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1  Introduction

Self-assembled peptides have attracted great attention in 
the last years, because they serve as building blocks that 
can provide biocompatibility, chemical versatility, bio-
logical recognition abilities, and facile synthesis [1, 13]. 
Since Ghadiri et al. [17] described a new class of organic 
nanotubes based on a cyclic peptide architecture, these 
structures have been used for the assembly of a variety 
of nano-ordered materials. A number of peptide-based 
nanomaterials have been prepared using different building 
blocks, including cyclic peptides with alternating D- and 
L- amino acids [17, 23], peptide amphiphiles and pep-
tide bolaamphiphiles [10], short peptides with alternat-
ing negatively and positively charged residues, and sur-
factant-like peptides [42], aromatic dipeptides [35], and 
hydrophobic dipeptides [18]. The molecular sequence can 
be carefully selected based on the expected interactions 
between the specific amino acids, such as β-sheet, aro-
matic stacking or alternating hydrophilic and hydrophobic 
interactions [51]. In fact, the range of choices and the ver-
satility is what provides the potential for a wide range of 
applications, from biosensors [6, 30, 48] to energy storage 
devices [38, 50].

One of the shortest biologically active peptides that can 
self-assemble is L,L-diphenylalanine (FF), the Alzheimer’s 
β-amyloid polypeptide motif. There are reports of several 
types of ordered nanostructures such as nanoribbons [22], 
nanovesicles [46], nanotubes [28, 35], and nanowires based 
on FF [21, 28]. Ordering occurs at different scales starting 
at the molecular level with the association of six FF mono-
mers forming a macrocycle, as illustrated in Fig. 1a. There, 
amino and carboxyl groups form the inner core of the cycle 
creating a hydrophilic cavity that hosts H2O molecules 
[28]. The macrocycles stack into a columnar phase forming 
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narrow tubes with diameter ~1 nm. These nanotubes can 
further pack to form a hexagonal arrangement and give rise 
to pleated sheets [36]. Subsequently, through successive 
associations, create fibrillar bundles. The crystallographic 
arrangement has been appropriately described according 
to the hexagonal symmetry group P61 for self-assembly 
occurring in an aqueous environment [8, 28].

A number of works have focused on the self-assembly 
process of supramolecular FF-based structures—includ-
ing nanotubes—using both theory [20, 26, 27] and experi-
ments [11, 28, 43, 45]. In all of them, the role played by the 
aqueous solution is an important aspect. In fact, Kim et al. 
[28] have shown, for example, that different concentrations 
of water in the precursor solution lead to the formation of 
either nanotubes or nanowires. Furthermore, molecular 
dynamics simulations indicate that the zwitterionic form 
(one NH+

3  and one COO− per FF shown in Fig. 1) of the 
peptide is more prone to self-assembling nanotubes when 
compared to its neutral form [26]. Once the FFNT has 
been synthesized, channels with hydrophilic character are 
observed [19]. Thus, during the wrapping process, water 
molecules present in the solution are confined inside the 
channel [28, 35]. These molecules are known to give rise 
to changes in the electronic structure of the system [4, 45].

Nevertheless, the part water plays in the stability of the 
tubular arrangement after it has been formed is not yet 
clear. Typically, in a hydrated medium, zwitterionic mol-
ecules are more stable than the neutral forms [25, 29, 41]. It 
is known that the removal of water in L,L-diphenylalanine 

isolated peptides leads to a linear to cyclic transition [2]. 
Görbitz [19] proposed that, in order to stabilize the zwit-
terionic structure, the extra hydrogen atom of the NH+

3  
groups would be hydrogen bonded to water molecules 
inside the nanotube, i.e., confined water would not just be a 
consequence of the synthesis, but a requirement for stabil-
ity. It is not clear however, whether once formed the tubes 
would be stable even if water were removed or whether the 
peptides would undergo a zwitterionic/neutral form transi-
tion. In fact, an irreversible phase transition from the hex-
agonal to an orthorhombic P22121 arrangement is observed 
at 150  °C, an indication that water is key not only to the 
formation of the tubes, but also to their stability afterwards 
[2, 29, 40].

In order to study the role of water inside the nanotube, 
and the mechanisms driving their stability, we employed 
the dispersion-corrected third-order self-consistent charge 
density functional tight-binding (DFTB3) method to model 
the crystal structure of FFNTs with and without solvent 
molecules trapped in the hydrophilic channel [15]. The 
temperature effects were taken into account using DFTB3 
molecular dynamics (DFTB3-MD) simulations. We show 
that the removal of water from inside the tubes leads to 
a zwitterionic to neutral transition that renders the whole 
structure unstable. The inclusion of water molecules sta-
bilizes the system, and that stability is driven by a com-
bination of hydrogen bond formation between water mol-
ecules and the walls of the NT, as well as HBs within water 
molecules.

2 � Theoretical calculations

All the calculations were performed with a four-step pro-
cess using the DFTB3 method as it yields a good balance 
between accuracy and efficiency [15]. It is a third-order 
Taylor expansion of the Kohn–Sham energy functional 
with respect to charge density fluctuations. Compared to 
its predecessor [12], the description of hydrogen bonding 
is enhanced by changing the behavior of the screened Cou-
lomb interaction at short distances, when a hydrogen atom 
is involved in the interaction [15, 16]. All the calculations 
were performed with the DFTB+ package [5].

First, the crystal structure of the anhydrous FF nano-
tube shown in Fig.  1 was relaxed using the conjugate 
gradient (CG) method with an atomic force tolerance of 
1.0× 10−3 eV/Å−1. The anhydrous and non-centrosym-
metric hexagonal unit cell (P61 space group) contains six 
FF molecules, and it is formed by a total of 258 atoms [8, 
28]. The starting configurations were obtained from X-ray 
experimental data [8]. In all cases, the Brillouin zone was 
sampled using a Monkhorst–Pack [34] scheme with a 
2× 2× 3 k-point sampling.

Fig. 1   a A single FF zwitterionic molecule, b hexamer building 
block unit of six FF molecules, c vertical stacking of hexamer units 
forming a single NT, d lateral stacking of isolated NTs showing the 
hexagonal packing of the crystal system. The bright orange and green 
ellipses refer to ammonium (NH+

3
) and carboxylate (COO−) groups
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In a second step, water molecules, in different concen-
trations, were confined in the central hydrophilic channel 
of the nanotube (varying from one to 23 molecules per 
hexamer). They were inserted in the channel using a box-
constrained algorithm implemented in the Packmol pro-
gram [32, 33]. Later, the crystal structures of the complex 
(NT plus water) were relaxed (with parameters similar to 
the CG method).

Subsequently, a DFTB3-MD simulation was performed 
taking into account a simulated annealing protocol. The 
calculation was carried out in the NVT Ensemble using the 
Andersen thermostat [3]. The structures were heated from 
0.0 to 353.0 K during 2.0 ps, and then kept at 353.0 K for 
an extra 2.0 ps. The system was then cooled to room tem-
perature in 2.0 ps. The production run at room temperature 
had a total duration of 10.0 ps. After that, each structure 
was cooled to 0.0 K within a time window of up to 6.0 ps. 
The procedure was repeated for four different configura-
tions for sampling. The integration of equations of motion 
was performed using the Verlet velocity algorithm with a 
time step of 0.5 fs.

The fourth step corresponds to the CG relaxation of each 
structure. Using the final atomic arrangements, we calcu-
lated the average binding energy per FF hexamer as a func-
tion of the number of water molecules,

where En

complex(i), ENT, Ewater and n correspond to the 
energy of the nth complex (nanotube + n-water molecules), 
energy of the anhydrous nanotube, energy of a relaxed sin-
gle water molecule, and the number of H2O molecules used 
in the calculation at 0.0 K, respectively. We also calculated 
the coupling energy,

where En

water−isol(i) is the energy of an isolated tube of 
water molecules containing n molecules. In both cases, i 
runs over the different trial configurations.

The average binding energy provides information con-
cerning the interaction between water molecules and their 
surroundings, i. e., the interaction between water mol-
ecules and the inner wall of the nanotube via hydrogen 
bonds (HBs) as well as the intensity of the intermolecular 
HB interactions formed between water molecules [44, 47]. 
In turn, the average coupling energy quantifies solely the 
intermolecular interactions between water molecules and 
the inner wall of the FFNT [44, 47].

Finally, the unit cell of the relaxed structures contain-
ing 20, 21, and 22 water molecules was tripled along the c 
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direction. Steps 1–3 were repeated with a production run of 
12.0 ps. The last 10.0 ps were used to calculate the pair dis-
tribution functions as well as the number of formed hydro-
gen bonds.

To compute the number of HBs, we used as a cutoff dis-
tance criteria smaller than the position of the first minimum 
in the pair distribution functions formed between donor and 
acceptor atoms as well as donated hydrogens and accep-
tor atoms possibly involved in HBs. Here, we considered 
oxygen in water, carboxylate and carbonyl oxygens and 
ammonium nitrogen in FFNT as HB acceptors. Oxygen 
from water, and ammonium nitrogen (in the FFNTs) are 
regarded as HB donors. Furthermore, only angles smaller 
than 30° between acceptor, donor, and hydrogen atoms 
were considered.

3 � Results and discussion

The computed lattice parameters of the hexagonal anhy-
drous NT (a = 24.21 Å, c = 5.51 Å) agree with the experi-
mental results [8]. The diameter of the inner channel—the 
distance between nitrogens in opposing NH+

3  groups—of 
~12.19 Å is also comparable to the one observed by Kim 
et al. [28].

Once the relaxed anhydrous structure was obtained, 
the question of whether the FFNT structure is stable in 
the gas phase arises. Figure 2 shows snapshots of an MD 
simulation for the anhydrous system starting from zwit-
terionic building blocks. We notice that after ~1.00 ps, an 
intramolecular proton transfer occurs from one of the NH+

3  
to COO− groups. After ~5.00 ps, all the zwitterionic mol-
ecules that compose one hexamer change to the canonical 
neutral form.

The difference in energy per FF molecule between the 
initial (zwitterionic) and final (neutral) structures was 0.25 
eV. While we do not observe a phase transition due to the 
fixed symmetry (the unit cell does not change shape), the 
calculations without boundary conditions resulted in struc-
tures, which were considerably distorted. This leads to the 
conclusion that the anhydrous zwitterionic form is a meta-
stable solution. In fact, we also compared the anhydrous 
structure with the orthorhombic phase experimentally 
observed at higher temperatures. There, the molecular pre-
cursor for the structure is a cyclic form of the FF molecule 
[1, 31, 40]. Our calculations indicate that it is 0.80 eV, per 
FF molecule, more stable than the zwitterionic form. Thus, 
as it has been speculated, the removal of water would lead 
to a hexagonal-to-orthorhombic transition, as the structure 
becomes more stable [24].

In order to understand how water molecules interact with 
and possibly stabilize the crystal structure, we trapped a 
different number of H2O molecules inside each hydrophilic 
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channel: from 1 to 23 molecules per hexamer. The aver-
age binding and coupling energies are presented in Fig. 3. 
In the same figure, we also present the relative energy of 
the neutral form of the nanotube and the energy of six for-
mula units of the orthorhombic structure. From Fig. 3, the 
intermolecular water interactions turn all structures into 
stable ones when compared to the zwitterionic form of the 
anhydrous NT. We also observe that all the residues keep 
their zwitterionic structure during the MD simulation—for 
any number of water molecules which means that a small 
number of them is already enough to stabilize the tubes. 
Most interestingly, the minima of Eb and Ec occur for dif-
ferent concentrations of water (20 molecules  for Ec, and 
21 for Eb ). That is, by adding an extra water molecule to 
the system (starting from n = 20), the interaction with the 
nanotube wall becomes unfavorable. However, the water 
molecules are arranged in such a way that the interaction 
between them makes the system more stable until we add 
another water molecule (for a total of 22), in which case 
both Eb and Ec increase.

Increasing threefold the unit cell along the z direction 
and performing a new MD simulation allowed for the iden-
tification of the mechanisms leading to the stability of the 
nanotubes around the minima. In Fig.  4, we present the 
time-averaged contour plots of the density of oxygen atoms 
in water projected on the plane perpendicular to the NT 
axis (ab-plane) [9]. For the systems with 20 and 21 water 

molecules per hexamer, a clear hexagonal structure is noted 
close to the NT wall. As we will show, this is related to the 
oxygen- and nitrogen-containing functional groups making 
hydrogen bonds with oxygen atoms in water. With increas-
ing water concentration, the inner shell becomes denser, 
and the hexagonal structure becomes less clear.

It is worth noting that the voids formed between 
the first and second shells are greater in the case with 

Fig. 2   a Initial configuration of the FFNT and at b 1.06 ps, c 5.07 
ps, and d 11.00 ps during the molecular dynamics simulation. One 
observed representation of two FF molecules (in cyan) involved in 

the hydrogen transfer process between ammonium and carboxylate 
groups is shown for each snapshot. It is possible to notice the proton 
transfer
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20 than the one with 21 water molecules per hexamer. 
That is, water molecules have more space to accom-
modate avoiding strong repulsive interactions between 
them. It shows that the water molecules tend to bind 
to the surface of the tube before forming HBs among 
themselves.

The addition of extra water molecules produces a 
broader hexagonal solvation shell as well as a denser sec-
ond shell. One can see in Fig.  4c that the voids formed 
between the first and second shells become smaller. Con-
sequently, the steric hindrance between water molecules is 
higher than the other two lower concentrations. Then, the 
water–water interactions become repulsive, thus not being 
able to stabilize the NT water system.

The pair distribution functions (PDF) are shown in 
Fig. 5. There, we present the PDFs formed between donors 
and acceptors (Fig.  5a–c): ammonium nitrogen and water 
oxygen atoms 

(

NNH+

3
− OW

)

, oxygen atoms of water and 

carboxylate groups 
(

OCOO− − OW

)

, and between water 
oxygen atoms (OW − OW). Furthermore, in Fig. 5d–f, we 
present the PDFs formed between acceptor groups and 

Fig. 4   Contour map of the distribution of oxygen atoms of water molecules projected onto the ab-plane throughout the trajectory for the system 
with a 20, b 21, and c 22 water molecules per hexamer
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donated hydrogens: water oxygens and extra hydrogen 

atoms in ammonium (OW − HNH+

3
), water hydrogens and 

carboxylate oxygens 
(

OCOO− − HW

)

, and hydrogen atoms 

and oxygen in water (OW − HW).
A broad first peak in the NNH+

3
– OW PDF is found at 

approximately 3.07 Å. Similarly, one can note that the first 

peaks in the OW − HNH+

3
 PDFs are broad. However, the 

OW − HNH+

3
 PDFs are split into two. The formation of two 

peaks is related to the formation of two unlike water oxygen 
first nearest neighbors, which accept the additional ammo-
nium hydrogen. Thus, one can conclude that the water mol-
ecules are randomly oriented around NH+

3  groups. On the 
other hand, OCOO− – water PDFs demonstrate that water 
molecules are more oriented around the COO− groups than 
the ammonium motifs, as a first sharp peak located at 2.82 
Å (1.81 Å) of the OCOO− – OW(OCOO− − HW) PDF can be 
seen in Fig.  5b, e. Important features concerning the OW

– OW PDFs are noticed in Fig. 5c. The tetrahedral arrange-
ment formed by the water molecules involved in HB is lost. 
This is because the first peak in the OW– OW PDFs, located 
at 2.83 Å, is not sharp as observed in bulk, and the second 
peak is indeed shifted to 5.35 Å. It is worth noting, with 
regard to the second peak, that its intensity is reduced com-
pared to the bulk case [14, 37]. The HB distance in the OW

–HW PDFs shown in Fig. 5f is shifted to 1.90 Å. It means 
that some HB distances in water molecules have moved to 
longer distances [14, 37]; an indication that the structure 
of water confined inside the channel is significantly differ-
ent [7, 49]. This is directly related to the excluded volume 
effect imposed by the hydrophilic groups of FFNTs, which 
are particular sets of donor and acceptor sites involved in 
hydrogen bonds with the confined system [7, 49].

Finally, from our definition of hydrogen bond, we pre-
sent in Fig.  6 the average number of HBs formed in the 
complex. We can note that from 20 to 22 water molecules 
per hexamer, the number of HBs between water mole-
cules and oxygen atoms of COO− as well as NH+

3  groups 
decreases monotonically. Contrary to what was previously 
though, our results indicate that the interaction is promi-
nent between the carboxylate group and water [19]. For 21 
water molecules, by breaking HBs formed between water 
and the atoms of the NT wall, the solvent increases the 
number of these intermolecular interactions in an attempt 
to restabilize the complex. Furthermore, the total number 
of HB is similar to those observed in other confined water 
systems [39].

In fact, one can note that the intermolecular interaction 
between water molecules is stronger than the one between 
the solvent and the corresponding atoms of the NT wall. 
For the latter case, besides the reduction in the number of 

HBs between NT and water, increasing the density of the 
solvent within the hydrophilic channel provides a drastic 
reduction in the number of HBs formed between them.

4 � Conclusions

The stability of peptide nanotubes formed by FF mol-
ecules in zwitterionic form with and without water mol-
ecules under confinement was considered in this work 
using DFTB molecular dynamics simulations. We showed 
that the anhydrous zwitterionic system is a metastable 
solution. In fact, the presence of temperature effects dur-
ing the calculations leads to a zwitterionic to neutral form 
transition deforming the nanotube. We also showed that the 
orthorhombic phase is the most stable one in the absence 
of water, which ultimately could explain the phase transi-
tions observed in experiments [1, 24, 31]. We showed that a 
small amount of water molecules is enough to stabilize the 
structure, and that the molecules tend to form a hexagonal 
structure that follows the arrangement of the FFNT walls. 
Thus, the stability of the nanotube is closely intertwined 
with the presence of water. Finally, our analysis indicates 
that the stability of the tube arises from a combination of 
hydrogen bonds formed between ammonia and carboxy-
late groups and water, and between water molecules. While 
the hydrogen bonds with the wall of the NT are significant, 
when steric effects start to play a role, the water molecules 
rearrange themselves to allow for the formation of extra 
hydrogen bonds between water molecules, and keep the 
tube stable.
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