their
integrability and possible solutions. We hope to report on
these topics elsewhere.
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