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The effects of an in-plane electric field and eccentricity on the electronic spectrum of a GaAs quantum ring
in a perpendicular magnetic field are studied. The effective-mass equation is solved by two different methods:
an adiabatic approximation and a diagonalization procedure after a conformal mapping. It is shown that the
electric field and the eccentricity may suppress the Aharonov-Bohm oscillations of the lower energy levels.
Simple expressions for the threshold energy and the number of flat energy bands are found. In the case of a thin
and eccentric ring, the intensity of a critical field which compensates the main effects of eccentricity is
determined. The energy spectra are found in qualitative agreement with previous experimental and theoretical
works on anisotropic rings.
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I. INTRODUCTION

Quantum ringssQRsd are doubly connected mesoscopic
systems where the ballistic motion of charge carriers may
take place. Fortunately, many properties of QRs can be ex-
plained with single-electron theory.1–3 In particular, the elec-
trons in a perfectly circular ring threaded by a perpendicular
magnetic field may have a well-defined projection of the
angular momentumLz="l in the direction of the field. As a
function of the threading magnetic fluxf, the energy of the
state withl =0 gives an upward parabola with the vertex at
f=0. Moreover, a horizontal shift of that curve in −lf0,
wheref0=2p" /e, is obtained for other values ofl. Hence,
when the levels are indexed as energy increases, each of
them performs periodic oscillations with periodf0. Such os-
cillations are a result of a quantum-interference phenomenon
which is known as the Aharonov-BohmsABd effect, and may
be detected by transport measurements.4 Optical
experiments5 has also detected the AB effect on a charged
particle in a nanoscale QR.

Actually, the circular shape is an idealization of grown or
fabricated solid-state rings, where imperfections of the struc-
tures often occur.4 In order to study the manifestation of the
AB effect in a less symmetric ring, a two-dimensionals2Dd
annular ellipse with smoothly varying width has been
considered.6 The asymmetry of the system was shown to
produce the opening of gaps and the localization of some
states in the wider regions, thus leading to the flattening of
the corresponding energy levels. Also, the effect of the vari-
able curvature of an elliptical QR of uniform width on the
electron-energy spectrum in a magnetic field has been
studied.7 The expected AB oscillations were found, but en-
ergy gaps appeared due to the confinement of the electron in
the regions with larger curvature. Moreover, the influence of
the anisotropy of a semiconductor QR, as due to an applied
electric field, on the AB oscillations and the optical spectrum
has been analyzed.8 It was found that in the presence of
threading magnetic field, the electric field destroys the rota-

tional invariance of the QR and suppresses the AB oscilla-
tions of the lower energy levels.

In the absence of the magnetic field, the electronic states
in QRs subjected to an in-plane electric field9 and including
eccentricity effects10 have been studied. We have calculated
the electronic spectrum of eccentric rings by a combination
of a conformal mapping with a matrix-diagonalization
procedure.10 In particular, we have shown that the ground-
state polarization due to eccentricity may be compensated by
an in-plane electric field. Also, 2D QRs of constant width
and arbitrary centerline, where the effects of a varying cur-
vature play a central role, have been considered.11

In this work, the conduction-electron states in GaAs quan-
tum rings in the presence of a perpendicular magnetic field
are calculated within the effective-mass approximation. The
in-plane motion of the electron is restricted to the region
between two nonconcentric circles. Attention is focused on
the effects of the eccentricity and in-plane electric fields,
which break the rotational symmetry of the ring.8–10 The in-
terplay between the electric field and the eccentricity is ex-
plained in terms of simple equations for each transversal
mode, within an adiabatic approximation. In particular, we
determine the number of flat energy levels and the spacing
between them. For a comparison, we have calculated the
same energy levels by adapting the method of Lavenèreet
al.,10 to include the effects of the threading magnetic flux.
The energy spectra are found in qualitative agreement with
previous experimental and theoretical works on anisotropic
rings.4,8

II. THEORETICAL FRAMEWORK

To study the electronic spectrum of a GaAs QR in crossed
magnetic and electric fields, a parabolic-band scheme within
the effective-mass approximation is used. Hence, the station-
ary envelope functions satisfy the equation
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Ĥ3Dc3DsrWd = E3Dc3DsrWd s1d

with

Ĥ3D =
f− i"¹W + eAW srWdg2

2m* + eFW · rW + U3DsrWd, s2d

where U3DsrWd is the QR-confinement potential,AW srWd is the

vector potential of the magnetic field, andFW is the electric-
field intensity. Also, −e is the electron charge andm* is the
effective masssm* =0.067m0 for conduction electrons in
GaAs, wherem0 is the electron massd.

The QR confinement is taken asU3DsrWd=Vszd+U2Dsx,yd,
whereVszd gives the vertical confinement and

U2Dsx,yd = H0, ifsx − Dd2 + y2 ù a2 andx2 + y2 ø b2

`, otherwise
J

s3d

defines a doubly-connected regionR in the xy plane.
Actually, R is a ring with circular boundaries, wherea sbd
is the internalsexternald radius andD is the eccentricity
swith uDu,b−ad. The vector potential is chosen as

AW srWd=sBW 3 rWd /2, whereBW =s0,0,Bd is the magnetic field, and

the electric field is taken asFW =sF ,0 ,0d. The 2D ringR and
the electromagnetic-field configuration are depicted in Fig. 1.

The envelope wave function may be written as
c3Dsr→d=xszdc2Dsx,yd, where the in-plane wave function sat-
isfies

Ĥ2Dc2Dsx,yd = E2Dc2Dsx,yd, s4d

with

Ĥ2D = −
"2

2m* ¹sx,yd
2 −

ie"B

2m* S− y
]

]x
+ x

]

]y
D +

e2B2

8m* sx2 + y2d

+ eFx+ U2Dsx,yd, s5d

being the in-plane Hamiltonian, which contains the effects of

the eccentricity and the electric and magnetic fields. More-
over, the vertical wave functionxszd satisfies

F−
"2

2m*

d2

dz2 + VszdGxszd = sE3D − E2Ddxszd. s6d

The potentialVszd is not specified here, but it is supposed to
have a discrete set of low-energy levels.

Two different methods are used, in what follows, to solve
Eq. s4d: sid an adiabatic approximation leading to a one-
dimensionals1Dd problem andsii d a 2D approach involving
a diagonalization procedure after a conformal mapping.10 As
those approaches involve coordinate transformations be-
tween the rectangular coordinatessx1,x2d=sx,yd and a
couplesq1,q2d of suitable curvilinear coordinates, it is con-
venient to establish a curvilinear version of Eq.s4d.

The Laplace operator is transformed as12,13

¹sx,yd
2 =

1

J
o
h=1

2
]

]qh
SJo

j=1

2

Gjh
−1 ]

]qj
D , s7d

whereJ=detsMd is the Jacobian of the transformation, the
Jacobian matrix satisfies

Mhj =
]xh

]qj
, s8d

andG=MTM is the covariant metric tensor.13 The curvilinear
coordinates are chosen to guarantee thatJ is always positive.
Also, the partial derivatives are transformed as

]

]xh
= o

j=1

2

Mjh
−1 ]

]qj
. s9d

The probability of finding the electron infx1,x1+dx1g
3 fx2,x2+dx2g is given by uc2Dsx1,x2du2dx1dx2

= uhsq1,q2du2dq1dq2, with

hsq1,q2d = c2Dsx1,x2dÎJ, s10d

and the orthonormality relations forhsq1,q2d apply to
c2Dsx1,x2d as well.

The differential equation forhsq1,q2d is

T̂hsq1,q2d = E2Dhsq1,q2d, s11d

with

T̂ = −
"2

2m*

1
ÎJ

o
h=1

2
]

]qh
SJo

j=1

2

Gjh
−1 ]

]qj

1
ÎJ
D

−
ie"B

2m*
ÎJo

h=1

2

s− 1dhx3−hSo
j=1

2

Mjh
−1 ]

]qj

1
ÎJ
D

+
e2B2

8m* sx1
2 + x2

2d + eFx1 + U2Dsx1,x2d, s12d

wherex1 and x2 are functions ofq1 and q2. Equations4d is
then solved forc2Dsx,yd in the regionR, where U2D=0,
with the Dirichlet boundary conditionc2Dsx,yd=0.

FIG. 1. Schematic view of a 2D ring under crossed electricFW

and magneticBW fields, witha andb being the internal and external
radii, respectively. The shiftD is the eccentricity.

A. BRUNO-ALFONSO AND A. LATGÉ PHYSICAL REVIEW B71, 125312s2005d

125312-2



III. THE ADIABATIC APPROXIMATION

If the ring R is thin enough, i.e.,b−a!b, then it
can be treated as a quasi-one-dimensional strip in the
xy plane. Since the inner circle can be parameterized as
sx,yd=fD+a cossud ,a sinsudg, with −pøuøp, and the
outer circle is sx,yd=fb cossud ,b sinsudg, a mean circle
may be defined assx,yd=fD /2+r cossud ,r sinsudg, with
r =sa+bd /2 being the mean radius. The curvilinear coordi-
natessq1,q2d=su,ud are implicitly defined by

Sx

y
D = Fs1/2 −udD + sr + uwdcossud

sr + uwdsinsud G , s13d

with w=b−a being the mean width, and −1/2øuø1/2.
Hence,u and u are the longitudinal and transversal coordi-
nates, respectively. The JacobianJ=sr +uwdfw−D cossudg
of this transformation is a positive function for
uP f−1/2,1/2g and arbitraryu.

After a lengthy but straightforward calculation, the opera-

tor T̂ in Eq. s12d is obtained in terms of the small parameters

V=w/ r and j=D /w. A first-order power expansion ofT̂ in
terms ofV and j is performed to obtain the Hermitian op-

eratorT̂0 snot shown, for the sake of brevityd. The adiabatic
approximation leads to a variational solution of

T̂0hsu,ud = E2Dhsu,ud, s14d

where hsu,ud=Î2 sinsnpu+np /2dc1Dsud, with n=1,2,3,…
corresponding to different transversal modes. The longitudi-
nal modec1Dsud satisfies

Ĥ1D
sndc1Dsud = SE2D −

"2n2p2

2m*w2 Dc1Dsud, s15d

with the cyclic boundary conditionc1Dsu+2pd=c1Dsud for
all values ofu. The Hamiltonian is

Ĥ1D
snd = 2E

−1/2

1/2

sinsnpu + np/2dT̂0 sinsnpu + np/2ddu

=
"2

2m*r2F−
d2

du2 −
2if

f0

d

du
+

f2

f0
2 +

an

2
cossudG

−
"2

8m*r2 +
eFD

2
, s16d

where f=pr2B is the magnetic flux over the mean circle,
f0=2p" /e, and

an =
4m*r2

"2 SeFr +
"2n2p2D

m*w3 D s17d

is a parameter which measures the anisotropy of the system
sdue to the eccentricity and the applied electric fieldd for the
nth transversal mode.

It is worth noting that the four terms in the parentheses of
Eq. s16d contain most of the physics of the problem. In fact,
the first three are responsible for the Aharonov-Bohm oscil-
lations of the energy levels associated to thenth transversal
mode, while the fourth term can suppress the oscillations of
the energy levels below a certain threshold. Moreover, the

last two terms in Eq.s16d lead to a shift of the energy levels
that does not depend on the magnetic field.

The anisotropy parameter in Eq.s17d depends linearly on
the electric-field intensity and the eccentricity. One may no-
tice that the eccentricity effect is stronger for:sid bigger and
thinner ringsslarger r and smallerwd and sii d higher trans-
versal modesslargernd, but it does not depend on the effec-
tive mass or the electric charge of the particle. On the other
hand, the effect of the electric field is stronger for:sid bigger
rings andsii d larger effective massm* , but it does not depend
on the mean widthw or the transversal-mode indexn. Also,
the electric-field term has opposite sign for a positive charge,
i.e., for a hole. Moreover,an vanishes for the electric-field
intensity

Fn = −
"2n2p2D

em*w3r
. s18d

It means that it is possible to repair the eccentric ring by
applying an in-plane electric field, avoiding the suppression
of the Aharonov-Bohm oscillations. However, the critical
field-intensityFn depends on the transversal-mode indexn
and the effective massm* , and has opposite signs for positive
and negative charges. In this sense, it is not possible to mend
the whole electronic spectrum of the eccentric ring.

The eigenfunctions ofĤ1D
snd in Eq. s16d are

c1D
s j ,ndsud =

1
Î2

expS− i
f

f0
uD 3 FAj ,nCS4l j ,n,an,

u

2
D

+ Bn,jSS4l j ,n,an,
u

2
DG s19d

with j =1,2,3, . . ., andCsa,q,zd andSsa,q,zd being the even
and oddsin the variablezd Mathieu functions, respectively,
which are linearly independent solutions of the differential
equation14,15

y9szd + fa − 2q coss2zdgyszd = 0. s20d

Here, Csa,q,zd fSsa,q,zdg is the solution with the initial
conditionsys0d=1 andy8s0d=0 fys0d=0 andy8s0d=1g. Ac-
cording to the conditionc1Dsu+2pd=c1Dsud, the coeffi-
cientsAj andBj satisfy

iAj ,n sinSpf

f0
DCS4l j ,n,an,

p

2
D

= Bj ,n cosSpf

f0
DSS4l j ,n,an,

p

2
D s21d

and

Aj ,n cosSpf

f0
DC8S4l j ,n,an,

p

2
D

= iBj ,n sinSpf

f0
DS8S4l j ,n,an,

p

2
D , s22d

where C8sa,q,zd=Czsa,q,zd and S8sa,q,zd=Szsa,q,zd.
Hence,l j ,n=l jsan,fd with l jsa ,fd being thej th root of
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cos2Spf

f0
DC8S4l,a,

p

2
DSS4l,a,

p

2
D =

− sin2Spf

f0
DCS4l,a,

p

2
DS8S4l,a,

p

2
D , s23d

and the corresponding value ofE2D is

E2D
s j ,nd =

"2n2p2

2m*w2 +
"2

2m*r2Fl jsan,fd −
1

4
G +

eFD

2
. s24d

From Eq.s23d, it is straightforward to show that the spec-
trum is evenfl jsa ,−fd=l jsa ,fdg and periodic with period
f0 fl jsa ,f+f0d=l jsa ,fdg as a function of the magnetic
flux f. Moreover, l js−a ,fd=l jsa ,fd, due to symmetry.
Then, one can limit the numerical calculations to the ranges
aù0 and 0øføf0/2, wherel jsa ,fd is a monotonic func-
tion
of f. In a wider range off values, l jsa ,fd exhibits
AB oscillations as a function off with amplitude
d jsad= ul jsa ,f0/2d−l jsa ,0du. In particular, for a=0 the
bandwidth is given byd js0d=s2j −1d /4.

Figure 2 displays the eigenvaluesl jsa ,fd as a function
of the anisotropy parametera for j =1, . . . ,20 and
0øføf0/2. The solidsdashedd lines correspond tof=0
sf=f0/2d and the gray bands are for 0,f,f0/2. One can
clearly distinguish between the bands above and below the
line l=a /2, which corresponds to the maximum value of the
potentiala cossud /2 in Eq. s16d. The higher bands are wide
and very small gaps separate them. This means that such
bands show strong Aharonov-Bohm oscillations. Instead, the
lower bands are very narrow with large gaps between them.

Those flatbands occur because the asymmetry of the
system leads to a confinement of the particle around
u=p+2kp su=2kpd for a.0 sa,0d, with k being an
integer. In fact, the second-order Taylor expansion of the
potential a cossud /2 in Eq. s16d around its minima is
uau fsu−ukd2/4−1/2g, where uk=p+2kp suk=2kpd for
a.0 sa,0d. Hence, for sufficiently largeuau, the states

with small index j correspond to a coupled set of linear
oscillators.16 The associated bands are almost flat and can be
given in terms of an isolated oscillator as

l jsa,fd < −
uau
2

+ S j −
1

2
DÎuau. s25d

Since the linel= uau /2 separates narrow and wide bands, Eq.
s25d may be used to estimate the number of flatbands as

Na < Îuau + 1
2 . s26d

Of course, one should take the nearest positive integer toNa.
However, the Eq.s26d underestimates the value ofNa, since
the spacing between consecutive bands decreases asj in-
creasesssee Fig. 2d.

According to Eq.s24d, the energy of the flatbands with
small j and corresponding to thenth transversal mode can be
given as

E2D
s j ,nd <

"2n2p2

2m*w2 −
"2

2m*r2S uanu
2

+
1

4
D +

eFD

2

+
"2Îuanu
2m*r2 S j −

1

2
D , s27d

which is a sequence of uniformly spaced levels separated by

sn =
"2Îuanu
2m*r2 . s28d

This is an important result which allows one to obtain the
magnitudeuanu of the anisotropy parameter in terms of the
mean radiusr, after the experimental determination of the
level spacing. A further relation between the ring parameters
is given by the threshold energy which separates narrow and
wide bands. This energy is

Ethr
snd =

"2n2p2

2m*w2 +
"2

2m*r2S uanu
2

−
1

4
D +

eFD

2
, s29d

but the experimental error forEthr
snd is of the order ofsn. In-

stead, the energy of the lower longitudinal modeE2D
s1,nd may

be found more accurately. The latter establishes an important
relation between the mean widthw, the mean radiusr, the
eccentricity D and the electric-field intensityF fsee Eq.
s17dg.

Figure 2 also shows that, below the threshold line
l=a /2, the bandwidthd jsad decreases as the anisotropy pa-
rametera increases. The actual width of the thinner bands,
however, is not shown in the figure, because the thickness
of the edge curves in the artwork is fixed. To better illustrate
the evolution of the bandwidths, Fig. 3 displays the depen-
dence of the rated jsad /d1s0d with the anisotropya, for
j =1, . . . ,20. One clearly sees that lower bands are thinner
and that the bandwidths decrease exponentially for suffi-
ciently large values ofa. The number of flatbands,Na, is
also inferred from the figure. This is done by following a
criterium in which a band is flat if it is thinner than a half of
d1s0d. With this idea in mind,Na is the number of curves

FIG. 2. Energy spectrum given by the rootsl jsa ,fd as a func-
tion of the anisotropy parametera for the lower 20 bands
s j =1, . . . ,20d and 0øføf0/2. The solid sdashedd lines corre-
spond to the magnetic fluxf=0 sf=f0/2d and the gray bands are
for 0,f,f0/2.
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crossing the dashed linesdepicted in the figured at anisotropy
parameters shorter thana. That number may be estimated by
a simple fitting as

Na < − 0.322 + 1.153Îuau, s30d

where the nearest positive integer toNa should be taken.
This number is relevant for the study of persistent currents in
QRs, since the flatbands do not contribute to the current.
Hence, the number of electrons in the ring should be greater
thanNa for the AB oscillations to be detected in an equilib-
rium transport measurement.

It is worth noting that for a concentric GaAs QR with
r =400 Å, w,20 Å, andF=10 kV/cm, the anisotropy pa-
rameter of Eq.s17d is a<225.1 for all values ofn. Hence,
according to the Eq.s30d, there are 17 flatbands for all the
transversal modes. Moreover, the Eq.s28d gives the spacing
between the lower bandssn<5.33 meV. These results are in
good agreement with the work of Barticevicet al.8

IV. CONFORMAL MAPPING AND DIAGONALIZATION
PROCEDURE

To simplify the solution of the Eq.s4d, a conformal map-
ping which transforms the eccentric ringR in a concentric
ring R8 is used.10 Considering the complex variablesv=x
+ iy andv8=x8+ iy8, a suitable conformal mapping is

v8 = fsvd =
v − x0

1 − x0v/b2 , s31d

wherex0=b2s1+L1L2−L3d / s2Dd, with L3=Îs1−L1
2ds1−L2

2d,
L1=sD−ad /b, andL2=sD+ad /b. In fact, the functionf maps
uv−Du=a and uvu=b onto uv8−Du=a8 and uv8u=b, respec-
tively. The external radius of the concentric ringR8 is b and
its internal radius isa8=b2s1−L1L2−L3d / s2ad.

The conformal transformation give the rectangular coor-
dinates sx,yd in terms of the curvilinear coordinates
sq1,q2d=sx8 ,y8d. The Jacobian of this mapping isJ=g−2,
with

g =
s1 + x0x8/b2d2 + x0

2sy8d2/b4

s1 − x0
2/b2d

, s32d

and the Jacobian matrix is

M =
1

s1 − x0
2/b2dg2S m n

− n m
D , s33d

with m=s1+x0x8/b2d2−x0
2sy8d2/b4 and n=2x0y8s1+x0x8/b2d /

b2.
Equations11d is solved in the regionR8 with the Dirichlet

boundary conditionhsx8 ,y8d=0, and

T̂ =
"2

2m* SN̂ +
2f

r2f0
L̂ +

f2

r4f0
2Q̂D + eFX̂, s34d

with N̂=−g¹sx8,y8d
2

g, Q̂=x2+y2, X̂=x, and

L̂ =
i

s1 − x0
2/b2d

H2x0y8

b2 + y8S1 +
2x0x8

b2 +
x0

2

b2D ]

]x8

+ − Fsx8 + x0dS1 +
x0x8

b2 D −
x0sy8d2

b2 G ]

]y8
J . s35d

For this purpose, the eigenfunctions are expressed as

hsx8,y8d = o
l,m

cm,lhm,l
s0dsx8,y8d, s36d

wherel takes integer values,m=1,2,3, . . ., andhm,l
s0dsx8 ,y8d is

defined in our previous work.10,17 For each of the electronic
states, the energyE2D in Eq. s11d and the corresponding co-

efficientscm,l are found by diagonalization ofT̂ in the ortho-
normal basehm,l

s0dsx8 ,y8d. In the calculations, the base is trun-
cated, and the accuracy of the results may be increased by
taking a base with a larger number of elements.

V. FURTHER RESULTS AND DISCUSSION

Figure 4 displays the lower 2D energy levels as functions
of the mean magnetic fluxf, for conduction electrons in
GaAs QRs witha=900 Å, b=1100 Å, and different combi-
nations of eccentricityD and electric-field intensityF. The
solid lines are the eigenvalues obtained from Eq.s34d using
m=1,2,3 andl =−40, . . . ,40, whereas the dashed lines are
the results from Eq.s24d with n=1, following the adiabatic
approximation. The field intensityF=−84.2 V/cm has been
taken from the Eq.s18d, for D=6 Å andn=1. A good agree-
ment between the 2D approach and the adiabatic approxima-
tion ssolid and dashed linesd is apparent in the figure.

The energy spectrum corresponding to a concentric QR
in the absence of electric fields is shown in Fig. 4sad, where
the Aharonov-Bohm oscillations are clearly seen. Figure
4sbd shows the effect of applying the in-plane field
F=−84.2 V/cm to the concentric QR. The oscillations of the
lower levels are nearly suppressed,8 since this field pushes
the electron to the right-hand side of the ring. Following Eq.
s17d, the value of the anisotropy parameter isa1<−29.61.
According to Eq.s30d the number of flat levels is 6, as can be
seen in Fig. 4sbd. Also, the results show that flat levels are

FIG. 3. The bandwidthd jsad, in units of the widthd1s0d of the
first band in a concentric ring with electric fieldF=0, as a function
of the anisotropy parametera for j =1, . . . ,20. The band indexj
increases from the left-bottom to the right-top corner. The dashed
line is for d jsad=d1s0d /2.
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separated by s1<0.31 meV. A QR with eccentricity
D=6 Å is considered in the bottom panels of Fig. 4. Panel
scd, whereF=0 V/cm, shows that the eccentricity leads to
the same effects as the in-plane electric field. In this case the
localization of the electron occurs in the wider region,6 and
the picture resembles Fig. 4sbd since a1<29.61. Instead,
panelsdd for F=−84.2 V/cm is similar to Fig. 4sad, since the
main effects of eccentricity and electric field are compen-
sated, i.e.,a1<0.

Higher transversal electronic modes may also be apparent
in experimental studies.4 Figure 5 displays some high-energy
levels for the system of Fig. 4sdd. The solid lines are the
eigenvalues of Eq.s34d, with m=1,2,3 andl =−40, . . . ,40,
whereas the dashed lines are given by the Eq.s24d, with
n=1 or n=2. The diamondlike structure with,3 meV high
pieces are associated to the first transversal mode, and clearly
shows the AB oscillations. Moreover, the flat curves and
the diamondlike structure with,1 meV high pieces corre-
spond to then=2 transversal mode. For the latter states the
anisotropy parameter isa2<88.82, which leads to 11 flat-
bands. Also, the spacing between the lower flatbands is
s2<0.54 meV. This shows that the in-plane electric field
F=−84.2 V/cm, which recovers the oscillations of then=1
level in Fig. 4sdd, does not repair then=2 states.

VI. CONCLUSIONS

The conduction-electron states in GaAs quantum rings in
the presence of a perpendicular magnetic field have been

calculated within the effective-mass approximation, with
special attention on the effects of in-plane electric fields and
eccentricity. The calculation of the 2D states was performed
by two methods: an adiabatic approximation and a conformal
transformation combined with a diagonalization procedure.

The adiabatic approximation, which is suitable for suffi-
ciently thin rings with small eccentricity leads to a 1D prob-
lem for each transversal mode. The main effects of the elec-
tric field and eccentricity are contained in the anisotropy
parameter. We have shown that the eccentricity effect is
stronger for bigger and thinner rings and higher transversal
modes, but it does not depend on the effective mass or the
electric charge of the particle. Moreover, the effect of the
electric field is stronger for bigger rings and heavier particles
and has an opposite sign for a positive charge and does not
depend on the mean width of the ring or the transversal
mode. Simple expressions have been derived for the thresh-
old energy separating wide from narrow bands, the number
of flat levels, the distance between the lower ones, and the
energy of the ground level. Furthermore, the width of the flat
energy bands, as functions of the threading magnetic flux,
has been shown to decrease exponentially as the anisotropy
parameter increases.

The 2D approach based on the combination of a suitable
conformal mapping and a diagonalization procedure is more
complete, since it includes the coupling between different
transversal modes and remains valid for a wider range of ring
dimensions and eccentricity values. A good agreement be-
tween the two approaches was obtained for thin rings with
small eccentricity. As the electric field and the eccentricity
may affect the electronic spectrum of GaAs quantum rings in
the presence on a perpendicular magnetic field, we expect
this work to be useful in magnetization, transport, and optical
studies of such systems.
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FIG. 4. The lower 2D energy levels as functions of the mean
magnetic flux f, for conduction electrons in GaAs QRs with
a=900 Å, b=1100 Å, and sad D=0 Å and F=0 V/cm, sbd
D=0 Å andF=−84.2 V/cm,scd D=6 Å andF=0 V/cm, andsdd
D=6 Å andF=−84.2 V/cm. Solidsdashedd lines are the results of
the 2D approach with the conformal mappingsthe adiabatic
approximationd.

FIG. 5. Some 2D energy levels as functions of the mean mag-
netic flux f, for conduction electrons in a GaAs QRs with
a=900 Å,b=1100 Å,D=6 Å, andF=−84.2 V/cm. Solidsdashedd
lines are the results of the 2D approach with the conformal mapping
sthe adiabatic approximationd.
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