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Aharonov-Bohm oscillations in a quantum ring: Eccentricity and electric-field effects
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The effects of an in-plane electric field and eccentricity on the electronic spectrum of a GaAs quantum ring
in a perpendicular magnetic field are studied. The effective-mass equation is solved by two different methods:
an adiabatic approximation and a diagonalization procedure after a conformal mapping. It is shown that the
electric field and the eccentricity may suppress the Aharonov-Bohm oscillations of the lower energy levels.
Simple expressions for the threshold energy and the number of flat energy bands are found. In the case of a thin
and eccentric ring, the intensity of a critical field which compensates the main effects of eccentricity is
determined. The energy spectra are found in qualitative agreement with previous experimental and theoretical
works on anisotropic rings.
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I. INTRODUCTION tional invariance of the QR and suppresses the AB oscilla-

Quantum rings(QRS are doubly connected mesoscopic tions of the lower energy levels. ,
systems where the ballistic motion of charge carriers may N the absence of the magnetic field, the electronic states
take place. Fortunately, many properties of QRs can be exnl QRS subjected to an in-plane electric fiethd including
plained with single-electron theoty? In particular, the elec- €ccentricity effect® have been studied. We have calculated
trons in a perfectly circular ring threaded by a perpendiculathe electronic spectrum of eccentric rings by a combination
magnetic field may have a well-defined projection of theof a conformal mapping with a matrix-diagonalization
angular momentun, =l in the direction of the field. As a procedure? In particular, we have shown that the ground-
function of the threading magnetic flug, the energy of the State polarization due to eccentricity may be compensated by
state withl=0 gives an upward parabola with the vertex atan in-plane electric field. Also, 2D QRs of constant width
¢=0. Moreover, a horizontal shift of that curve in ¢, and arbitrary centerline, where the effects of a varying cur-
where ¢o=27fi/e, is obtained for other values ¢f Hence, Vature play a central role, have been considéted.
when the levels are indexed as energy increases, each of In this work, the conduction-electron states in GaAs quan-
them performs periodic oscillations with perigfg. Such os-  tum rings in the presence of a perpendicular magnetic field
cillations are a result of a quantum-interference phenomeno@re calculated within the effective-mass approximation. The
which is known as the Aharonov-Boh(AB) effect, and may in-plane motion of the electron is restricted to the region
be detected by transport measureméntsOptical between two nonconcentric circles. Attention is focused on
experiment3 has also detected the AB effect on a chargedhe effects of the eccentricity and in-plane electric fields,
particle in a nanoscale QR. which break the rotational symmetry of the rifig° The in-

Actually, the circular shape is an idealization of grown orterplay between the electric field and the eccentricity is ex-
fabricated solid-state rings, where imperfections of the strucplained in terms of simple equations for each transversal
tures often occut.In order to study the manifestation of the mode, within an adiabatic approximation. In particular, we
AB effect in a less symmetric ring, a two-dimensioti2aD) determine the number of flat energy levels and the spacing
annular ellipse with smoothly varying width has beenbetween them. For a comparison, we have calculated the
considered. The asymmetry of the system was shown toSame energy levels by adapting the method of Lavesére
produce the opening of gaps and the localization of somal.,’? to include the effects of the threading magnetic flux.
states in the wider regions, thus leading to the flattening offhe energy spectra are found in qualitative agreement with
the corresponding energy levels. Also, the effect of the variprevious experimental and theoretical works on anisotropic
able curvature of an elliptical QR of uniform width on the rings*®
electron-energy spectrum in a magnetic field has been
studied! The expected AB oscillations were found, but en-
ergy gaps appeared due to the confinement of the electron in Il. THEORETICAL FRAMEWORK
the regions with larger curvature. Moreover, the influence of
the anisotropy of a semiconductor QR, as due to an applied To study the electronic spectrum of a GaAs QR in crossed
electric field, on the AB oscillations and the optical spectrummagnetic and electric fields, a parabolic-band scheme within
has been analyzédit was found that in the presence of the effective-mass approximation is used. Hence, the station-
threading magnetic field, the electric field destroys the rotaary envelope functions satisfy the equation

1098-0121/2005/7112)/1253127)/$23.00 125312-1 ©2005 The American Physical Society



A. BRUNO-ALFONSO AND A. LATGE

Ly

OR- ]

F
—_—

Y=

-b

FIG. 1. Schematic view of a 2D ring under crossed eledfric

and magnetiné fields, witha andb being the internal and external
radii, respectively. The shifA is the eccentricity.

Haptsp(F) = Esptan(f) ()

with
o _[CiaV +eAN]?

3D~ omr +eF-r+Usgp(r),

2

where U3p(F) is the QR-confinement potentia&(F) is the

vector potential of the magnetic field, andis the electric-
field intensity. Also, € is the electron charge and’ is the
effective mass(m'=0.067n, for conduction electrons in
GaAs, wheram, is the electron mags

The QR confinement is taken &) =V(2) +U,p(X,Y),
whereV(z) gives the vertical confinement and

Uoy) 0, if(x—A)?+y? = a? andx? + y? < b?

X! = .
205, o, otherwise
)

defines a doubly-connected regioR in the xy plane.
Actually, R is a ring with circular boundaries, wheee(b)

is the internal(external radius andA is the eccentricity
(with |A|<b-a). The vector potential is chosen as
A(N=(BxT)/2, whereB=(0,0,B) is the magnetic field, and
the electric field is taken a@8=(F,0,0). The 2D ringR and
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the eccentricity and the electric and magnetic fields. More-
over, the vertical wave functiog(z) satisfies

-

The potentiaM(z) is not specified here, but it is supposed to
have a discrete set of low-energy levels.

Two different methods are used, in what follows, to solve
Eqg. (4): (i) an adiabatic approximation leading to a one-
dimensional(1D) problem and(ii) a 2D approach involving
a diagonalization procedure after a conformal mappiis
those approaches involve coordinate transformations be-
tween the rectangular coordinatég,,x,)=(x,y) and a
couple(qgy,q,) of suitable curvilinear coordinates, it is con-
venient to establish a curvilinear version of E4).

The Laplace operator is transformedZs

e

where J=de{M) is the Jacobian of the transformation, the
Jacobian matrix satisfies

2

o2m' dZ

2

+ V(Z)] (2) = (Esp ~ E2p)x(2). (6)

= E

Jh=1 9

E Gjh

j=1

(7

(x y) ~

it
a0’
andG=MTM is the covariant metric tens&tThe curvilinear

coordinates are chosen to guarantee dhatalways positive.
Also, the partial derivatives are transformed as

(8)

hj =

9

The probability of finding the electron ifix;,x;+dx]
XX, %+d%] is  given by [ihp(xq,Xp)[7dxgdx,
=[7(01, 02)[*dchdp, with

7(01,92) = ¥op(X,X2) V3, (10

and the orthonormality relations for(q;,q,) apply to
op(Xq, %) as well.
The differential equation for(q,,q,) is

the electromagnetic-field configuration are depicted in Fig. 1.

The envelope wave function may be written as
PaptH) = x(2) ¥op(X,y), where the in-plane wave function sat-
isfies

l:|2D',020(X,y) = Expthop(X,Y), (4)
with
K2 iehB 0 J
H2D:_ V(xy) o (‘)’5( Xé'_y> + %)
+eFx+ Uyp(x,y), (5

:rﬂ(chy%) = Expn(01,0), (1)
with
L ow1d oA a1
T: - *72 _<JE Gjhl_T
2m \’Jh=1 B\ =1 9 VI
|eﬁB J 1
- \JE( 1)hX (2 M. 1—7>
NG a3
2
3+ %5) + eFxq + Upp(Xy, %), (12)

wherex; andx, are functions ofg; andg,. Equation(4) is

then solved foris,p(X,y) in the regionR, where U,p=0,

being the in-plane Hamiltonian, which contains the effects ofwith the Dirichlet boundary conditiog,p(x,y)=0.
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[ll. THE ADIABATIC APPROXIMATION last two terms in Eq(16) lead to a shift of the energy levels
If the ring R is thin enough, i.e.b—a<b, then it tha_h?oes .noi depend on tthe m?net'g f|eld.d i |
can be treated as a quasi-one-dimensional strip in th |eatn_|s$ r%py faque erdlrt]h an e{)gar]t s(;nearyon
xy plane. Since the inner circle can be parameterized at € ?hect ,:;:: e |ntgn§[| y ?fn t'e fccen n:‘:(ljrg{.b' ne ma{jno-
(x,y)=[A+acog6),asin(6)], with —w<6<m and the ice that the eccentricity effect is stronger f¢ii: bigger an
. ) B . . thinner rings(largerr and smallemw) and (i) higher trans-
outer circle is (x,y)=[bcog6),bsin(d)], a mean circle | modes but it d d d he eff
may be defined asx.y)=[A/2+r cog6).r sin(6)], with versal mo eglargern), but it does not depend on the effec-
. ' . A . tive mass or the electric charge of the particle. On the other
r=(a+b)/2 being the mean radius. The curvilinear coordi-

2 A _ hand, the effect of the electric field is stronger foy:bigger
nates(dy, gz)=(u, 6) are implicitly defined by rings and(ii) larger effective mass1’, but it does not depend

<x) {(1/2 —UA +(r + uw)cos(&)] on the mean widthv or the transversal-mode index Also,

= . ) (13 the electric-field term has opposite sign for a positive charge,

y (r +uwsin(6) i.e., for a hole. Moreoverg, vanishes for the electric-field

with w=b-a being the mean width, and -1&u<1/2. intensity

Hence, 6 andu are the longitudinal and transversal coordi- 222

nates, respectively. The Jacobidr (r +uw)[w—A cog6)] F,=- M (18)

of this transformation is a positive function for emwdr

ue[-1/2,1/2 and arb|trqryo9. . It means that it is possible to repair the eccentric ring by
After a lengthy but straightforward calculation, the opera- . . D . :
A . i . applying an in-plane electric field, avoiding the suppression

tor Tin Eq. (12) is obtained in terms of the small parametersof the Aharonov-Bohm oscillations. However, the critical

Q=w/r and é=A/w. A first-order power expansion df in  field-intensity F,, depends on the transversal-mode index
terms of ) and ¢ is performed to obtain the Hermitian op- and the effective mass’, and has opposite signs for positive

eratorT, (not shown, for the sake of brevjtyThe adiabatic ~and negative charges. In this sense, it is not possible to mend
approximation leads to a variational solution of the whole electronic spectrum of the eccentric ring.

The eigenfunctions olf:i(l"[), in Eq. (16) are

Ton(u, 6) = Expn(u,6), (14)
= . . 4 1 0
where 7(u, ) =\2 sinnwu+na/2) i p(6), with n=1,2,3, .. OE - exp(— i£6> X [Aj'nc<4)\j,n,an,5>
corresponding to different transversal modes. The longitudi- V2 bo
nal modey,p(6) satisfies 0
R 52022 + By 4)\j,nvan-§ (19
HiBy10(6) = (EZD_ W)%o(@), (15

with j=1,2,3,...,and(a,q,z) andS(a,q,z) being the even
with the cyclic boundary conditioms; 5(+2m) =y;p(6) for ~ and odd(in the variablez) Mathieu functions, respectively,
all values of6. The Hamiltonian is which are linearly independent solutions of the differential
equatiod*1°

1/2
S(n) . ~ .
leb = 2[_1/2 Sln(n'ﬂu + n7T/2)TO Sln(n’JTU + n77/2)du y”(z) + [a_ 2q COS(ZZ)]y(Z) =0. (20)

52 2 2igd & a, Here, C(a,q,2) [S(a,q,2)] is the solution with the initial
=omr?| Ta@ o d + pe 5 cog6) conditionsy(0)=1 andy’(0)=0 [y(0)=0 andy’(0)=1]. Ac-
, 0 0 cording to the conditionysp(0+2m)=y;p(6), the coeffi-
h eFA i : . sati
Ep— (16) cientsA; and B; satisfy
8amr 2
. ) T
where ¢=7r?B is the magnetic flux over the mean circle, A n S'”(?O>C<4>‘Ln-“n’§)
¢o=2mhle, and
* 7T¢ ﬂ-
- r2(eFr+ hznZﬂlA> (17) =B COS(?H“’%%E) 0
= T mw? 0
: : . and
is a parameter which measures the anisotropy of the system
(due to the eccentricity and the applied electric fidtt the b -
nth transversal mode. Ajncoq — |C'| 4N an,

It is worth noting that the four terms in the parentheses of
Eg. (16) contain most of the physics of the problem. In fact, . (TP, ™
the first three are responsible for the Aharonov-Bohm oscil- =1Bjn S'”(?O>S (4)‘1'”’0‘”5)’ (22
lations of the energy levels associated to title transversal
mode, while the fourth term can suppress the oscillations ovhere C'(a,q,20=CJ(a,q,2) and S(a,q,2=S/(a,q,2.
the energy levels below a certain threshold. Moreover, thélence,\; ,=\j(an, ) with \j(a, ¢) being thejth root of
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100 with small index | correspond to a coupled set of linear
oscillators!® The associated bands are almost flat and can be
given in terms of an isolated oscillator as

o 1\ —
)‘i(a,¢)”—%+<1—§)v|a|- (25

Since the line\=|a|/2 separates narrow and wide bands, Eq.
(25 may be used to estimate the number of flatbands as

N, =~ V]| + 1. (26)
-100 . L . o
0 50 100 150 200 Of course, one should take the nearest positive integhy,to
4 However, the Eq(26) underestimates the value Nf,, since

the spacing between consecutive bands decreas¢siras
creasegsee Fig. 2

According to Eq.(24), the energy of the flatbands with
smallj and corresponding to thah transversal mode can be

FIG. 2. Energy spectrum given by the roatge, ¢) as a func-
tion of the anisotropy parametes for the lower 20 bands
(j=1,...,20 and 0< @< ¢y/2. The solid (dashed lines corre-
spond to the magnetic flu®=0 ($=py/2) and the gray bands are

for 0< p< o/ 2. given as
E(i,n>~ﬁ_ﬁ_2<ﬂ+1)+@
cosz(”—‘ﬁ)o(M,a,g)s(zxx,a,g): o emw? 2m'r?\ 2 4) 0 2
O [
ﬁzxan|<_ 1)
MRERIL Y 27
—sir?(?)(:(m,a,7—5)8’(4>\,a,§), (23) omr2 \) 72 27
0

] ) which is a sequence of uniformly spaced levels separated by
and the corresponding value Bfp is

J—
7%

i wn?m? Rh? 1| eFA S = —. (28)
ST o T 2mr{)\(a”’¢) } Mt (24) 2m'r2

From Eq.(23), it is straightforward to show that the spec-
trum is even[\j(a,-¢)=\j(a, ¢)] and periodic with period

This is an important result which allows one to obtain the
magnitude|a,| of the anisotropy parameter in terms of the
' . mean radiug, after the experimental determination of the

. + =\ . . .
o [\j(@,p+do)=)j(a,¢)] as a function of the magnetic | spacing. A further relation between the ring parameters

flux . Moreovgr,.)\j(—a,¢>):)\_j(a,¢), due_ to symmetry. is given by the threshold energy which separates narrow and
Then, one can limit the numerical calculations to the rangeyide bands. This energy is

a=0 and O< ¢ =< ¢/ 2, where\;(a, ¢) is a monotonic func-
tion m _ 4 2712 72 [ley| 1\ eFA
of ¢. In a wider range of¢ values, \j(a,¢) exhibits Eihr = mez omr2 +71
AB oscillations as a function of¢ with amplitude

8(@)=[\j(ar, do/2)=\j(a,0)]. In particular, for =0 the  pyt the experimental error fdE{" is of the order ofs,. In-

2 4 29

bandwidth is given by;(0)=(2j-1)/4. _ stead, the energy of the lower longitudinal mdeg” may
Figure 2 displays the eigenvaluaf(«, ¢) as a function  pe found more accurately. The latter establishes an important
of the anisotropy parameterw for j=1,...,20 and relation between the mean width, the mean radius, the

0= ¢= /2. The solid(dashed lines correspond tap=0  eccentricity A and the electric-field intensitfF [see Eq.
(¢=¢o!2) and the gray bands are forOp < ¢y/2. One can  (17)].

clearly distinguish between the bands above and below the Figure 2 also shows that, below the threshold line
line A=a/2, which corresponds to the maximum value of thex =«/2, the bandwidths;(a) decreases as the anisotropy pa-
potentiala cog#)/2 in Eq.(16). The higher bands are wide rametera increases. The actual width of the thinner bands,
and very small gaps separate them. This means that su¢iowever, is not shown in the figure, because the thickness
bands show strong Aharonov-Bohm oscillations. Instead, thef the edge curves in the artwork is fixed. To better illustrate
lower bands are very narrow with large gaps between thenthe evolution of the bandwidths, Fig. 3 displays the depen-
Those flatbands occur because the asymmetry of thdence of the ratesj(a)/ 6,(0) with the anisotropya, for
system leads to a confinement of the particle around=1,...,20. One clearly sees that lower bands are thinner
6=m+2km (§=2km) for a>0 («<0), with k being an and that the bandwidths decrease exponentially for suffi-
integer. In fact, the second-order Taylor expansion of thesiently large values ofx. The number of flatbandsy,, is
potential « cog6)/2 in Eq. (16) around its minima is also inferred from the figure. This is done by following a
la| [(6-6)2%/4-1/2), where 6,=m+2km (6,=2km) for  criterium in which a band is flat if it is thinner than a half of
a>0 (a<0). Hence, for sufficiently largea|, the states §;(0). With this idea in mind,N, is the number of curves
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100 T T T 3 ! 2 2 2 ! 2 4
3 1 +Xpx' /b~ + X /b
. _ x4 oGly' b 32
(1-x3/b?)
10
. and the Jacobian matrix is
[=)
< i 1 % V)
~ 1 —
= M=———— , 33
£ AR NN - (1—xg/b2)gz(—y w (33
0.1 . with u=(1+xox"/b?)?=x3(y")%b* and v=2xgy’ (1+xx'/ %)/
: b2.
. Equation(11) is solved in the regiofi " with the Dirichlet
0.01 0 50 100 150 200 boundary Conditionr](x’ ,y’):O, and
) R P Y B 34
FIG. 3. The bandwidttsj(a), in units of the widths,(0) of the T\ 2 A 82 2Q | +eFX, (34
first band in a concentric ring with electric fiekl=0, as a function
of the anisotropy parameter for j=1,...,20. The band indek  with N= —gV . ,g Q X2+y X= X, and
increases from the left-bottom to the rlght top corner. The dashed
line is for &(a)=6,(0)/2. - i 2%V xx X2\ 9
l L= 22 X02)’+,1+X02+%_
) . ) ) ] . (1-xg/b) | b b b=/ ox’
crossing the dashed lireepicted in the figureat anisotropy )
i XoX ! d
par_ameter_s_shorter than That number may be estimated by +-| (¢ "‘Xo)(l 3+ X ) _ XO(yz) 2 (35)
a simple fitting as b? b ay
N,~-0.322+ 1_153m, (30) For this purpose, the eigenfunctions are expressed as
where the nearest positive integer i, should be taken. n(x'y') = 2 Cri 7O (X',Y"), (36)

This number is relevant for the study of persistent currents in
QRs, since the flatbands do not contribute to the current. . _ O s s
Hence, the number of electrons in the ring should be greaté’?’h?rel tz_akes mtege_r values:n—117,2,3,..., andyy, (x',y") IS
thanN,, for the AB oscillations to be detected in an equilib- 9€fined in our previous work:'” For each of the electronic
fium transport measurement. states, the energi¥,p in Eq. (11) and the correspondmg co-

It is worth noting that for a concentric GaAs QR with efficientsc, are found by diagonalization df in the ortho-
r=400 A, w~20 A, andF=10 kV/cm, the anisotropy pa- normal baseqm, x',y"). In the calculations, the base is trun-
rameter of Eq(17) is a~225.1 for all values of. Hence, cated, and the accuracy of the results may be increased by
according to the Eq(30), there are 17 flatbands for all the taking a base with a larger number of elements.
transversal modes. Moreover, the E28) gives the spacing
between the lower bands=~5.33 meV. These results are in
good agreement with the work of Barticewét al® V. FURTHER RESULTS AND DISCUSSION

Figure 4 displays the lower 2D energy levels as functions
of the mean magnetic fluxp, for conduction electrons in
IV. CONFORMAL MAPPING AND DIAGONALIZATION GaAs QRs witha=900 A, b=1100 A, and different combi-
PROCEDURE nations of eccentricitydA and electric-field intensityr. The

To simplify the solution of the Eq4), a conformal map- solid lines are the eigenvalues obtained from &4) using
ping which transforms the eccentric rifg in a concentric M=1,2,3 andl=-40,...,40, whereas the dashed lines are
ring R’ is use&o Considering the Comp'ex variables=Xx the results from Eq(24) with n:]., fO”OWing the adiabatic
+iy and w’ =x’ +iy’, a suitable conformal mapping is approximation. The field intensitlf =—84.2 V/cm has been
taken from the Eq(18), for A=6 A andn=1. A good agree-
ment between the 2D approach and the adiabatic approxima-
tion (solid and dashed lingss apparent in the figure.

5 . —— The energy spectrum corresponding to a concentric QR
wherexo=b“(1+L1L,~L3)/(24), with Ly=\(1-L1)(1-L3),  in the absence of electric fields is shown in Figa)d4where
L;=(A-a)/b, andL,=(A+a)/b. In fact, the functiof maps  the Aharonov-Bohm oscillations are clearly seen. Figure
lo-Al=a and |o|=b onto |0’ -A[=a’ and|w’|=b, respec-  4(b) shows the effect of applying the in-plane field
tively. The external radius of the concentric rilj isb and ~ F=-84.2 VV/cm to the concentric QR. The oscillations of the
its internal radius is’ =b%(1-L;L,~L3)/(2a). lower levels are nearly suppressesince this field pushes

The conformal transformation give the rectangular coor-the electron to the right-hand side of the ring. Following Eq.
dinates (x,y) in terms of the curvilinear coordinates (17), the value of the anisotropy parameterdg~-29.61.
(91,0)=(x",y"). The Jacobian of this mapping &=g>2, According to Eq(30) the number of flat levels is 6, as can be
with seen in Fig. ). Also, the results show that flat levels are

(l)_XO

=f =—
(@)= alb?”

(31
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FIG. 5. Some 2D energy levels as functions of the mean mag-
netic flux ¢, for conduction electrons in a GaAs QRs with
a=900 A,b=1100 A,A=6 A, andF=-84.2 V/cm. Soliddashed
lines are the results of the 2D approach with the conformal mapping
(the adiabatic approximation

E (meV)
E (meV)

c)
13 {

¢/%0 $/%0
calculated within the effective-mass approximation, with
FIG. 4. The lower 2D energy levels as functions of the meangpecial attention on the effects of in-plane electric fields and

magnetic flux ¢, for conduction electrons in GaAs QRs with eccentricity. The calculation of the 2D states was performed
a=900 A, b=1100A, and (@ A=0A and F=0V/cm, (b) by two methods: an adiabatic approximation and a conformal
A=0A andF=-84.2 V/em,(c) A=6 A andF=0 V/cm, and(d)  yansformation combined with a diagonalization procedure.
A=6 A andF=-84.2 V/cm. Soliddashedlines are the results of 0 adiabatic approximation, which is suitable for suffi-
the 2D approach with the conformal mappirihe adiabatic oy thin rings with small eccentricity leads to a 1D prob-
approximation. lem for each transversal mode. The main effects of the elec-

tric field and eccentricity are contained in the anisotropy
separated bys;~0.31 meV. A QR with eccentricity parameter. We have shown that the eccentricity effect is
A=6 A is considered in the bottom panels of Fig. 4. Panektronger for bigger and thinner rings and higher transversal
(c), whereF=0 V/cm, shows that the eccentricity leads to modes, but it does not depend on the effective mass or the
the same effects as the in-plane electric field. In this case thgectric charge of the particle. Moreover, the effect of the
localization of the electron occurs in the wider regfoand  electric field is stronger for bigger rings and heavier particles
the picture resembles Fig.(B) since a;~29.61. Instead, and has an opposite sign for a positive charge and does not
panel(d) for F=-84.2 V/cm is similar to Fig. @), since the  depend on the mean width of the ring or the transversal
main effects of eccentricity and electric field are compen-mode. Simple expressions have been derived for the thresh-
sated, i.e.a;~0. old energy separating wide from narrow bands, the number

Higher transversal electronic modes may also be apparegf flat levels, the distance between the lower ones, and the

in experimental studieSFigure 5 displays some high-energy energy of the ground level. Furthermore, the width of the flat
levels for the system of Fig.(d). The solid lines are the energy bands, as functions of the threading magnetic flux,
eigenvalues of Eq(34), with m=1,2,3 and =-40,...,40, has been shown to decrease exponentially as the anisotropy
whereas the dashed lines are given by the @4), with parameter increases.
n=1 orn=2. The diamondlike structure wittr3 meV high The 2D approach based on the combination of a suitable
pieces are associated to the first transversal mode, and cleatdynformal mapping and a diagonalization procedure is more
shows the AB oscillations. Moreover, the flat curves andcomplete, since it includes the coupling between different
the diamondlike structure with-1 meV high pieces corre-  transversal modes and remains valid for a wider range of ring
Spond to then=2 transversal mode. For the latter states tthimensionS and eccentricity values. A good agreement be-
anisotropy parameter ia,~88.82, which leads to 11 flat- tween the two approaches was obtained for thin rings with
bands. Also, the spacing between the lower flatbands igmall eccentricity. As the electric field and the eccentricity
s;~0.54 meV. This shows that the in-plane electric field may affect the electronic spectrum of GaAs quantum rings in
F=-84.2 V/cm, which recovers the oscillations of thel  the presence on a perpendicular magnetic field, we expect
level in Fig. 4d), does not repair the=2 states. this work to be useful in magnetization, transport, and optical

studies of such systems.
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